
Grammars

Observations:

We have seen in the case of the palindrome generator that SRSs are
well suited for generating strings with structure.

By modifying the standard SRS just slightly we obtain a convenient
framework for generating strings with desirable structure –
Grammars

Definition: [Grammar] A grammar is a triple (Γ,→, γ) such that,

Γ = T ∪ N with T ∩ N = ∅, where T is a set of symbols called the
terminals and N is a set of symbols called the non-terminals,1

→ is a set of rules of the form u → v with u, v ∈ Γ∗,

γ is called the start symbol and γ ∈ N.

1The fact that T and N are non-overlapping means that there will never be
confusion between terminals and non-terminals.

Grammars

Example: Grammar for arithmetic expressions. We define the grammar
(Γ,→, γ) as follows:

Γ = T ∪ N with T = {a, b, c ,+, ∗, (,)} and N = {E},
→ is is defined as,

E → E + E
E → E ∗ E
E → (E)
E → a
E → b
E → c

γ = E (clearly this satisfies γ ∈ N).

With grammars, derivations always start with the start symbol. Consider,

E ⇒ E∗E ⇒ (E)∗E ⇒ (E+E)∗E ⇒ (a+E)∗E ⇒ (a+b)∗E ⇒ (a+b)∗c .

Here, (a + b) ∗ c is a normal form often also called a terminal or derived
string.

Grammars

Exercise: Identify the rule that was applied at each rewrite step in
the above derivation.
Exercise: Derive the string ((a)).
Exercise: Derive the string a + b ∗ c . Is the derivation unique?
Why? Why not?

Grammars

We are now in the position to define exactly what we mean by a language.

Definition:[Language] Let G = (Γ,→, γ) be a grammar, then we define
the language of grammar G as the set of all terminal strings that can be
derived from the start symbol s by rewriting using the rules in →.
Formally,

L(G) = {q | γ ⇒∗ q ∧ q ∈ T ∗}.

Example: Let J = (Γ,→, γ) be the grammar of Java, then L(J) is the

set of all possible Java programs. The Java language is defined as the set

of all possible Java programs.

Grammars

Observations:

With the concept of a language we can now ask interesting
questions. For example, given a grammar G and some sentence
p ∈ T ∗, does p belong to L(G)?

If we let J be the grammar of Java, then asking whether some
string p ∈ T ∗ is in L(J) is equivalent to asking whether p is a
syntactically correct program.

We can prove language membership by showing that the start
symbol is equivalent to the sentence in question,

s

∗

�#
??

??
??

?

??
??

??
? ≡ p

∗

{� ��
��

��
�

��
��

��
�

p

Grammars

Observations:

By restricting the shape of the rewrite rules in a grammar we
obtain different language classes.

The most famous set of language classes is the Chomsky
Hierarchy.

Grammars

Table: The Chomsky Hierarchy

Rules Grammar Language Machine
α→ β Type-0 Recursively Enumerable Turing machine

αAβ → αγβ Type-1 Context-sensitive Linear-bounded Turing machine
A→ γ Type-2 Context-free Pushdown automaton

A→ a and A→ aB Type-3 Regular Finite state automaton

where α, β, γ ∈ Γ∗,A,B ∈ N, a ∈ T . In Type-1 γ is not allowed to be the empty
string.

Grammars

Observation: The most convenient language class for
programming language specification are the context-free languages
– they are decidable – pushdown automata can be efficiently
implemented in order to prove language membership.

Grammars

Example: A simple imperative language. We define grammar G = (Γ,→, γ) as
follows:

Γ = T ∪ N where

T = {0, . . . , 9, a, . . . , z, true, false, skip, if, then, else,while, do, end+,−, ∗,=,≤, !,&&, ||, :=, ; , (,)}

and
N = {A, B, C ,D, L, V}.

The rule set → is defined by,

A → D | V | A + A | A− A | A ∗ A | (A)
B → true | false | A = A | A ≤ A | !B | B&&B | B||B | (B)
C → skip | V := A | C ; C | if B then C else C end |while B do C end
D → L | − L
L → 0 L | . . . | 9 L | 0 | . . . | 9
V → a V | . . . | z V | a | . . . z

γ = C.

Observe that this is a context-free grammar!

Grammars

Here are some elements in L(G),

x := 1; y := x
v := 1; if v ≤ 0 then v := (−1) ∗ v else skip end
n := 5; f := 1; while 2 ≤ n do f := n ∗ f ; n := n − 1 end

Exercise: Prove that they belong to L(G).

Grammars

HW#1 – see website

