
String Rewriting Systems

The first step in exploring the formal aspects of programming languages
is the definition of their structure or syntax.

In order to accomplish this we will use a formal system known as String
Rewriting System (SRS).

We begin with the definition of strings over an alphabet.



String Rewriting Systems

Definition: [Strings over an Alphabet]1

An alphabet is a finite, nonempty set – we refer to the elements of
an alphabet as symbols.

A finite sequence of symbols from a given alphabet is called a string
over the alphabet.

A string that consists of a sequence a1, a2, . . . , an of symbols is
denoted by the juxtaposition a1a2 . . . an.

The length of some string s is denoted by |s| and assumed to equal
the number of symbols in the string.

Strings that have zero symbols, called empty strings, are denoted by
ε with |ε| = 0.

1
Based on material from the book “An Introduction to the Theory of Computation,” Eitan Gurari, Ohio State

University,Computer Science Press, 1989.



String Rewriting Systems

Example: Γ1 = {a, . . . , z} and Γ2 = {0, . . . , 9} are alphabets. abb is a
string over Γ1, and 123 is a string over Γ2. ba12 is neither a string over
Γ1 nor a string over Γ2 but it is a string over Γ1 ∪ Γ2. The string 314 . . .
is not a string over Γ2, because it is not a finite sequence.

Some other observations:

The empty string ε is a string over any alphabet.

The empty set ∅ is not an alphabet because it contains no element.

The set of natural numbers is not an alphabet, because it is not
finite.



String Rewriting Systems

Definition: [Kleene Closure] Given some alphabet Γ then the set
of all possible strings over Γ including the empty string ε is
denoted by Γ∗ and is called the Kleene Closure of Γ. (Similar to
the power set construction with the exception that the constructed
set is always infinite.)

Example: Let Γ = {a}, then Γ∗ = {ε, a, aa, aaa, aaaa, . . . }.

Example: Let Γ = {a, b}, then

Γ∗ = {ε, a, b, aa, bb, ab, ba, aaa, aab, . . .}.



String Rewriting Systems

Definition: [String Concatenation] Given some alphabet Γ with
s1 ∈ Γ∗ and s2 ∈ Γ∗, then the concatenation of the strings written
as s1s2 also belongs to Γ∗, that is the string s1s2 ∈ Γ∗.



String Rewriting Systems

Definition: [String Rewriting System] A string rewriting system is
a tuple (Γ,→) where,

Γ is an alphabet.

→ is a finite binary relation in Γ∗, i.e., →⊆ Γ∗ × Γ∗. Each
element (u, v) ∈→ is called a (rewriting) rule and is usually
written as u → v .

An inference step in this formal system is: given a string u ∈ Γ∗

and a rule u → v then the string u can be rewritten as the string
v ∈ Γ∗. We write,

u ⇒ v .

Note: Rule definitions, u → v , and rule applications or inference
steps, u ⇒ v , are two separate things and we use different symbols.



String Rewriting Systems

In order for an SRS (Γ,→) to be useful we allow rules to be applied to
substrings of given strings; let s = xuy ,t = xvy with x , y , u, v ∈ Γ∗, and
a rule u → v , then we say that s rewrites to t and as before we write,

s ⇒ t.

More formally,

Definition: [one-step rewriting relation] Let (Γ,→) be a string rewriting
system, then the one-step rewriting relation ⇒⊆ Γ∗ × Γ∗ is the set with
(s, t) ∈⇒ for strings s, t ∈ Γ∗ if and only if there exist x , y , u, v ∈ Γ∗

with s = xuy , t = xvy , and u → v .

In plain English: any two string s, t belong to the relation ⇒ if and only

if they can be related by a rewrite rule.



String Rewriting Systems

Exercise: Given an SRS with (Γ,→), show that→⊆⇒.

(Spoiler alert, next page holds the solution)



String Rewriting Systems

Proof: Let (Γ,→) be an SRS. We use the definition of a subset,

→⊆⇒ iff ∀e ∈→ . e ∈⇒,

for our proof. There is nothing to prove for the ‘only if’ direction. More
interesting is the ‘if’ direction, if we can show that all elements of → are
also elements of ⇒ then it follows from the definition that →⊆⇒.

Observe that an element of ⇒ is the pair (xuy , xvy) with u, v , x , y ∈ Γ∗

if (u, v) ∈→. Thus, ⇒ contains pairs of strings where the first string
contains a substring that is the left side of a rule in the rewriting system.
Also observe that (u, v) ∈⇒ with x and y the empty strings. It follows
that all elements of → are members of ⇒.2



String Rewriting Systems

Given a string rewriting system (Γ,→), we can obviously apply the
rewriting rules to the results of a rewriting step. This gives rise to
derivations

sn ⇒ sn−1 ⇒ . . .⇒ s1 ⇒ s0,

with sk ∈ Γ∗.

We say that s0 is a normal form if s0 cannot be rewritten any further.

The transitive closure ⇒∗ of the one-step rewriting relation is the set all
pairs of strings that are related to each other via zero or more rewriting
steps, e.g.,

sn ⇒∗ s0,

and
si ⇒∗ si .

It is easy to see that the following holds,

→⊆⇒⊆⇒∗



String Rewriting Systems

Example: The urn game. An urn contains black and white beads. The
game has the following rules:

if you remove two black beads you have to replace them with a black bead.

if you remove two white beads you have to replace them with a black bead.

if you remove a white and a black bead you have to replace them with a white
bead.

Given the contents of an urn, what is the outcome of the game?

The game can be set up as a string rewriting system (Γ,→). Let
Γ = {b,w} and let → be defined by the following pairs,

bb → b
ww → b
bw → w
wb → w

bwbw ⇒ bww ⇒ ww ⇒ b

bbww ⇒ bww ⇒ ww ⇒ b

bbw ⇒ bw ⇒ w

bwb ⇒ bw ⇒ w



String Rewriting Systems

Observations:

It can be shown that for each urn there exists a unique normal form,
the order of rule application does not matter.

If we interpret ⇒∗ as an equivalence relation (it is actually a
preorder - symmetry is typically not preserved in SRSs) then we can
interpret the normal form as a representative value for an urn since
it is equivalent to the original string according to our view of
rewriting as an equivalence. Consider,

bwb ⇒ bw ⇒ w ,

the normal form ’w’ can be considered the representative value for
the urn .



String Rewriting Systems

Now, we say that two urns are equivalent if they have the same
normal form,

bwb
∗

�&
DDDDDDD

DDDDDDD ≡ bbw
∗

x� zz
zz

zz
zz

zz
zz

zz
zz

w



String Rewriting Systems

Example: Palindrome generator. We construct a string rewriting system
(Γ,→) with Γ = {a, b, . . . , z , α} and → defined by the pairs,

α → aαa
α → bαb

...
α → zαz

aαa → a
bαb → b

...
zαz → z
α → “”

We often refer to α as the start
symbol because all derivations start
with this symbol.

Derivation: α⇒ rαr ⇒ raαar ⇒ radαdar ⇒ radar

Exercise: Derive the normal form: racecar
Exercise: Derive the normal form: redder



String Rewriting Systems

Observations:

Observe how SRSs can generate structure in the normal forms
(this is what we will rely on when we use SRSs to describe
languages).

Unrestricted SRSs are equivalent to Turing Machines (see
proof sketch on the following pages).

Our restricted SRSs generate precisely the languages that TMs
recognize – that is languages generated by restricted SRSs are
Turing Recognizable (see proof sketch on the following pages).

The fact that languages generated by restricted SRSs are
Turing recognizable is both a blessing and a curse: we know
that we can build machines that can process these languages
but the machines can sometimes get stuck in an infinite loop.
What we need is Turing decidable languages – we will see that
we can reach this goal by restricting the shape of the SRSs to
context-free grammars.



String Rewriting Systems

Proposition: SRSs are equivalent to Turning machines.

Proof: We show equivalence by showing that each can simulate the other.

We first show that TMs can simulate SRSs. Assume that we have a three-tape
machine with one tape holding the input string, the other holding the list of rules, and
the third is used as a scratchpad. It is easy to see that computation works by pattern
matching of left-sides of rules to the string on the first tape. Computation stops once
no further left-sides of rules can be identified in the string on the first tape.

We now show that SRSs can simulate turing machines. First we introduce special

symbols such as beginning and end of input, current position of RW-head, and special

state information if necessary. We then partition the rules into sections: one for

moving the virtual RW-head forward, one for moving it backward, and one for doing

the actual computations all using the special symbols. When no further rules can be

applied to the input string then computation will halt.



String Rewriting Systems

Proposition: Strings generated by restricted SRSs are Turing recognizable.

Proof: Given a restricted SRS we can simulate this SRS with a TM (see previous

proof). We can turn this TM into a recognizer by emitting an accept if the simulated

SRS generates a normal form that matches the input string, otherwise we reject. It is

clear that this machine is a recognizer since every normal form generated by the

original SRS is accepted by the TM. However, there is the possibility that the machine

will loop forever trying to derive a particular normal form, therefore the TM is a

recognizer and not a decider (deciders always halt).



String Rewriting Systems

Shameless Plug: If these kind of computational issues
interest you take my CSC544 class this coming spring,
Spring ’17. We will investigate decidability and Turing
recognizability as well as the Turing completeness of a
number of interesting computational models including
the lambda calculus which is a special kind of rewriting
system.


