
Models

One person’s syntax is another person’s semantics.

One particular view of semantics is that is a regression of
languages. Consider our translational semantics:

source language → stack machine language → Prolog

If we only consider the first half of this diagram then we are
assigning semantics to the source language in terms of syntactic
snippets of the stack machine language.

If we only consider the second part of the diagram then we are
interpreting stack machine language syntax in terms of Prolog
constructs (the thing we have done all along in this course).



Models

A fundamental question in semantics is: When is it reasonable to
end this regression?

The answer: when the final language in this regression is a formal
language that can be understood in mathematical terms.

There is a reason why we chose Prolog as our semantic modeling
language, because Prolog itself has a semantics – Model Theory,

Prolog → Model Theory

That is, every Prolog program can be interpreted in a “first order
model” sometimes also called the Herbrand Universe.1

1en.wikipedia.org/wiki/Term algebra



Models

Now, if look at what we have done for the major part of the course
and then attach the semantics of Prolog we get this diagram,

source language → Prolog → Model Theory

Considering that interpretation is transitive this means by using
Prolog as our defining language for our source languages we obtain
formal (mathematical) models for our own languages!



Elements of Model Theory

Model theory is the study of semantics for logic and provides
the formal justification for using Prolog as a defining language
and as a theorem prover.

Similar to our models we constructed in this class, the models
in Model Theory provide an interpretation for the syntactic
units appearing in a logic program.



Elements of Model Theory

Let’s start with what we know, we know how to write logic
programs and deduce knowledge from them.

Let’s consider the following logic program P :

odd(s(0)).

odd(s(s(X))) :- odd(X).

Here the functor s represents the successor function that takes an
integer value and produces the integer value that follows that
integer. That is s(0) represents 1 and s(s(0)) represents 2, etc.

Given this program we now can pose queries to extract knowledge:

?- odd(s(s(s(s(s(0)))))).

true

?- odd(s(s(0))).

false.

?-



Elements of Model Theory

Given our program P and our query q:

?- odd(s(s(s(s(s(0)))))).

true

We say that q derives from P and we write

P � q

Here the � operator represents inferencing in logic and in this
particular case it represents inferencing via resolution.



Elements of Model Theory

Now, when we wrote our program P :

odd(s(0)).

odd(s(s(X))) :- odd(X).

we had a particular model in mind. In particular, we probably
thought about the natural numbers N.

Taking the natural numbers together with the nodd operation gives
us our model M :

(N, nodd)

where nodd : N → {true, false} is defined as the function2

nodd(x) =

{
true if x mod 2 = 0,
false if x mod 2 = 1,

for all x ∈ N.

2Notice that with this definition 0 is an even number.



Elements of Model Theory

It is now easy to show that each sentence p ∈ P is satisfied by this
model, i.e., each sentence p ∈ P is true in model M , where P is our
odd program.

We can formally show this for the first sentence,

odd(s(0)).

if we let s(0) �→ 1 and odd �→ nodd then nodd(1) is true in M .

Similarly for the sentence odd(s(s(X))) :- odd(X), this can be
shown by induction over the odd natural numbers.



Elements of Model Theory

If our model satisfies some sentence p then we write:

M |= p

and we say that sentence p is true in model M .

If our model M satisfies every sentence p in P then we write

M |= P



Elements of Model Theory

Assume that we have M |= P ,

We say that our logic is sound if anything that we can derive from
our program P is also true in our model M . Formally,

P � p ⇒ M |= p

We say that our logic is complete if anything that is true in the
model can be derived from the program P . Formally,

M |= p ⇒ P � p

It has been shown that resolution is sound and complete,3 that means,

anything we can query from the program will be true in the model, and

anything that is true in the model can be deduced from the program

using queries.4

3Foundations of Logic Programming,Lloyd, J.W.,Springer-Verlag, 1987.
4Well, with some help - Prolog’s implementation of resolution turns out not

to be complete.



Elements of Model Theory

In terms of programming language semantics, let P be a description
of a programming language model, let M be the intended model,
then because of soundness and completeness, any characteristic c
about our programming language that can be deduced from P will
also be true in the intended model,

P � c ⇒ M |= c

and any characteristic c that is true in M can be proven,

M |= c ⇒ P � c

That means, we are justified to use Prolog as a theorem prover to
prove characteristics about our programming language models.



Elements of Model Theory

THE END


