
CSC 501 – Semantics of Programming Languages

Subtitle: An Introduction to Formal Methods.

Instructor: Dr. Lutz Hamel

Email: hamel@cs.uri.edu

Office: Tyler, Rm 251



Books

There are no required books in this course; however, occasionally I
will assign readings based on material available on the web.



Course Objectives

The aim of this course is to

Familiarize you with the basic techniques of applying formal
methods to programming languages.

This includes constructing models for programming languages
and using these models to prove properties such as correctness
and equivalence of programs.

Look at all major programming language constructs including
assignments, loops, type systems, and procedure calls together
with their models.

Introduce mechanical theorem provers so that we can test and
prove properties of non-trivial programs.



Some Definitions

Definition: In programming language semantics we are
concerned with the rigorous mathematical study of the meaning of
programming languages. The meaning of a language is given by a
formal system that describes the possible computations expressible
within that language.



Some Definitions

Definition: In computer science and software engineering, formal
methods are techniques for the specification, development and
verification of software and hardware systems based on formal
systems.



Formal Systems

Definition: A formal system consists of a formal language and a
set of inference rules. The formal language is composed of
primitive symbols that make up well formed formulas and the
inference rules are used to derive expressions from other
expressions within the formal system. A formal system may be
formulated and studied for its intrinsic properties, or it may be
intended as a description (i.e. a model) of external phenomena.1

In order to be truly useful in computer science, we require our
formal systems to be machine executable.

1Wikipedia



Uses of Formal Methods

Implementation Issues Formally specified models can be
considered machine-independent specifications of
program behavior. They can act as “yard sticks” for
the correctness of program implementations,
transformations, and optimizations.

Verification Basis of methods for reasoning about program
properties (e.g. equivalence) and program
specifications (program correctness).

Language Design Can bring to light ambiguities and unforeseen
subtleties in programming language constructs.



Observations

When programming we can observe two mental activities:

We construct correct looking programs - syntactically correct
programs.

We construct models of the intended computation in our
minds. Consider,
x := 1

while (x <= 10) do

writeln(x)

x := x + 1

end whiledo

Any person with some familiarity of programming immediately
has a mental picture that this program will generate a list of
integers from 1 through 10.



Programming Language Definitions

Mirroring our intuition, language definitions consist of two parts:

Syntax The formal description of the structure of
well-formed expressions, phrases, programs, etc.

Semantics The formal description of the meaning of the
syntactic features of a programming language usually
understood in terms of the runtime behavior each
syntactic construct evokes. The formal description of
the behavior of all the syntactic features of a
language is considered a model of the language.



Evaluation/Interpretation

Syntax and semantics of a programming language are usually
related via an evaluation relation or interpretation, say h. Then we
say that the interpretation h takes each syntactic element and
maps it into the appropriate semantic construct.

We often represent this with the diagram

Semantics

Syntax

h

OO

Note: In order for the interpretation h to make any sense we will
have to define the syntax and semantics in terms of sets.



Formal Systems and Programs

The formal systems we will be using in this course are:

A variant of string rewriting systems called a grammar to
model the syntax of programming languages.

The first order predicate calculus (often also called first order
logic) to construct semantics of programming languages.



Readings

Read Chapter 0 in ”Denotational Semantics” by David
Schmidt (available from the course website).

Read Sections 2.1 and 2.2 in ”Denotational Semantics” by
David Schmidt.



Mathematical Preliminaries: Logical Notation

We2 will use first order logic as the basis for our reasoning.
Without going into the formal details of first order logic
terminology and sentence construction we have the following
statements:

A ∧ B denotes the conjunction A and B,

A ∨ B denotes the disjunction A or B,

¬A denotes the negation not A,

A⇒ B denotes the implication, if A then B,

A⇔ B denotes the logical equivalence, A if and only if B
(often written as A iff B),

where A and B are statements or assertions.

2
The material presented here is based on “Naive Set Theory” by P. Halmos and “The Formal Semantics of

Programming Languages” by G. Winskel.



Mathematical Preliminaries: Logical Notation

Observe the precedences of the logical operators, ordered from
high to low:

¬
∧,∨
⇒,⇔



A Word or Two about Implication

The truth table for the implication operator ‘⇒’ can be given as

A B A⇒ B
(1) 1 0 0
(2) 1 1 1
(3) 0 0 1
(4) 0 1 1

Entries (1) and (2) are intuitive: When the antecedent A is true
but the consequent B is false then the implication itself is false. If
both the antecedent and the consequent are true then the
implication is true.

However, entries (3) and (4) are somewhat counter intuitive. They
state that if the antecedent A is false then the implication is true
regardless of the value of the consequent. In other words, we can
conclude “anything” from an antecedent that is false. In
mathematical jargon we say that (3) and (4) hold trivially.



A Word or Two about Implication – An Example

If Bob is a bachelor, then he is single.
Bob is a bachelor.
∴ Bob is single.

Now consider an antecedent that is not true,

If Bob is a bachelor, then he is single.
Bob is not a bachelor.
∴ Bob is not single (by rule (3)).

Since the antecedent is not true rule (3) allows us to conclude the
opposite of what the implication dictates. However, the following
is also valid reasoning,

If Bob is a bachelor, then he is single.
Bob is not a bachelor.
∴ Bob is single (by rule (4)).

Not being a bachelor does not necessarily imply that Bob is not
single. For example, Bob could be a widower or a divorcee.



A Word or Two about Implication

Given the truth table for implication,

A B A⇒ B

(1) 1 0 0
(2) 1 1 1
(3) 0 0 1
(4) 0 1 1

this means that in order to show that an implication holds we only
have to show that rule (2) holds. Rule (1) states that the
implication is false and rules (3) and (4) are trivially true and
therefore not interesting.



Closely Related: Equivalence

We write A⇔ B if A and B are equivalent.
Given the truth table for the equivalence operator is given as,

A B A⇔ B

(1) 1 0 0
(2) 1 1 1
(3) 0 0 1
(4) 0 1 0

That is, the operator only produces a true value if A and B have
the same truth assignment.
Another, and very useful, way to look at the equivalence operator
is as follows:

A⇔ B ≡ A⇒ B ∧ B ⇒ A

Exercise: Construct the above truth table using this definition of
the equivalence operator.



Mathematical Preliminaries: Logical Notation

We also allow predicates (properties) as part of our notation,

P(x)

where the predicate P is true if it holds for x otherwise it is false.
We view our standard relational operators as binary predicates. For
example, the predicate P(x) that expresses the fact that x is less
or equal to 3 is written as,

P(x) ≡ x ≤ 3.

Note: Predicates can have arities larger than 1, e.g. P(x , y) with
P(x , y) ≡ x ≤ y .



Mathematical Preliminaries: Logical Notation

We also allow for the quantifiers ∃ (there exists) and ∀ (for all) in
our logical statements,

∃x . P(x) – “there exists an x such that P(x)”

∀x . P(x) – ”for all x such that P(x)”

Some examples,

∀x ,∃y . y = x2

∀x ,∀y . female(x) ∧ child(x , y)⇒ mother(x , y)



Mathematical Preliminaries: Sets

Sets3 are unordered collections of objects and are usually denoted
by capital letters. For example, let a, b, c denote some objects then
the set A of these objects is written as,

A = {a, b, c}.

There are a number of standard sets which come in handy,

∅ denotes the empty set, i. e. ∅ = {},
N denotes the set of all natural numbers including 0, e. g.
N = {0, 1, 2, 3, · · · },
I denotes the set of all integers, I = {· · · ,−2,−1, 0, 1, 2, · · · },
R denotes the set of all reals,

B denotes the set of boolean values, B = {true, false}.

3
Read Sections 2.1 and 2.2 in the book by David Schmidt.



Mathematical Preliminaries: Sets

The most fundamental property in set theory is the notion of
belonging,

a ∈ A iff a is an element of the set A.

The notion of belonging allows us to define subsets,

Z ⊆ A iff ∀e ∈ Z . e ∈ A.

We define set equivalence as,

A = B iff A ⊆ B ∧ B ⊆ A



Mathematical Preliminaries: Sets

We can construct new sets from given sets using union,

A ∪ B = {e | e ∈ A ∨ e ∈ B},

and intersection,

A ∩ B = {e | e ∈ A ∧ e ∈ B}.

There is another important set construction called the cross
product,

A× B = {(a, b) | a ∈ A ∧ b ∈ B},

A× B is the set of all ordered pairs where the first component of
the pair is drawn from the set A and the second component of the
pair is drawn from B. (
Exercise: Let A = {a, b} and B = {c , d}, construct the set A×B.



Mathematical Preliminaries: Sets

A construction using subsets is the powerset of some set X ,

P(X ),

The powerset of set X is set of all subsets of X . For example, let
X = {a, b}, then

P(X ) = {∅, {a}, {b}, {a, b}}.

Note: ∅ ⊂ X

Exercise: What would P(X × X ) look like?



Mathematical Preliminaries: Sets

The fact that ∅ ⊂ X for any set X is interesting in its own right. Let’s see if we can
prove it.

Proof: Proof by contradiction. Assume X is any set. Assume that ∅ is not a subset of
X . Then the definition of subsets,

A ⊆ B ⇔ ∀e ∈ A.e ∈ B,

implies that there exist at least one element in ∅ that is not also in X . But that is not
possible because ∅ has no elements – a contradiction. Therefore, our assumption the
that ∅ is not a subset of X must be wrong and we can conclude that ∅ ⊂ X .



Mathematical Preliminaries: Relations

A (binary) relation is a set of ordered pairs. If R is a relation that
relates the elements of set A to the elements B, then

R ⊆ A× B.

This means if a ∈ A is related to b ∈ B via the relation R, then
(a, b) ∈ R. We often write

a R b.

Consider the relational operator ≤ applied to the set N× N. This
induces a relation, call it ≤⊆ N× N, with (a, b) ∈≤ (or a ≤ b in
our relational notation) if a ∈ N is less or equal to b ∈ N.



Mathematical Preliminaries: Relations

The first and second components of each pair in some relation R
are drawn from different sets called the projections of R onto the
first and second coordinate, respectively. We introduce the
operators domain and range to accomplish these projections. Let
R ⊆ A× B, then,

dom(R) = A,

and
ran(R) = B.

In this case we talk about a relation from A to B. The range is
often called the co-domain. If R ⊆ X × X , then

dom(R) = ran(R) = X .

Here we talk about a relation in X .



Mathematical Preliminaries: Relations

Let R ⊆ X × X such that (a, b) ∈ R iff a = b. That is, R is the
equality relation in X . (What do the elements of the equality
relation look like for N× N?)

A relation R ⊆ X × X is an equivalence relation if the following
conditions hold,

R is reflexive4 – x R x ,

R is symmetric – x R y ⇒ y R x ,

R is transitive – x R y ∧ y R z ⇒ x R z ,

where x , y , z ∈ X .

The smallest equivalence relation in some set X is the equality
relation defined above. The largest equivalence relation is some set
is the cross product X × X . (Consider the smallest/largest equiv.
relation in I)

4Recall that x R x ≡ (x , x) ∈ R



Mathematical Preliminaries: Functions

A function f from X to Y is a relation f ⊆ X × Y such that

∀x ∈ X ,∃y , z ∈ Y . (x , y) ∈ f ∧ (x , z) ∈ f ⇒ y = z .

In other words, each x ∈ X has a unique value y ∈ Y with
(x , y) ∈ f or functions are constrained relations.

We let X → Y denote the set of all functions from X to Y (i. e.
X → Y ⊂ P(X × Y ), why is the subset strict? Hint: it is not a
relation), then the customary notation for specifying functions can
be defined as follows,

f : X → Y iff f ∈ X → Y .



Mathematical Preliminaries: Functions

For function application it is customary to write

f (x) = y

for (x , y) ∈ f . In this case we say that the function is defined at
point x . Otherwise we say that the function is undefined at point x
and we write f (x) =⊥.

Note that f (⊥) =⊥ and we say the f is strict.

We say that f : X → Y is a total function if f is defined for all
x ∈ X . Otherwise we say that f is a partial function.



Mathematical Preliminaries: Functions

We can now make the notion of a predicate formal – a predicate is
a function whose range (co-domain) is restricted to the boolean
values:

P : X → B

where P is a predicate that returns true or false for the objects in
set X .

Example: Let U be the set of all possible objects – a universe if
you like, and let,

human : U → B

be the predicate that returns true if the object is a human and will
return false otherwise, then

human(socrates) = true

human(car) = false



Mathematical Preliminaries: Exercises

1 In your own words explain what the function m : X × Y → Z
does.

2 How would you describe the function c : X → (Y → Z )?

3 In your own words explain what the relation
R ⊆ (X × Y )× (Z ×W ) does.


