CSC501
Semester Review

String Rewriting Systems

Definition: [String Rewriting System| A string rewriting system is
a tuple (I, —) where,

@ [is an alphabet.

@ — is a binary relation in I'*, i.e., =C I'* X I'*. Each element

(u,v) €— is called a (rewriting) rule and is usually written as
u—v.

An inference step in this formal system is: given a string u € I'*
and a rule u — v then the string u can be rewritten as the string
v € I'*. We write,

u=v.

Note: Rule definitions, u — v, and rule applications or inference
steps, u = v, are two separate things and we use different symbols.

Grammars

Definition: [Grammar] A grammar is a triple (I, —, <) such that,

@ N=TUN with TN N =0, where T is a set of symbols called the
terminals and N is a set of symbols called the non-terminals,*

@ — is a set of rules of the form v — v with u,v € I'*,

@ ~v is called the start symbol and v € N.

Natural Semantis

(n, o) — eval(n) ferne s
Arithmetic G, o) = o () for x € Loc
Expressions:

(30,0) — ko (a1,0) — ki

(30 +31,0') — k

(a0, o) — ko (a1,0) — ki

(ap — a1,0) — k

(a0, 0) — ko (a1,0) — ki

(ag * a1,0) — k

(a,0) — k
((3),0) — k

where k = kg + k

where k = kg — ky

where k = kg X k

with k, ko, k1 €1, a,ap, a1 € Aexp, and ¢ € L.

Induction

Proposition: (Mathematical Induction) Let P be a predicate over
the natural numbers N, then

¥n € N.P(n) iff P(0) AV¥n € N.P(n) = P(n+ 1).

Here, P(0) is called the basis, P(n) is the induction hypothesis,
and P(n) = P(n+1) is called the inductive step.

Structural Induction

Given the ordering of the terms we can now state our structural induction principle to
show that some predicate P holds for all arithmetic expressions:

Va € Aexp.P(a) iff (Vne LP(n))A
(Vx € Loc.P(x))A
(Vap, a1 € Aexp.P(ag) A P(a1) = P(ag + a1))A
(Vap, a1 € Aexp.P(ag) A P(a1) = P(ap — a1))A
(Vap, a1 € Aexp.P(ag) A P(a1) = P(ag * a1))A
(Va € Aexp.P(a) = P((a)))

As expected, here we also take advantage of the precise ordering of terms and their
sub terms and therefore the domino effect also works here.

Prolog Semantics

B e T H t o At A A A R R R A AR R R AR A B AR R LA AR
% semantics of arithmetic expressions

(C,.) ——>>C :- % constants
int(C),!.

(X,State) -->> Val :- % wvariables
atom(X),

lockup(X,State,Val),!.

{(add(A,B) ,State) -->> Val :- % addition
(A,State) -->> ValA,
(B,State) -->> ValB,
Val xis ValA + ValB,!.

{sub(A,B),State) -->> Val :- % subtraction
(A,State) -->> ValA,
(B,State) -->> ValB,
Val xis ValA - ValB,!.

(mult(A,B) ,State) -->> Val :- % multiplication
(A,State) -->> ValA,
(B,State) -->> ValB,
Val xis ValA = ValB,!.

Prolog Semantics

e Executable Specs/Prolog Specs:
state, arithmetic expressions
boolean expressions, commands
declarations, type systems
l/O, block structured languages
functions
program correctness
pre- and postconditions
program correctness and iteration
loop invariants
program correctness and recursive functions
translational semantics
translation, source and target semantics
compiler correctness

Elements of Model Theory

@ In terms of programming language semantics, let P be a description
of a programming language model, let M be the intended model,
then because of soundness and completeness, any characteristic ¢
about our programming language that can be deduced from P will
also be true in the intended model,

Prc=MEc
and any characteristic ¢ that is true in M can be proven,

M=c=Plkc

@ That means, we are justified to use Prolog as a theorem prover to
prove characteristics about our programming language models.

