CSC 501 - Assignment #3

Due Friday 10/21/16 in Sakai

Problems

- 1. Let $L(G) = \{(a), ((a)), (((a))), ((((a)))), \ldots\},\$
 - (a) Give a grammar G that generates the language L(G).
 - (b) Give an inductive definition of the set L(G).
 - (c) Give an inductive proof that all terms in set L(G) have matched parentheses.
- 2. Let $c \equiv x_0 := x_1; x_2 := x_1$ and $c' \equiv x_2 := x_1; x_0 := x_1$, show that $c \sim c'$.
- 3. Let Σ be the set of all states (as defined in class) with elements $\sigma \colon \mathbf{Loc} \to \mathbb{I}$. Now, we redefine the initial state $\sigma_0 \in \Sigma$ as

$$\sigma_0(x) = \perp$$

for all $x \in \mathbf{Loc}$. Here we say that the value of a variable is *undefined* in the initial state.

- (a) If we interpret a variable lookup in the initial state as a non-terminating computation:
 - i. What effect does this have on our inductive proof that all arithmetic expressions terminate?
 - ii. What is the difference between arithmetic expressions that do terminate and arithmetic expressions that do not terminate?
- (b) Which semantics is a better model for the way programming languages such as Java and C work today, $\sigma_0(x) = \bot$ or $\sigma_0(x) = 0$ for all $x \in \mathbf{Loc}$? Why?

All questions are based on the operational semantics rules covered in class.