
Proofs: Program Correctness

One of the great advantages of formal semantics is that we can
actually prove that a program will behave correctly for all expected
input values.

In order for this to work we need the notion of a program
specification.

The program specification act as the yard stick for the expected
program behavior for any set of input values.



Program Specifications

⇒ A program specification is a universally quantified sentence over
states in first order logic.

Consider the following program specification for some program p
and variables x and y :

∀s,∃Q,VX ,VY [(p, s) −−� Q∧
lookup(y , s,VY ) ∧ lookup(x ,Q,VY )∧
lookup(x , s,VX ) ∧ lookup(y ,Q,VX )]

This specification states that running the program p in state s will
give rise to some state Q. Furthermore, looking up the variable y
in state s is the same as looking up the variable x in state Q and
vice versa.

This is a program specification for a swap program that swaps the
values of x and y .



Program Specifications

Now, consider the program p written in our simple language IMP
defined in ‘sem.pl’:

p ≡ assign(t, x) seq assign(x , y) seq assign(y , t)

Without formal semantics and a program specification we would
simply try “a bunch” of values, and if the results look good we
would infer that the program works. But there will always be a
doubt that it will work for all states since trying a bunch of values
does not constitute a proof.

However, given our formal semantics we can prove that this
program satisfies the specification and therefore we can prove that
the program works for all possible states.



Program Specifications

% swap.pl

:-[’sem.pl’].

:- >>> ’show that program P="assign(t,x) seq assign(x,y) seq assign(y,t))"’.

:- >>> ’satisfies the program specification:’.

:- >>> ’ (P,s)-->>Q,lookup(y,s,VY),lookup(x,Q,VY),lookup(x,s,VX),lookup(y,Q,VX)’.

program(assign(t,x) seq assign(x,y) seq assign(y,t)).

:- asserta(lookup(x,s,vx)).

:- asserta(lookup(y,s,vy)).

:- program(P),

(P,s) -->> Q,

lookup(y,s,VY),

lookup(x,Q,VY),

lookup(x,s,VX),

lookup(y,Q,VX).



Program Specifications

Now consider the program specification

∀s, ∃Q, V 1, V 2 [(p, s) −−� Q∧
lookup(z , s, V 1) ∧ lookup(z , Q, V 2)∧
V 2 = 2 ∗ V 1]

It is easy to see that the program p ≡ assign(z ,mult(2, z))
satisfies the specification.

But so does this program p ≡ assign(z , add(z , z)).

⇒ Program specifications are implementation independent!



Program Specifications

% double.pl

:-[’sem.pl’].

:- >>> ’show that program P="assign(z,add(z,z)))"’.

:- >>> ’satisfies the program specification:’.

:- >>> ’ (p,s) -->> Q,lookup(z,s,V1),lookup(z,Q,V2),V2 = 2*V1’.

program(assign(z,add(z,z))).

:- asserta(lookup(z,s,vz)).

:- asserta(2*I xis I+I). % property of integers

:- program(P),

(P,s) -->> Q,

lookup(z,s,V1),

lookup(z,Q,V2),

V2 = 2 * V1.


