
First-Order Logic (FOL)
 FOL consists of the following parts:

 Objects/terms
 Quantified variables
 Predicates
 Logical connectives
 Implication

Objects/Terms
 FOL is a formal system that allows us to

reason about the real world.
 It is therefore no surprise that at the core of

FOL we objects and terms that describe
objects in the real world such as:
 phil, betty, fido -- objects
 pair(bob,susan) -- term
 [chicken,turkey,duck] -- term

First-Order Logic
 Quantified variables allow us to talk

about sets of objects/terms
 Universally quantified variables

∀X – for All objects X

 Existentially quantified variables

∃Y – there Exists an object Y

First-Order Logic
 Predicates

 Predicates are functions that map their arguments into true/false where the
domain is some universe, say U, and the co-domain is the set of Boolean
values { true, false }, e.g., for the predicate p we have:

p: U → { true, false }

 Example: human(X)
 human: U → { true, false }
 human(tree) = false
 human(paul) = true

 Example: mother(X,Y)
 mother: U × U → { true, false }
 mother(betty,paul) = true
 mother(giraffe,peter) = false

 Another way of looking at predicates is as properties of objects.
 Note: if we do not make another assumptions on the universe then the

universe is usually taken as the set of all possible objects.

First-Order Logic
 We can combine predicates and

quantified variables to make statements
on sets of objects
 ∃X[mother(X,paul)]

 there exists an object X such that X is the
mother of Paul

 ∀Y[human(Y)]
 for all objects Y such that Y is human

First-Order Logic
 Logical Connectives: and, or, not

 ∃F ∀C[parent(F,C) and male(F)]
 There exists an object F for all objects C such

that F is a parent of C and F is male.
 ∀X[day(X) and (rainy(X) or snowy(X))]

 For all objects X such that X is a day and X is
either rainy or snowy.

First-Order Logic
 If-then rules: A ⇒ B

 ∀X∀Y[parent(X,Y) and female(X) ⇒ mother(X,Y)]
 For all objects X and for all objects Y such that if X is a

parent of Y and X is female then X is the mother of Y.
 ∀Q[human(Q) ⇒ mortal(Q)]

 For all objects Q such that if Q is human then Q is
mortal.

 We can combine quantified variables,
predicates, logical connectives, and
implication into WFF’s (well-formed formulas)

First-Order Logic
 Modus Ponens

human(socrates)

∀Q[human(Q) ⇒ mortal(Q)]

∴ mortal(socrates)

We reason with FOL by asserting truths and
then use the implications to deduce
consequences of these assertions.

First-Order Logic
 WFFs can become very complicated,

consider

 ∀ABCD[(p(A) ⇒ k(B)) ⇒ (q(C) ⇒ k(D))]

 Very difficult to automate

Horn Clause Logic

In Horn clause logic the form of the WFFs is restricted:

 P1 ∧ P2 ∧ … ∧ Pn-1 ∧ Pn ⇒ P0

Where P0 , P1 , P2, … Pn-1, Pn are predicates over
universally quantified variables.

Conjunctions only!

Single predicate in consequent

Proving things is computation!

Use resolution to reason with Horn clause expressions - resolution mimics
the modus ponens using horn clause expressions.

Advantage: this can be done mechanically (Alan Robinson, 1965)

J. Alan Robinson: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1): 23-41 (1965)

“Deduction is Computation”

Basic Programs
 Prolog programs follow the FOL style: assert truth

and use the rules/implications to compute the
consequences of these assertions.

human(socrates)

∀Q[human(Q) ⇒ mortal(Q)]

∴ mortal(socrates)

Valid Horn Clause

Basic Prolog Programs

Prolog ≡ Programming in Logic

Example: a simple program

male(phil).
male(john).
female(betty).

Facts, Prolog will treat these as true and enters
them into its knowledgebase.

We execute Prolog programs by posing queries on its knowledgebase:

?- male(phil).
 true - because Prolog can use its knowledgebase to prove true.
?- female(phil).
 false - this fact is not in the knowledgebase.

Prompt

 Prolog programs consist of fact (assumptions) and inference
rules.

 As opposed to natural deduction, Prolog is based on FOL.
 We can execute Prolog programs by trying to prove things via

queries.

Prolog - Queries & Goals
A query is a way to extract information from a logic program.

Given a query, Prolog attempts to show that the query is a logical
consequence of the program; of the collection of facts.

In other words, a query is a goal that Prolog is attempting to satisfy (prove true).

When queries contain variables they are existentially quantified, consider

?- parent(X,liz).

The interpretation of this query is: prove that there is at least one object X
that can be considered a parent of liz, or formally, prove that

∃x[parent(x,liz)]

holds.

NOTE: Prolog will return all objects for which a query evaluates to true.

!!

A Prolog Program

A Family Tree

% a simple prolog program
female(pam).
female(liz).
female(ann).
female(pat).

male(tom).
male(bob).
male(jim).

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

Parent
Relation

Example Queries:
?- female(pam).
?- female(X). ∃X[female(X)]?
?- parent(tom,Z).
?- father(Y).

Compound Queries
A compound query is the conjunction of individual simple queries.

Stated in terms of goals: a compound goal is the conjunction of individual
subgoals each of which needs to be satisfied in order for the compound goal
to be satisfied. Consider:

?- parent(X,Y) , parent(Y,ann).

or formally, show that the following holds,

∃X,Y[parent(X,Y) ∧ parent(Y,ann)]

When Prolog tries to satisfy this compound goal, it will make sure that the
two Y variables always have the same values.

Prolog uses unification and backtracking in order to find all the solutions
which satisfy the compound goal.

Prolog Rules
Prolog rules are Horn clauses, but they are written “backwards”, consider:

∀X,Y[female(X) ∧ parent(X,Y) ⇒ mother(X,Y)]

is written in Prolog as

mother(X,Y) :- female(X) , parent(X,Y) .

Implies (“think of ⇐”)

“and”

head body

You can think of a rule as introducing a new “fact” (the head), but the fact is
defined in terms of a compound goal (the body). That is, predicates defined as
rules are only true if the associated compound goal can be shown to be true.

Prolog rules a implicitly
universally quantified! !!

Prolog Rules

% a simple prolog program
female(pam).
female(liz).
female(ann).
female(pat).

male(tom).
male(bob).
male(jim).

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

mother(X,Y) :- female(X),parent(X,Y).

Queries:
?- mother(pam,bob).
?- mother(Z,jim).
?- mother(P,Q).

Prolog Rules
The same predicate name can be defined by multiple rules:

sibling(X,Y) :- sister(X,Y) .
sibling(X,Y) :- brother(X,Y).

Socrates Revisited

Consider the program relating humans to mortality:

mortal(X) :- human(X).
human(socrates).

We can now pose the query:

?- mortal(socrates).

True or false?

Declarative vs. Procedural
Meaning

When interpreting rules purely as Horn clause logic statement → declarative

When interpreting rules as “specialized queries” → procedural

Observation: We design programs with declarative meaning in our minds,
but the execution is performed in a procedural fashion.

Consider:

mother(X,Y) :- female(X),parent(X,Y).

Prolog Terms
 A term in Prolog is anything that cannot

be considered a predicate
 Simple object names, e.g. betty, john
 Simple structures, e.g. couple(betty, john),

in this case the important part here is that
couple does not appear as a predicate
definition

 Lists

Lists & Pattern Matching
 The unification operator: =/2

 The expression A=B is true if A and B are terms
and unify (look identical)

arity

?- a = a.
 true
?- a = b.
 false
?- a = X.
 X = a
?- X = Y.
 true

Lists & Pattern Matching
 Lists – a convenient way to represent abstract

concepts
 Prolog has a special notation for lists.

[a]
[a,b,c]
[]

Empty
List

[bmw, vw, mercedes]
[chicken, turkey, goose]

Lists & Pattern Matching
 Pattern Matching in Lists

?- [a, b] = [a, X].
X = b

?- [a, b] = X.
X = [a, b]

But:

?- [a, b] = [X].
no

The Head-Tail Operator: [H|T]

?- [a,b,c] = [X|Y];
X = a
Y = [b,c]

?- [a] = [Q|P];
Q = a
P = []

Lists - the First Predicate
The predicate first/2: accept a list in the first argument and return
the first element of the list in second argument.

first(List,E) :- List = [H|T], E = H;

Lists - the Last Predicate
The predicate last/2: accept a list in the first argument and return
the last element of the list in second argument.

Recursion: there are always two parts to a recursive definition;
the base and the recursive step.

last([A],A).
last([A|L],E) :- last(L,E).

Lists - the Append Predicate
The append/3 predicate: accept two lists in the first two parameters, append
the second list to the first and return the resulting list in the third parameter.

append([], List, List).
append([H|T], List, [H|Result]) :- append(T, List, Result).

Prolog – Arithmetic
 Prolog is a programming language, therefore, arithmetic is

implemented as expected.
 The only difference to other programming languages is that

assignment is done via the predicate is rather than the equal
sign, since the equal sign has been used for the unification
operator.

Examples:

?- X is 10 + 5;
X = 15

?- X is 10 + 5 * 6 / 3;
X = 20

Precedence and associativity
of operators are respected.

Prolog – Arithmetic
Example: write a predicate definition for length/2 that takes a list
in its first argument and returns the length of the list in its second
argument.

length([], 0).
length(L, N) :- L = [H|T], length(T,NT), N is NT + 1.

Prolog – Arithmetic

Example: we can also use arithmetic in compound statements.

?- X is 5, Y is 2 * X.
X = 5
Y = 10

Prolog – I/O
 write(term)

 is true if term is a Prolog term, writes term to the terminal.
 read(X)

 is true if the user types a term followed by a period, X
becomes unified to the term.

 nl
 is always true and writes a newline character on the

terminal.

 Extra-logical predicates due to the side-effect of writing/reading
 to/from the terminal.

Prolog – I/O
?- write(tom).
tom

?- write([1,2]).
[1, 2]

?- read(X).
|: boo.
X = boo

?- read(Q).
|: [1,2,3].
Q = [1, 2, 3]

Prolog I/O Prompt

Prolog – I/O
Example: write a predicate definition for fadd/1 that takes a list of
integers, adds 1 to each integer in the list, and prints each integer
onto the terminal screen.

fadd([]).
fadd([H | T]) :- I is H + 1, write(I), nl, fadd(T).

Member Predicate

Write a predicate member/2 that takes a list as its first argument and
an element as its second element. This predicate is to return true if
the element appears in the list.

member([E|_],E).
member([_|T],E) :- member(T,E).

Exercises

(1) Define a predicate max/3 that takes two numbers as its first two
arguments and unifies the last argument with the maximum
of the two.

(2) Define a predicate maxlist/2 takes a list of numbers as its first
argument and unifies the second argument with the maximum
number in the list. The predicate should fail if the list is empty.

(3) Define a predicate ordered/1 that takes a list of numbers as its
argument and succeeds if and only if the list is in non-decreasing
order.

The ‘Cut’ Predicate
 The Cut predicate ‘!’ allows us to control

Prolog’s backtracking behavior
 The Cut predicate forces Prolog to commit to

a set of choice points
 Consider the following code:

different(A,B) :- A=B,!,fail.
different(_,_).

 Returns true if A and B are different and false
if they are equal.

The Cut Predicate

a:-b,c,d.
c:-p,q,!,r,s.
c:-t.

b.
d.
p.
q:- ??.
r:- ??.
s.
t.

?- a.

 What would be the
behavior if
 q:-fail and r:-true
 q:-true and r:-fail

