
Induction

Up to this point we have considered proofs of the following type:

Given a selected expression a ∈ Aexp and some state σ ∈ Σ
compute the semantic value k,

(a, σ) �→ k .

Or we have considered equivalence proofs of the form,

Given two selected programs c , c ′ ∈ Com, show that they are
semantically equivalent,

c ∼ c ′ iff ∀σ ∈ Σ, ∃σ′ ∈ Σ. (c , σ) �→ σ′ ∧ (c ′, σ) �→ σ′

Question: How would we prove that a certain property holds for all

expressions or for all commands? The syntax sets Aexp, Bexp, and Com

are infinite and therefore we need a proof technique that can deal with

the infinite nature of these sets ⇒ Induction.



Induction

Induction is a proof principle that allows us to prove properties of
possibly infinite sets.1

The power of this technique derives from the fact that we can test
a particular property on a few select elements of the set and, if the
tests hold, we can conclude that the property holds over the whole
set.

In order for this to work the set has to have a certain structure and
the tests have to be selected in a manner to provide us with
maximum information.

1
Sidebar: It is interesting to note that there is evidence that inductive proofs were already in use in Aristotle

and Plato’s time.



Mathematical Induction

We start with mathematical induction over the natural numbers N.
Consider the inductive definition of the natural numbers,

0 ∈ N,

If m ∈ N, then m + 1 ∈ N.

The inductive structure of the natural numbers allows us to position the
values along the number line without conflict,

0 1 2 3 4 5 . . .∞

a precise ordering,

0 < 1 < 2 < 3 < 4 < 5 < . . . < ∞



Mathematical Induction

Now, if we want to show that a predicate P holds for all n ∈ N, then we
can structure this as an inductive proof in two parts:

1 Base Case – show that P(0) holds, that is, show that the property
of interest holds for the least element of the natural numbers.

2 Inductive Step – show that if P(m) holds for any m ∈ N, then
P(m + 1) also holds.

If both parts can be shown to be true then we can conclude that the
statement holds for all n ∈ N.

This is sometimes also called the domino effect; here step 2 above implies
P(0) ⇒ P(1) and P(1) ⇒ P(2) and P(2) ⇒ P(3), etc.

Later on we will prove that this domino effect has to hold for inductively
defined structures and therefore the proof principle is sound.



Mathematical Induction

Proposition: (Mathematical Induction) Let P be a predicate over
the natural numbers N, then

∀n ∈ N.P(n) iff P(0) ∧ ∀n ∈ N.P(n) ⇒ P(n + 1).

Here, P(0) is called the basis, P(n) is the induction hypothesis,
and P(n) ⇒ P(n + 1) is called the inductive step.



Mathematical Induction

Inductive proofs usually follow this pattern:

Let P be a predicate over the natural numbers N,

Since the ‘only-if’ direction of our proposition is trivial, we
make use of solely the ‘if’ direction:

∀n ∈ N.P(n) if P(0) ∧ ∀n ∈ N.P(n) ⇒ P(n + 1),

Show that the basis holds,

Show that the inductive step holds under the induction
hypothesis,

Conclude that ∀n ∈ N.P(n).�



Mathematical Induction

Example: Show that

0 + 1 + 2 + . . . + n =
n(n + 1)

2

for all n ∈ N.

Proof: by induction,

1 Base case, 0 = 0(0 + 1)/2.

2 Inductive step, assume that the formula holds for any n, with this
assumption show that it holds for n + 1,

(0 + 1 + 2 + . . . + n) + (n + 1) =
(n + 1) ((n + 1) + 1)

2

n(n + 1)

2
+ (n + 1) =

(n + 1) ((n + 1) + 1)

2

n(n + 1) + 2(n + 1)

2
=

(n + 1) ((n + 1) + 1)

2

It clearly does. (I let you finish the algebra.)�



Structural Induction

Let us consider a special kind of induction which is done over terms rather than the
natural numbers. Because terms tend to be highly structured objects we call this
structural induction.

Consider the following grammar G for a simple expression language,

E ::= (E @ a) | a

with

L(G) = {a, (a @ a), ((a @ a) @ a), (((a @ a) @ a) @ a), ((((a @ a) @ a) @ a) @ a), . . . }

The inductive definition of the set L(G) is

a ∈ L(G),

(e @ a) ∈ L(G) if e ∈ L(G).

This inductive definition is very similar to the inductive definition of the natural
numbers and hints at an ordering where a is the least element and

e < (e @ a)

with e ∈ L(G).



Structural Induction

The insight that e < (e @ a) for any e ∈ L(G) allows us to order all the terms in L(G)
in an unambiguous way,

a < (a @ a) < ((a @ a) @ a) < (((a @ a) @ a) @ a) < ((((a @ a) @ a) @ a) @ a) < . . .

This structural ordering of the terms allows us to formulate our structural induction
principle: Let P be a predicate over the terms in L(G), then

∀e ∈ L(G).P(e) iff P(a) ∧ ∀e ∈ L(G).P(e) ⇒ P( (e @ a) ).



Structural Induction

Example: Let V (e) be the number of a’s and let O(e) be the number of @’s in
e ∈ L(G), show that

V (e) = O(e) + 1

for all e ∈ L(G).

Proof: Proof by induction over the elements in L(G),

Base Case: V (a) = O(a) + 1 with V (a) = 1 and O(a) = 0. Clearly, the identity
holds.

Inductive Step: Let e ∈ L(G) and assume that our inductive hypothesis

V (e) = O(e) + 1

holds. Observe that the following two identities also hold,

V ( (e @ a) ) = V (e) + 1

O( (e @ a) ) = O(e) + 1

Then,
V ( (e @ a) ) = V (e) + 1

= O(e) + 1 + 1
= O( (e @ a) ) + 1 �



Structural Induction

We can apply structural induction to any inductively defined set. Recall the inductive
definition of the arithmetic expressions:

n ∈ Aexp if n ∈ I,

x ∈ Aexp if x ∈ Loc,

a0 + a1 ∈ Aexp if a0, a1 ∈ Aexp,

a0 − a1 ∈ Aexp if a0, a1 ∈ Aexp,

a0 ∗ a1 ∈ Aexp if a0, a1 ∈ Aexp,

(a) ∈ Aexp if a ∈ Aexp.

Observe that we have two base or minimal elements of Aexp on the left and we have
the inductively defined elements of Aexp on the right. More precisely, we can
formulate a structural ordering based on the inductive definition,

n and x are the least elements and form the basis,

for the remaining terms we have the following ordering

a0 < a0 + a1 and a1 < a0 + a1

a0 < a0 − a1 and a1 < a0 − a1

a0 < a0 ∗ a1 and a1 < a0 ∗ a1

a < ( a )

Now, it is not possible to create a linear order for the elements of Aexp, but we can
sort them into a partially ordered lattice structure. It turns out that that is enough to
be able to perform structural induction as long as there are no ambiguities (which
there are none). The only consequence of this lattice structure is that our induction
principle will be more complicated . . .



Structural Induction

Given the ordering of the terms we can now state our structural induction principle to
show that some predicate P holds for all arithmetic expressions:

∀a ∈ Aexp.P(a) iff (∀n ∈ I.P(n))∧
(∀x ∈ Loc.P(x))∧
(∀a0, a1 ∈ Aexp.P(a0) ∧ P(a1) ⇒ P(a0 + a1))∧
(∀a0, a1 ∈ Aexp.P(a0) ∧ P(a1) ⇒ P(a0 − a1))∧
(∀a0, a1 ∈ Aexp.P(a0) ∧ P(a1) ⇒ P(a0 ∗ a1))∧
(∀a ∈ Aexp.P(a) ⇒ P( (a) ))

As expected, here we also take advantage of the precise ordering of terms and their
sub terms and therefore the domino effect also works here.



Structural Induction

Observation: As many cases as there are expression forms

Atomic expressions (with no subexpressions) are all base cases

Composite expressions are the inductive cases

Exercise: State the structural induction principle for the remaining
syntax sets.



Structural Induction

Example: Let a ∈ Aexp, let L(a) be the number of literals and variable
occurrences in a, let O(a) be the number of operators in a, and define
the predicate P as

P(a) ≡ L(a) ≤ O(a) + 1.

Show that ∀a ∈ Aexp.P(a).

Proof: By induction over the structure of Aexp. We make use of the
structural induction principle for Aexp,

∀a ∈ Aexp.P(a) if (∀n ∈ I.P(n))∧
(∀x ∈ Loc.P(x))∧
(∀a0, a1 ∈ Aexp.P(a0) ∧ P(a1) ⇒ P(a0 + a1))∧
(∀a0, a1 ∈ Aexp.P(a0) ∧ P(a1) ⇒ P(a0 − a1))∧
(∀a0, a1 ∈ Aexp.P(a0) ∧ P(a1) ⇒ P(a0 ∗ a1))∧
(∀a ∈ Aexp.P(a) ⇒ P( (a) ))



Structural Induction

Case n.
L(n) = 1 and O(n) = 0, clearly P(n) holds.

Case x .
L(x) = 1 and O(x) = 0, clearly P(x) holds.



Structural Induction

Case (a).
As the induction hypothesis we assume that P(a) ≡ L(a) ≤ O(a) + 1
holds. We need to show that

∀a ∈ Aexp.P(a) ⇒ P( (a) ).

We now show that P( (a) ) ≡ L( (a) ) ≤ O( (a) ) + 1 holds. It is
easy to see that

L( (a) ) = L(a)

and
O( (a) ) = O(a),

then

L( (a) ) ≤ L(a)

≤ O(a) + 1

≤ O( (a) ) + 1.



Structural Induction

Case a0 + a1.
As the induction hypothesis we assume that
P(a0) ≡ L(a0) ≤ O(a0) + 1 and P(a1) ≡ L(a1) ≤ O(a1) + 1 are
true. We need to show that

∀a0, a1 ∈ Aexp.P(a0) ∧ P(a1) ⇒ P(a0 + a1).

We now show that P(a0 + a1) ≡ L(a0 + a1) ≤ O(a0 + a1) + 1 holds.
It is easy to see that

L(a0 + a1) = L(a0) + L(a1)

and
O(a0 + a1) = O(a0) + O(a1) + 1,

then

L(a0 + a1) ≤ L(a0) + L(a1)

≤ (O(a0) + 1) + (O(a1) + 1)

≤ (O(a0) + O(a1) + 1) + 1

≤ O(a0 + a1) + 1.

The remaining cases can be shown to hold in a similar fashion. This
concludes the proof.�



Structural Induction

Example: Prove that every computation with arithmetic expressions terminates.
Formally,

∀a ∈ Aexp,∀σ ∈ Σ,∃k ∈ I.(a, σ) 	→ k.

Proof: By structural induction over Aexp, let

P(a) ≡ ∀σ ∈ Σ,∃k ∈ I.(a, σ) 	→ k.

Case n.
∀σ ∈ Σ, we have (n, σ) 	→ eval(n). Clearly, P(n) holds.

Case x .
∀σ ∈ Σ, we have (x , σ) 	→ σ(x). Clearly, P(x) holds.



Structural Induction

Case (a).
As the inductive hypothesis assume that P(a) holds, then ∀σ ∈ Σ we
have,

(a, σ) 	→ k

( (a) , σ) 	→ k

The premise holds by assumption. Therefore, P( (a) ) holds.



Structural Induction

Case a0 + a1.
As the inductive hypothesis assume that P(a0) and P(a1) hold, then
∀σ ∈ Σ we have,

(a0, σ) 	→ k0 (a1, σ) 	→ k1
, where k = k0 + k1.

(a0 + a1, σ) 	→ k

The premises hold by assumption. Therefore, P(a0 + a1) holds.

The remaining cases can be shown to hold in a similar fashion. This proves that all

arithmetic expressions terminate. �



Limits of Structural Induction

Structural induction can only be applied where syntax directs the
computation such that only subexpressions appear in the premisses of
inductive proof steps. Consider the while loop; its evaluation does not
depend only on the evaluation of its strict subexpressions:

(b, σ) �→ true (c , σ) �→ σ′′ (while b do c , σ′′) �→ σ′

(while b do c , σ) �→ σ′

This means we cannot use structural induction on while loops.

To get around this problem we can resort to well-founded induction on

states, mathematical induction on loop invariants (in the case of while

loops), or induction on derivations.


