
Semester Review

CSC 301

Programming Language Classes

There are many different programming language classes, but four classes or
paradigms stand out:
l Imperative Languages

l assignment and iteration
l Functional Languages

l recursion and single valued variables

l Logic/Rule Based Languages
l programs consist of rules that specify the problem solution -

axiomatization
l Object-Oriented Languages

l bundle data with the allowed operations F Objects

Formal Language Specification

Language Specifications consist of two
parts:
l The syntax of a programming language is

the part of the language definition that says
what programs look like; their form and
structure.

l The semantics of a programming language
is the part of the language definition that
says what programs do; their behavior and
meaning.

Formal Language Specification

In order to insure conciseness of language
specifications we need tools:
l Grammars are used to define the syntax.
l Mathematical constructs (such as

predicates and sets) are used to define the
semantics.

Grammars

Example: a grammar for simple English sentences.

<Sentence>* ::= <Noun-Phrase> <Verb> <Noun-Phrase>
<Noun-Phrase> ::= <Article> <Noun>
<Verb> ::= loves | hates | eats
<Article> ::= a | the
<Noun> ::= dog | cat | rat

Production

Non-terminal Terminal

Start Symbol

F Grammars capture the structure of a language.

How do Grammars work?
We can view grammars as rules for building parse trees or derivation trees for sentences
in the language defined by the grammar. In these parse or derivation trees the
start symbol will always be at the root of the tree.

<Sentence>* ::= <Noun-Phrase> <Verb> <Noun-Phrase>
<Noun-Phrase> ::= <Article> <Noun>
<Verb> ::= loves | hates | eats
<Article> ::= a | the
<Noun> ::= dog | cat | rat

<Sentence>*

<Noun-Phrase> <Noun-Phrase><Verb>

<Article> <Noun> loves <Article> <Noun>

the dog the cat

Derivation:

Derived String

L(G) = { s | s can be derived from G }

Grammars and Semantics
Given grammar G, consider the sentence a+b+c; here we have
two possible parse trees:

A grammar is ambiguous if there
exists more than one parse tree for
a string of terminals.

G: <AddExp> ::= <AddExp> + <AddExp>
| <MulExp>

<MulExp> ::= <MulExpr> * <MulExp>
| a | b | c

<AddExp>*

<AddExp> +

<MulExp>

<AddExp>

<AddExp> <AddExp>+

a <MulExp>

b

<MulExp>

c

<MulExp>

<AddExp>*

<AddExp>+

<MulExp>

<AddExp>

<AddExp><AddExp> +

<MulExp>

ba

c

Language Systems
What actually happens in your IDE? IDE º Integrated Development Environment

Classical Sequence: C++, C, Fortran

IDE

Editor Compiler Assembler Linker Loader

Source
File

Assembly
Language
File

Object
Code

Library
Code

Executable
Code

NOTE: The IDE is not a compiler, it contains a compiler.

NOTE: Many different IDE structures possible, depending on the language.

Compilers vs. Interpreters

l Compilers translate high-level languages (Java, C,
C++) into low-level languages (Java Byte Code,
assembly language).

l Interpreters execute high-level languages directly
(Lisp).

Observation: Virtual machines can be considered interpreters for
low-level languages; they directly execute a low-level language
without first translating it.

Observation: Compilers can generate very efficient code and,
consequently, compiled programs run faster than interpreted
programs.

The Anatomy of a Compiler
Source Program

Syntax Analysis

Semantic Analysis

Optimization

Code Generation

Translated Program

Parse
Trees
(ASTs)

Recognize the structure of a source program,
generate parse tree

Recognize/validate the meaning of a source program

Reorganize the parse tree/AST to make computations
more efficient

Translate parse tree/AST into low-level language

Recognition
Phases

Code
Generation
Phases

Observations:
-Language definitions have two parts: syntax and semantics
-Compilers have two phases which deal with each of these
language definition components: syntax analysis, semantic
analysis.

ML
ML is a functional programming language, typical statements in this language are:

- fun reverse ([]) = []
| reverse (x :: xs) = reverse(xs) @ [x];

- map (fn x => x + 2) [1,2,3];

Polymorphism

polymorphism º comes from Greek meaning ‘many forms’

In programming:

Def: A function or operator is polymorphic if it has at
least two possible types.

Polymorphism
i) Overloading

Def: An overloaded function name or operator is one that has at least two
definitions, all of different types.

ii) Parameter Coercion
Def: An implicit type conversion is called a coercion.

iii) Parametric Polymorphism
Def: A function exhibits parametric polymorphism if it has a type

that contains one or more type variables.

iv) Subtype Polymorphism
Def: A function or operator exhibits subtype polymorphism if one or more

of its constructed types have subtypes.
Note: one way to think about this is that this is type coercion on

constructed types.

Scope & Namespaces
Def: A definition is anything that establishes a possible binding to a name.

Def: Scope is a programming language tool to limit the visibility of definitions.

Def: A namespace is a zone in a programming language which is
populated by names. In a namespace, each name must be unique.

The most common namespace in programming languages is the block.

Scoping with Blocks
Def: A block is any language construct that contains definitions and
delineates the region of the program where those definitions apply.

Example: Java

if (cond) {
int q = ...;

}
else {

int r = ...;

}

block

def. q

def. r

Example: ML

let
val q = ...;

in
...

end

blockdef. q

Primitive Namespaces

Def: A primitive namespace is a language construct that contains
definitions and delineates a region of the program where those
definitions apply; but the region was defined at language design time
(similar to primitive data types, you can use them but not define them).

Most modern programming languages define two primitive namespaces –
one for user defined variable names and one for type names (both primitive
and constructed).

int q = ...;q, ...

int, float, ...

namespace
(e.g. block, implicit block,
labeled namespace, etc)

primitive namespace
for variable names

primitive namespace
for type names

int fact(int n) {
int result;
if (n<2) result = 1;
else result = n * fact(n-1);
return result;

}

The second activation is about
to return.

previous
activation record

return address

n: 2

result: 2

previous
activation record

return address

n: 3

result: ?

previous
activation record

return address

n: 1

result: 1

current
activation record

Activation Records & Runtime
Stack

Memory Management

A typical memory layout for
languages such as C and Java

Heap Manager

Stack Pointer

0

FF..FF

static

dynamic

Compiled code,
RTS,
Library code

Global data

Heap

Runtime stack

NOTES:
(1) if the runtime stack and the heap

meet Þ out of memory
(2) Also: memory leaks, dangling pointers

and garbage collection…

Parameter Passing

l How is the correspondence between
acutal and formal parameters
established?
l Most often positional correspondence

l How is the value of an actual parameter
transmitted to a formal parameter?
l Most popular techniques: by-value, by-

reference

Prolog

l Programming language based on first-
order logic
l Predicates
l Quantification
l Modus-ponens

l Can be made executable using Horn-
clause logic
l Deduction is computation!

Prolog
Typical Programs:

last([A],A).
last([A|L],E) :- last(L,E).

append([], List, List).
append([H|T], List, [H|Result]) :- append(T, List, Result).

length([], 0).
length(L, N) :- L = [H|T], length(T,NT), N is NT + 1.

Formal Semantics
Grammars define the structure of a language, but what defines semantics
or meaning?

Þ Behavior!

The most straight forward way to define semantics is to provide a
simple interpreter for the programming language that highlights the
behavior of the language,

Þ Operational Semantics

We used Prolog to define abstract interpreters for our languages, I.e.,
operational semantics for these languages.

