
Trouble in Induction Paradise

Consider the grammar rule for commands in our IMP language

C ::= skip |V := A |C ;C | if B then C else C end |while B do C end

Then the set Com contains all possible programs we can write in this language. We
can give an inductive definition for this set,

1 skip ∈ Com

2 x := a ∈ Com if x ∈ Loc, a ∈ Aexp

3 c0 ; c1 ∈ Com if c0, c1 ∈ Com

4 if b then c0 else c1 end ∈ Com if b ∈ Bexp, c0, c1 ∈ Com

5 while b do c end ∈ Com if b ∈ Bexp, c ∈ Com

The first two rules are the least elements in Com and the remaining rules define terms

inductively. As in the case with the arithmetic expressions there is a clear ordering of

the terms.

Trouble in Induction Paradise

Proposition: All programs terminate. Formally,1

∀c ∈ Com,∀σ ∈ Σ, ∃σ′ ∈ Σ. (c, σ) �→ σ′.

Proof: By induction on the structure of Com.

Case skip. Let σ ∈ Σ, then (skip, σ) �→ σ. Clearly terminates.

Case x := a. We have already established that arithmetic expressions terminate with
(a, σ) �→ k where σ ∈ Σ and k ∈ I. It follows from the semantic rules for assignment,

(x := a, σ) �→ σ[k/x].

This also terminates.

1
This is of course silly, since we know that not all programs terminate, e.g., while true do skip end, but it is

interesting to see where exactly the proof fails.

Trouble in Induction Paradise

Case c0 ; c1. As our induction hypothesis we assume that commands c0 and c1

terminate in all states. This means that they will also terminate for the following state
configuration:

(c0, σ) �→ σ′

(c1, σ
′) �→ σ′′

Our inductive step then is,

(c0, σ) �→ σ′ (c1, σ
′) �→ σ′′

(c0 ; c1, σ) �→ σ′′

Statement composition clearly terminates.

Trouble in Induction Paradise

Case if b then c0 else c1 end. It can be shown that all boolean expressions terminate
(similar proof as for the arithmetic expressions). As our induction hypothesis we
assume that commands c0 and c1 terminate in all states,

(c0, σ) �→ σ′

(c1, σ) �→ σ′

Our inductive step then is, (a) for the case that the boolean evaluates to true,

(b, σ) �→ true (c0, σ) �→ σ′

(if b then c0 else c1 end, σ) �→ σ′

and (b) for the case that the boolean evaluates to false,

(b, σ) �→ false (c1, σ) �→ σ′

(if b then c0 else c1 end, σ) �→ σ′

Conditional statements terminate.

Trouble in Induction Paradise

Case while b do c end. It can be shown that all boolean expressions terminate. As our
induction hypothesis we assume that command c terminates in all states,

(c, σ) �→ σ′

Our inductive step then is, (a) for the case that the boolean evaluates to false,

(b, σ) �→ false

(while b do c end, σ) �→ σ

and (b) for the case that the boolean evaluates to true,

(b, σ) �→ true (c, σ) �→ σ′ (while b do c end, σ′) �→ σ′′

(while b do c end, σ) �→ σ′′

THE PROOF DOES NOT WORK! There are two different ways at looking at why it
does not work:

If we were to assume that the premise given in red is true, then there is nothing
to prove: the loop terminates because the loop terminates.

From a structural induction point of view this argument does not work because
the premise given in red is not a strict subterm of the while loop.

Trouble in Induction Paradise

Another way of interpreting the results from our proof; since the
proof only failed for loops and was successful for the rest of the
commands we can say that the language of commands without
loops would terminate for every state.

Trouble in Induction Paradise

All this points to the observation that termination of loops cannot be determined by
simply looking at the syntax. Consider the following two loops,

while x ≥ 1 do x := x − 1 end

and
while x ≥ 1 do x := x + 1 end

The first loop terminates for all possible states and the second loop only terminates

for states σ such that σ(x) < 1. It is clear that we can determine loop termination

only by looking at the computation/states more carefully.

Trouble in Induction Paradise

The good news is that structural induction on commands only fails when we consider
semantic issues, we can still use structural induction on commands when considering
syntactic issues. Consider the following.

Proposition: All terms in Com have the same number of if/while and end keywords.

Proof: Proof by induction over the structure of Com. We let K(c) be the number of
occurrences of keywords if and while and we let E(c) be number of occurrences of the
keyword end in c ∈ Com. We need to show that K(c) = E(c) for all c ∈ Com.

Case skip. Clearly, K(skip) = E(skip) = 0.

Case x := a. Arithmetic expressions cannot have keywords, therefore it is easy to see
that K(x := a) = E(x := a) = 0.

Case c0 ; c1. As our inductive hypothesis we assume that K(c0) = E(c0) and
K(c1) = E(c1). Observe that the following identities hold,

K(c0 ; c1) = K(c0) + K(c1)

E(c0 ; c1) = E(c0) + E(c1)

We now show that K(c0 ; c1) = E(c0 ; c1) holds,

K(c0 ; c1) = K(c0) + K(c1)

= E(c0) + E(c1)

= E(c0 ; c1)

Trouble in Induction Paradise

Case if b then c0 else c1 end. Boolean expressions do not contain
keywords. As our inductive hypothesis we assume that K (c0) = E (c0)
and K (c1) = E (c1). Observe that the following identities hold,

K (if b then c0 else c1 end) = K (c0) + K (c1) + 1

E (if b then c0 else c1 end) = E (c0) + E (c1) + 1

We now show that

K (if b then c0 else c1 end) = E (if b then c0 else c1 end)

holds,

K (if b then c0 else c1 end) = K (c0) + K (c1) + 1

= E (c0) + E (c1) + 1

= E (if b then c0 else c1 end)

Trouble in Induction Paradise

Case while b do c end. Boolean expressions do not contain keywords. As
our inductive hypothesis we assume that K (c) = E (c). Observe that the
following identities hold,

K (while b do c end) = K (c) + 1

E (while b do c end) = E (c) + 1

We now show that

K (while b do c end) = E (while b do c end)

holds,

K (while b do c end) = K (c) + 1

= E (c) + 1

= E (while b do c end)

This concludes the proof. �

Assignment

HW#3 – see webpage.

Well-Founded Relations

The essential feature of sets that allows for induction is that the ordering
relation between elements in these sets do not give rise to infinite
descending chains – there has to be a minimal element!

Clearly, inductively defined sets satisfy this requirement.

Definition: A well-founded relation is a binary relation ≺ on a set A

such that there are no infinite descending chains · · · ≺ ai ≺ · · · a1 ≺ a0.

Here, a ≺ b means a is the predecessor of b.

Well-Founded Relations

We can express well-founded relations in terms of minimal elements.

Proposition: Let ≺ be a binary relation on a set A. The relation ≺ is
well-founded iff any nonempty subset Q of A has a minimal element, i.e.,
an element m such that

m ∈ Q ∧ ∀b ≺ m.b �∈ Q.

Well-Founded Relations

Proof: “only-if” direction: Assume that ≺ is well-founded. Let Q be a
nonempty subset of A. We can construct a chain of elements in Q where
a0 is any element in Q and an ≺ · · · ≺ a0 is a chain where ai ∈ Q with
i = 0, . . . , n. Observe that there is some b ∈ Q such that b ≺ an or there
is not. If not, then an ≺ · · · ≺ a0 is the largest chain in Q and we stop
the construction. Otherwise, take an+1 = b where an+1 ≺ an ≺ · · · ≺ a0.
Since ≺ is well-founded, the chain cannot be infinite and will be of the
form am ≺ · · · ≺ a0 where am is the minimal element as required.

“if” direction: By contradiction.2 Assume that every nonempty subset Q

of A has a minimal element. Now assume that ≺ is not well-founded,

that is, · · · ≺ ai ≺ · · · ≺ a1 ≺ a0 is an infinite descending chain in Q.

This implies the set Q = {ai | i ∈ N} would be nonempty without a

minimal element. A contradiction, therefore ≺ is well-founded. �

2
Note: In proofs by contradiction we want to prove if A then B.In order to do so we assume A and ¬B and

show that this leads to a contradiction. Therefore, we conclude B.

Well-Founded Induction

Proposition: (Well-Founded Induction Principle) Let ≺ be a
well-founded relation on a set A, let P be a predicate over the
elements of A, then

∀a. P(a) iff ∀a,∀b. b ≺ a ∧ P(b) ⇒ P(a),

with a, b ∈ A.

Well-Founded Induction

In this formulation the condition

∀a, ∀b. b ≺ a ∧ P(b) ⇒ P(a)

is always false for minimal elements in A which makes the base case
proof vacuously true for these elements (Why?). It is therefore customary
to write the well-founded induction principle in two steps:

Proposition: Let ≺ be a well-founded relation on a set A, let P be a
predicate over elements of A, then

∀e. P(e) iff ∀m. P(m) ∧ ∀a, ∀b. b ≺ a ∧ P(b) ⇒ P(a),

here e ∈ A, m ∈ A denotes the ≺-minimal elements in A, and a, b ∈ A

are non-minimal elements of A.

Well-Founded Induction

Proof: “only-if” direction: Assume that P(e), ∀e ∈ A, this clearly implies
that ∀m. P(m) ∧ ∀a, ∀b. b ≺ a ∧ P(b) ⇒ P(a) holds.

“if” direction: By contradiction. Assume that
∀m. P(m) ∧ ∀a, ∀b. b ≺ a ∧ P(b) ⇒ P(a) holds. Suppose P is not true
for every a ∈ A. Since ≺ is a well-founded relation, the set
Q = {a ∈ A | ¬P(a)} has a ≺-minimal element n with ¬P(n). If this
element is an ≺-minimal element of A itself, then the condition
∀m ∈ A.P(m) gives rise to P(n), a contradiction. If the element n has
≺-predecessors say b ≺ n and b �∈ Q, then by assumption we have P(b)
for every b and by condition ∀a, ∀b. b ≺ a ∧ P(b) ⇒ P(a) we have P(n),
a contradiction. Therefore, P(a) has to hold for all a ∈ A.3 �

This shows that the “domino principle” has to hold for all elements in an
ordered set.

3Reference: PlanetMath.org

Well-Founded Induction on States

Proposition: Prove that p ≡ while x ≥ 1 do x := x − 1 end terminates,
i.e.,

∀σ ∈ Σ, ∃σ′ ∈ Σ.(p, σ)
→ σ′.

Proof Idea: The key to loop termination is the loop condition. The

proof approach here is to group the states into two sets: (a) The set of

states where the loop terminates trivially, that is, all states σ where

σ(x) ≤ −1. (b) The set of states where we need to explicitly show that

the loop terminates, all states σ where σ(x) ≥ 0. In the latter set we

create an ordering based on the loop index x and then perform

well-founded induction on the states using states with the loop index of 0

as the basis and any state with loop index value k for the inductive step.

Well-Founded Induction on States

Proof: It is easy to see that for all states σ ∈ Σ where σ(x) ≤ −1 we
have (p, σ)
→ σ. It remains to show that p terminates for states σ where
σ(x) ≥ 0. Let S = {σ ∈ Σ |σ(x) ≥ 0}. Define the predicate P over S as

P(σ) ≡ ∃σ′.(p, σ)
→ σ′.

Define the relation ≺ over S as σ′ ≺ σ iff σ(x) = σ′(x) + 1. Clearly, the
relation ≺ is well-founded because no infinite chains · · · ≺ σn ≺ · · · ≺ σk

such that σi (x) ≥ 0 can exists. We also observe that σm ∈ S such that
σm(x) = 0 are minimal elements in S . We apply the principle of
well-founded induction

∀σ. P(σ) if ∀σm. P(σm) ∧ ∀σ, ∀σb . σb ≺ σ ∧ P(σb) ⇒ P(σ).

Well-Founded Induction on States

Base case: For minimal elements in S we have σm(x) = 0, it follows that
(p, σm) �→ σm. Clearly, P(σm) holds.

Inductive step: Assume that we have some state σ such that σ(x) = k with k ≥ 1.
As the inductive hypothesis we assume that P(σ) holds. Now let
σ ≺ σ++, such that σ++(x) = σ(x) + 1 and σ++(y) = σ(y) with
y �= x , then we have

.

.

.

(x ≥ 1, σ++) �→ true

.

.

.

(x := x − 1, σ++) �→ σ (p, σ) �→ σ′

(p, σ++) �→ σ′

The rightmost premise holds due to our inductive hypothesis. To
complete the proof we need to show that the states σ++ and σ are
related to each other via the assignment x := x − 1, specifically,

σ++[(σ++(x) − 1)/x] = σ++[(σ(x) + 1 − 1)/x] = σ++[σ(x)/x] = σ

The rightmost identity follows from the extensionality property of
functions and the identities above.

Therefore, the program p terminates for all σ ∈ Σ. �

Structural Induction

Read David Schmidt, Section 1.2

