
Natural Semantics

Goals:

Define the syntax of a simple imperative language

Define a semantics using natural deduction1

1Natural deduction is an instance of first-order logic; that is, it is the formal
language of first-order logic coupled with a “natural” deductive system based
on proof trees.



A Simple Imperative Language

The following is the grammar G = (Γ = T ∪ N,→, γ) for our simple imperative
language with T and N as the obvious sets2, γ = C the start symbol (denoted as C∗

in the rule set), and → defined as,

A → D |V |A + A |A− A |A ∗ A | (A)
B → T |A = A |A ≤ A | !B |B&&B |B||B | (B)

C∗ → skip |V := A |C ; C | if B then C else C end |while B do C end
T → true | false
D → Q | − Q
Q → 0 Q | . . . | 9 Q | 0 | . . . | 9
V → a V | . . . | z V | a | . . . z

2What are they?



Semantics

Our goal is to define a semantics for each syntactic component of
our language so that composing the semantics of each component
will then give us a semantics of programs written in that language.

Furthermore, we want to construct our models or semantics using
predicates, relations, and functions; that means we need to
describe our syntax using sets.3

We

need a more mathematical view of syntax – abstract syntax

ignore pragmatics like operator precedence and actual parsing

introduce syntactic sets sometimes also called syntactic
domains (not to be confused with semantic domains!)

3
Read Sections 1.1 and 2.1 and 2.2 in the book by David Schmidt.



Semantics

As stated above, we want to construct our models using
predicates, relations, and functions but when we look at our
grammar G we only have a single set: L(G ),

L(G ) = {q | γ ⇒∗ q ∧ q ∈ T ∗}

There is not much we can do with this set because we don’t see
the individual syntactic structures in the strings on this set.

Idea: What if we introduce a set for each non-terminal -
non-terminals tend to capture the structure of syntactic units.



Syntactic Sets

Grammar:

A → D |V |A + A |A− A |A ∗ A | (A)
B → T |A = A |A ≤ A | !B |B&&B |B||B | (B)

C∗ → skip |V := A |C ; C | if B then C else C end |while B do C end
T → true | false
D → Q | − Q
Q → 0 Q | . . . | 9 Q | 0 | . . . | 9
V → a V | . . . | z V | a | . . . z

Syntactic Sets:

T = {true, false}.
I = {q | D⇒∗ q ∧ q ∈ T∗}.
Loc = {q | V⇒∗ q ∧ q ∈ T∗} .

Aexp = {q | A⇒∗ q ∧ q ∈ T∗} .

Bexp = {q | B⇒∗ q ∧ q ∈ T∗} .

Com = L(G) = {q | C⇒∗ q ∧ q ∈ T∗}.



IMP - A Simple Imperative Language

Syntactic Sets (syntax only!!! not to be confused with the
mathematical notions of integers, booleans, or variables, etc.):4

I This set consists of all positive and negative integer
digits including zero

T Truth constants true and false.

Loc Locations (variable names as strings).

Aexp Arithmetic expressions

Bexp Boolean expressions

Com Commands

NOTE: I 6= I, where I is the set of all integer values.
NOTE: T 6= B, where B is the set of all boolean values.

4This material is based on the book by Glynn Winskel, “The Formal
Semantics of Programming Languages.”



Syntax meets Semantics

The two notes on the previous slide put us squarely in the middle of syntax meets
semantics. The separation of these two is especially critical for numbers because our
use of standard notation has blurred the fact that the number symbols we write are
indeed only symbols that need some sort of interpretation. The fact that the notion of
a number is independent of the symbols we write is highlighted by the fact that we
can define the natural numbers without number symbols:

∅
{∅}
{∅, {∅}}
{∅, {∅}, {∅, {∅}}}
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...

Note that each set has precisely as many elements as the standard notation denotes.5

The set of all these sets make up the natural numbers N. Furthermore, the sets are
ordered according to the subset relation,

∅ ⊂ {∅} ⊂ {∅, {∅}} ⊂ {∅, {∅}, {∅, {∅}}} ⊂ · · ·

5This can easily be extended to the integers I, see
http://wiki.math.toronto.edu/TorontoMathWiki/index.php/Definition: Set of Integers



Syntax meets Semantics

Since our standard notation is nothing but a syntactic representation we can write a
grammar and then an interpretation for the symbols,

N → D |DN
D → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

with the interpretation over the set of all derived strings,

0 7→ ∅
1 7→ {∅}
2 7→ {∅, {∅}}
3 7→ {∅, {∅}, {∅, {∅}}}
4 7→ {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...

Given this interpretation, what value does the symbol 22 represent.



Syntax meets Semantics

Why is this interesting? It shows that the mathematical notion of N is not tied to our
syntactic representation. In fact, we could come up with a brand new way of writing
the natural numbers by shifting the numeric keys on my computer keyboard:

N → D |DN
D → ! |@ |# | $ |% | ∧ |& | ∗ | ( | )

with the interpretation, call it h, over all derived strings,

) 7→ ∅
! 7→ {∅}

@ 7→ {∅, {∅}}
# 7→ {∅, {∅}, {∅, {∅}}}
$ 7→ {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...

Given this interpretation, what value does the symbol @@ represent.



Syntax meets Semantics

This idea can also be represented as the following diagram. Let G be a
grammar for the syntax of some natural number symbols, then L(G ) is
the set of all the symbols we can write, consider,

N∗ → D |DN
D → ! |@ |# | $ |% | ∧ |& | ∗ | ( | )

Then an interpretation h as defined in the previous slide is

N

L(G )

h

OO

That is, the interpretation h takes each symbol in L(G ) and assigns it an

element in N – assigns it meaning! We will see this as a recurring theme

in this class.



Formation Rules for Syntactic Sets

Back to our small imperative language, we have the deductively defined
syntactic sets: Syntactic Sets:

T = {true, false}.

I = {q | D⇒∗ q ∧ q ∈ T ∗}.

Loc = {q | V⇒∗ q ∧ q ∈ T ∗} .

Aexp = {q | A⇒∗ q ∧ q ∈ T ∗} .

Bexp = {q | B⇒∗ q ∧ q ∈ T ∗} .

Com = L(G ) = {q | C⇒∗ q ∧ q ∈ T ∗}.

There is another way to form the syntactic sets – inductively defined
syntactic sets.



Formation Rules for Syntactic Sets

Let us consider the syntactic set Aexp. Our grammar production for arithmetic
expressions is

A→ D |V |A + A |A− A |A ∗ A | (A)

We already know: Aexp = {q | A⇒∗ q ∧ q ∈ T∗}.

Given the above production we can define membership in the syntactic set as follows,

n ∈ Aexp if n ∈ I,

x ∈ Aexp if x ∈ Loc,

a0 + a1 ∈ Aexp if a0, a1 ∈ Aexp,

a0 − a1 ∈ Aexp if a0, a1 ∈ Aexp,

a0 ∗ a1 ∈ Aexp if a0, a1 ∈ Aexp,

(a) ∈ Aexp if a ∈ Aexp.

This is an inductive definition of the set Aexp: we start with the “primitives” n and x
and then build more and more complex expressions as part of Aexp.

It is easy to see that the inductive definition and the production rule describe the same
structures, that is, given a production we can easily generate an inductive definition of
the underlying syntactic set and, conversely, given an inductive definition of the
syntactic set we can construct a production. This means we can use productions and
inductive set definitions interchangeably.6

6
Later on we will learn techniques that allow us to prove that these are equivalent definitions.



Formation Rules for Syntactic Sets

Observations for Aexp:

I ⊂ Aexp,

Loc ⊂ Aexp,

contains structured syntactic objects that look like arithmetic
expressions,

Aexp = {1, 5, x , price, 5− 3 ∗ y , x + 1, . . .}.



Formation Rules for Syntactic Sets

If the deductively defined set and the inductively defined set are
equivalent, why bother introducing the inductively defined set?

Turns out many of our proofs have to establish properties over
entire syntactic sets. The inductive nature of the syntactic sets
allows us to use a proof technique called structural induction to
show that a property holds for the entire syntactic set.



Evaluation of Arithmetic Expressions

Why are we so keen on representing syntax as sets?

We want to model computation denoted by the syntax in a
mathematically meaningful way, that is, we want to use functions
and relations to interpret the syntax and model a computation.

Functions and relations need sets as their domains and co-domains.



Evaluation of Arithmetic Expressions

In order to accomplish our goal we need define one additional
entity. Let Σ = Loc→ I be the set of all states, where each
element σ ∈ Σ is a state and is considered a function of the form,

σ : Loc→ I

where I represents the integer values. A state is a function such
that σ(x) will give the value of the contents for any x ∈ Loc.

The set Σ contains a distinguished state, σ0, called the initial
state, where σ0(x) = 0, for all x ∈ Loc.



Evaluation of Arithmetic Expressions

We define the evaluation or interpretation for arithmetic
expressions as a function from Aexp× Σ into I, that is, we define
an evaluation call it 7→ as the function

7→ : Aexp× Σ→ I

such that, given an arithmetic expression a ∈ Aexp, some state
σ ∈ Σ, and an appropriate value k ∈ I, we write

(a, σ) 7→ k

We say that the function evaluates an arithmetic expression a in
the context of a state σ to the outcome k .

The pair (a, σ) is called a configuration.



Evaluation of Arithmetic Expressions

We need one more auxiliary function before we can define the actual
evaluation function,

eval : I→ I

Given an element of the syntactic representation of numbers I, this
function will return the mathematical equivalent of this representation in
I.

Let 6 ∈ I, then eval(6) = 6, where the latter 6 is in I. Another, perhaps
more telling example is that our grammar allows us to generated numbers
of the form ‘007’ for example. But eval(007) = 7. That is, 007 ∈ I and
7 ∈ I.

We are not very formal about this and will drop this operation in later

definitions, where it is clear from context that some n ∈ I represents a

value in I.



Natural Semantics

With all this machinery we are finally in the position to write down
rules that define the evaluation function ‘7→’ for arithmetic
expressions.

Observe that the rules mirror precisely the inductive definition of
the set Aexp, in this way we are assured that the evaluation
function is defined for all possible values/elements of the set Aexp.

The rules will be rules in the style of natural deduction.



Natural Deduction

Natural deduction is a formal system that has terms, functions, and
relations as alphabet and that has two kinds of rules:

Inference Step

premise1 · · · premisen
(condition)

conclusion

Assumption

conclusion

NOTE: An inference step is valid if all its premises are true.
NOTE: An assumption is an inference step without premises (or with a
premise that is always true).



Evaluation of Arithmetic Expressions

Evaluation of numbers

(n, σ) 7→ eval(n)

Evaluation of locations

(x , σ) 7→ σ(x)

Evaluation of sums

(a0, σ) 7→ k0 (a1, σ) 7→ k1
where k = k0 + k1

(a0 + a1, σ) 7→ k

with k , k0, k1 ∈ I, a0, a1 ∈ Aexp, and σ ∈ Σ.



Evaluation of Arithmetic Expressions

Observation: We are abusing notation slightly. Technically, both the
premises and the conclusions should evaluate to a boolean value which in
our case is not true, the function 7→ is declared as,

7→ : Aexp× Σ→ I

That is, it evaluates to an integer value. We can easily remedy this by
turning the function into a predicate:

7→ : Aexp× Σ× I→ B

so the rule for the evaluation of variable names would become something
like,

(x , σ, σ(x)) 7→ true

Which is a cumbersome notation and we will stick with our original

notation remembering that we can always make this rigorous by turning

the 7→ function into a predicate.



Evaluation of Arithmetic Expressions

Evaluation of subtractions

(a0, σ) 7→ k0 (a1, σ) 7→ k1
where k = k0 − k1

(a0 − a1, σ) 7→ k

Evaluation of products

(a0, σ) 7→ k0 (a1, σ) 7→ k1
where k = k0 × k1

(a0 ∗ a1, σ) 7→ k

Evaluation of parenthesized terms

(a, σ) 7→ k

((a), σ) 7→ k

with k , k0, k1 ∈ I, a,a0, a1 ∈ Aexp, and σ ∈ Σ.



Arithmetic Expression Summary

for n ∈ I
(n, σ) 7→ eval(n)

for x ∈ Loc
(x , σ) 7→ σ(x)

(a0, σ) 7→ k0 (a1, σ) 7→ k1
where k = k0 + k1(a0 + a1, σ) 7→ k

(a0, σ) 7→ k0 (a1, σ) 7→ k1
where k = k0 − k1(a0 − a1, σ) 7→ k

(a0, σ) 7→ k0 (a1, σ) 7→ k1
where k = k0 × k1(a0 ∗ a1, σ) 7→ k

(a, σ) 7→ k

((a), σ) 7→ k

with k, k0, k1 ∈ I, a,a0, a1 ∈ Aexp, and σ ∈ Σ.



Evaluation of Arithmetic Expressions

Observation: the line

with k, k0, k1 ∈ I, a,a0, a1 ∈ Aexp, and σ ∈ Σ.

on the previous slide and all our semantic definitions is absolutely
necessary. We are dealing with first order logic and therefore all
variables need to be quantified. Stating

k , k0, k1 ∈ I

is the same thing as saying

∀k , k0, k1 ∈ I

That is, in all our semantic rules we have universal quantification.
If we did not state this then the variables in the rules would be
considered free variables and it possible to show that inferencing
with free variables can get us into trouble.



Evaluation of Arithmetic Expressions

Observation: The inference rules are a structural definition of a
function over the syntactic set Aexp which together with an
appropriate state maps each syntactic element in that set into a
value in the set of all integer values, I, i.e., the meaning of an
syntactic expression given some state is an integer value,

I

Aexp× Σ

OO



Evaluation of Arithmetic Expressions

Example: Let ae ≡ (2 ∗ 3) + 5, prove that the semantic value of
this expression in some state σ is equal to 11 using the rules above

(2, σ) 7→ eval(2) = 2 (3, σ) 7→ eval(3) = 3

(2 ∗ 3, σ) 7→ 6

((2 ∗ 3), σ) 7→ 6 (5, σ) 7→ eval(5) = 5

((2 ∗ 3) + 5, σ) 7→ 11

⇒ The final result does not depend on the state – all constant
expressions.



Evaluation of Arithmetic Expressions

Example:Now, let ae ≡ v + 1, where v ∈ Loc, prove that the
semantic value of this expression in some state σ ∈ Σ is equal to
σ(v) + 1.

(v , σ) 7→ σ(v) (1, σ) 7→ 1

(v + 1, σ) 7→ σ(v) + 1

⇒ We cannot fully evaluate this expression because we don’t know
enough about the state σ.



Evaluation of Arithmetic Expressions

Example: Now, let ae ≡ v + 1, where v ∈ Loc, prove that the
semantic value of this expression in the initial state σ0 ∈ Σ is equal
to 1.

(v , σ0) 7→ σ0(v) = 0 (1, σ0) 7→ 1

(v + 1, σ0) 7→ 1

⇒ We can fully evaluate this expression because we know the
definition of the initial state σ0.


