
Simple I/O

Here we extend our language with a simple I/O mechanism that
allows us to initialize variables and examine variables in the
executing program:

C ::= put(A) | get(x)

The informal semantics is that ’put’ allows us to write an
expression to the terminal and ’get’ allows us to initialize a
declared variable with an integer value read from the terminal.

Simple I/O

The formal semantics is as follows:

(put(A),State) -->> State :- %io% writing

(A,State) -->> ValA,

write(A),

write(’ is ’),

writeln(ValA),!.

(get(X),State) -->> OState :- %io% reading

lookup(X,State,_),

write(’Enter integer value for ’),

write(X),

write(’: ’),

read(Val),

int(Val),

bindval(X,Val,State,OState),!.

Simple I/O

Now we can write programs such as these:

?- [’sem-block.pl’].

% xis.pl compiled 0.01 sec, 7,792 bytes

% preamble.pl compiled 0.01 sec, 8,956 bytes

% xis.pl compiled 0.00 sec, 148 bytes

% sem-block.pl compiled 0.01 sec, 18,284 bytes

true.

?- ((var(x) seq get(x) seq put(x)),s) -->> V.

Enter integer value for x: 3.

x is 3

V = push([bind(3, x)], s).

?- ((var(x) seq get(x) seq put(add(x,1))),s) -->> V.

Enter integer value for x: 5.

add(x,1) is 6

V = push([bind(5, x)], s).

?-

Block Structured Languages

In most languages a block introduces a new scope allowing for local variable
declarations. In C blocks are introduced with the curly braces,
{

int x;

}

We can access the values of variables in non-local scope. Consider the following
code,
{

int x = 2;

{

int y = 3;

x = y + x; /* accessing the surrounding scope via ’x’ */

}

}

In most languages blocks can be nested ⇒ variable shadowing.
{

int x = 1;

{

int x = 2; /* the original ’x’ is no longer visible in this scope */

}

}

Block Structured Languages

Recall that in our simple language we have variable declarations
and now we introduce blocks:

C ::= var(x) | block(C)

Think of ’block’ as ’begin C end’ where C could be any command
including sequential composition.

Block Structured Languages

Going back to our observations on block structured languages

Local variable declarations. When we leave a scope with local
variables those variables should become undeclared:
var(x) seq block(var(y) seq assign(y,1)) seq assign(y,x)

Non-local side effects. When assigning a value to a variable
declared in a surrounding scope we need to update the value
of that variable, the value printed out for x should be 2:
var(x) seq assign(x,1) seq block(assign(x,2)) seq put(x)

Variable shadowing. Redeclaring a variable in a nested scope
with the same name as a variable in the outer scope makes
the variable in the outer scope unavailable, the value printed
out for x should be 1:
var(x) seq assign(x,1) seq block(var(x) seq assign(x,2)) seq put(x)

Block Structured Languages

Formal Semantics:

(var(X),State) -->> OState :- % decl,

declarevar(X,State,OState),!.

(assign(X,A),State) -->> OState :- % assignment

lookup(X,State,_), % only allowed to assign to variables

(A,State) -->> ValA, % that have been declared

bindval(X,ValA,State,OState),!.

(block(C),State) -->> OState :- %block% block statement

pushenv(State,LocalState),

(C,LocalState) -->> S,

popenv(S,OState),!.

Note: Each block now pushes its own binding environment on an
environment stack.

Note: The new semantic procedures ’declarevar’ and ’bindval’ are

necessary because declaring and binding is done differently with nested

scopes.

Block Structured Languages

Semantic procedures ’pushenv’ and ’popenv’:

%%%

% the predicate ’pushenv(+State,-FinalState)’ pushes

% a new binding term list on the stack

:- dynamic pushenv/2.

pushenv(S,env([],S)) :- !.

%%%

% the predicate ’popenv(+State,-FinalState)’ pops

% a binding term list off the stack

:- dynamic popenv/2.

popenv(env(_,S),S) :- !.

Block Structured Languages

Looking up variable bindings in a stack of binding environments:

% the predicate ’lookup(+Variable,+State,-Value)’ looks up

% the variable in the state and returns its bound value.

:- dynamic lookup/3. % modifiable predicate

lookup(_,s0,_) :- fail.

lookup(X,env([],S),Val) :-

lookup(X,S,Val),!.

lookup(X,env([bind(Val,X)|_],_),Val).

lookup(X,env([_|Rest],S),Val) :-

lookup(X,env(Rest,S),Val),!.

Block Structured Languages

Semantic procedure ’declarevar’:

% the predicate ’declarevar(+Variable,+State,-FinalState)’ declares

% a variable by inserting a new binding term into the current

% environment.

:- dynamic declarevar/3. % modifiable predicate

declarevar(X,S,env([bind(0,X)],S)) :-

atom(S),!.

declarevar(X,env(L,S),env([bind(0,X)|L],S)) :- !.

Block Structured Languages

Semantic procedure ’bindval’:

% the predicate ’bindval(+Variable,+Value,+State,-FinalState)’ updates

% a binding term in the state. this update is done "in place"

% in order to support global variables. the predicate has to

% search both the binding list and the stack of binding

% lists.

:- dynamic bindval/4. % modifiable predicate

bindval(_,_,s0,_) :-

fail.

bindval(X,Val,env([],S),env([],NewS)) :-

bindval(X,Val,S,NewS),!.

bindval(X,Val,env([bind(_,X)|L],S),env([bind(Val,X)|L],S)),!.

bindval(X,Val,env([bind(V,Y)|L],S),env([bind(V,Y)|NewL],NewS)) :-

bindval(X,Val,env(L,S),env(NewL,NewS)),!.

Block Structured Languages

?- [’sem-block.pl’].

% xis.pl compiled 0.00 sec, 7,792 bytes

% preamble.pl compiled 0.00 sec, 8,956 bytes

% xis.pl compiled 0.00 sec, 148 bytes

% sem-block.pl compiled 0.00 sec, 18,192 bytes

true.

?- ((var(x) seq block(var(y) seq assign(y,1)) seq assign(y,x)),s) -->> V.

false.

?- ((var(x) seq assign(x,1) seq block(assign(x,2)) seq put(x)),s) -->> V.

x is 2

V = env([bind(2, x)], s).

?- ((var(x) seq assign(x,1) seq block(var(x) seq assign(x,2)) seq put(x)),s) -->> V.

x is 1

V = env([bind(1, x)], s).

?-

