CSC501 Semester Review

String Rewriting Systems

Definition: [String Rewriting System] A *string rewriting system* is a tuple (Γ, \rightarrow) where,

- Γ is an alphabet.
- \rightarrow is a binary relation in Γ^* , i.e., $\rightarrow \subseteq \Gamma^* \times \Gamma^*$. Each element $(u, v) \in \rightarrow$ is called a *(rewriting) rule* and is usually written as $u \rightarrow v$.

An *inference step* in this formal system is: given a string $u \in \Gamma^*$ and a rule $u \to v$ then the string u can be *rewritten* as the string $v \in \Gamma^*$. We write,

$$u \Rightarrow v$$
.

Note: Rule definitions, $u \rightarrow v$, and rule applications or inference steps, $u \Rightarrow v$, are two separate things and we use different symbols.

Grammars

Definition: [Grammar] A grammar is a triple $(\Gamma, \rightarrow, \gamma)$ such that,

- $\Gamma = T \cup N$ with $T \cap N = \emptyset$, where T is a set of symbols called the *terminals* and N is a set of symbols called the *non-terminals*,¹
- \rightarrow is a set of rules of the form $u \rightarrow v$ with $u, v \in \Gamma^*$,
- γ is called the *start symbol* and $\gamma \in N$.

Natural Semantis

$$(n,\sigma)\mapsto eval(n)$$
 for $n\in I$

Arithmetic Expressions:

$$(x, \sigma) \mapsto \sigma(x)$$
 for $x \in Loc$

$$\frac{(a_0,\sigma)\mapsto k_0 \qquad (a_1,\sigma)\mapsto k_1}{(a_0+a_1,\sigma)\mapsto k} \quad \text{where } k=k_0+k_1$$

$$\frac{(a_0,\sigma)\mapsto k_0 \qquad (a_1,\sigma)\mapsto k_1}{(a_0-a_1,\sigma)\mapsto k} \quad \text{where } k=k_0-k_1$$

$$\frac{(a_0,\sigma)\mapsto k_0 \qquad (a_1,\sigma)\mapsto k_1}{(a_0*a_1,\sigma)\mapsto k} \quad \text{where } k=k_0\times k_1$$

$$\frac{(a,\sigma)\mapsto k}{((a),\sigma)\mapsto k}$$

with k, k_0 , $k_1 \in \mathbb{I}$, a, a_0 , $a_1 \in \mathbf{Aexp}$, and $\sigma \in \Sigma$.

Induction

Proposition: (Mathematical Induction) Let P be a predicate over the natural numbers \mathbb{N} , then

$$\forall n \in \mathbb{N}.P(n) \text{ iff } P(0) \land \forall n \in \mathbb{N}.P(n) \Rightarrow P(n+1).$$

Here, P(0) is called the *basis*, P(n) is the *induction hypothesis*, and $P(n) \Rightarrow P(n+1)$ is called the *inductive step*.

Given the ordering of the terms we can now state our *structural induction principle* to show that some predicate *P* holds for all arithmetic expressions:

```
\forall a \in \mathbf{Aexp}. P(a) \quad \text{iff} \quad (\forall n \in \mathbf{I}. P(n)) \land \\ (\forall x \in \mathbf{Loc}. P(x)) \land \\ (\forall a_0, a_1 \in \mathbf{Aexp}. P(a_0) \land P(a_1) \Rightarrow P(a_0 + a_1)) \land \\ (\forall a_0, a_1 \in \mathbf{Aexp}. P(a_0) \land P(a_1) \Rightarrow P(a_0 - a_1)) \land \\ (\forall a_0, a_1 \in \mathbf{Aexp}. P(a_0) \land P(a_1) \Rightarrow P(a_0 * a_1)) \land \\ (\forall a \in \mathbf{Aexp}. P(a) \Rightarrow P((a)))
```

As expected, here we also take advantage of the precise ordering of terms and their sub terms and therefore the domino effect also works here.

Prolog Semantics


```
% semantics of arithmetic expressions
(C,_) -->> C :-
                              % constants
   int(C).!.
(X,State) -->> Val :-
                           % variables
   atom(X),
   lookup(X,State,Val),!.
(add(A,B),State) -->> Val :-
                            % addition
   (A.State) -->> ValA.
   (B,State) -->> ValB,
   Val xis ValA + ValB,!.
                            % subtraction
(sub(A,B),State) -->> Val :-
   (A,State) -->> ValA,
   (B,State) -->> ValB,
   Val xis ValA - ValB,!.
(mult(A,B),State) -->> Val :-
                             % multiplication
   (A,State) -->> ValA,
   (B,State) -->> ValB,
   Val xis ValA * ValB,!.
```

Prolog Semantics

- Executable Specs/Prolog Specs:
 - state, arithmetic expressions
 - boolean expressions, commands
 - declarations, type systems
 - I/O, block structured languages
 - functions
 - program correctness
 - pre- and postconditions
 - program correctness and iteration
 - loop invariants
 - program correctness and recursive functions
 - translational semantics
 - translation, source and target semantics
 - compiler correctness

Elements of Model Theory

 In terms of programming language semantics, let P be a description of a programming language model, let M be the intended model, then because of soundness and completeness, any characteristic c about our programming language that can be deduced from P will also be true in the intended model,

$$P \vdash c \Rightarrow M \models c$$

and any characteristic c that is true in M can be proven,

$$M \models c \Rightarrow P \vdash c$$

 That means, we are justified to use Prolog as a theorem prover to prove characteristics about our programming language models.