CSC 501 - Assignment #2version 9.0

Due Thursday 10/13/16 in Sakai

Problems

1. Given the grammar

$$\begin{array}{rcl} \mathbf{Q} & \rightarrow & \mathbf{Q} + \mathbf{D} \, | \, \mathbf{D} \\ \mathbf{D} & \rightarrow & \mathbf{0} \, | \, 1 \, | \, DD \end{array}$$

Let **Qexp** and **Dexp** be the sets defined deductively as follows,

 $Qexp = \{q \mid Q \Rightarrow^* q \land q \in T^*\}$ $Dexp = \{d \mid D \Rightarrow^* d \land d \in T^*\}$

give the inductive definitions of these set.

- 2. Compute the semantic value of $ae \equiv 2 * v$, where $ae \in \mathbf{Aexp}$ with $v \in \mathbf{Loc}$ and $2 \in \mathbf{I}$. Assume the initial state $\sigma_0 \in \Sigma$.
- 3. Compute the semantic value of $c \equiv x := 3$; if $x \leq 5$ then x := 0 else x := 10 end, where $c \in \mathbf{Com}$, $x \in \mathbf{Loc}$, and $0, 3, 5, 10 \in \mathbf{I}$. Assume the initial state σ_0 .
- 4. Let $a_0 \equiv 1 + 1$ and $a_1 \equiv 2 * 2 2$, where $a_0, a_1 \in \mathbf{Aexp}$. Prove that $a_0 \sim a_1$.
- 5. Given the syntax and semantics for the language IMP discussed in class, extend the syntax of this language with the construct 'do c while b end' where $c \in Com$ and $b \in Bexp$. The informal specification of this command is that c is executed as long as b remains true. Provide a set of semantic rules that defines the behavior of this construct formally and demonstrate that your rules work with a simple example.
- 6. Let $\sigma : \mathbf{Loc} \to \mathbb{I}$ be some state $\sigma \in \Sigma$, show that $\sigma[2/x] = (\sigma[1/x])[2/x]$ for some $x \in \mathbf{Loc}$. (**Hint:** use extensional equality of functions.¹)

Where not stated explicitly otherwise, show your computations based on the semantic rules covered in class.²

¹http://en.wikipedia.org/wiki/Extensionality

²Typewritten work is preferred :)