
Python - Lists, Arrays, and Data Frames
● Lists are fundamental in Python
● We construct them in a variety of ways

○ Explicit: my_list = [1,2,3]
○ Computationally: my_list.append(4)
○ List comprehension: my_list = [x for x in range(4)]
○ Reading from a file:

with open(filename, 'r') as f:
my_list = [line.split('\n') for line in f]

Python - Lists, Arrays, and Data Frames
● Manipulating lists: list slicing
● My_list[start:stop:increment]

○ Start - inclusive
○ Stop - exclusive
○ Increment - positive or negative!
○ All can be optional

● Some Examples: >>> my_list = [1,2,3,4,5,6]
>>> my_list[2:]
[3, 4, 5, 6]
>>> my_list[:2]
[1, 2]
>>> my_list[::]
[1, 2, 3, 4, 5, 6]
>>> my_list[::2]
[1, 3, 5]
>>>

>>> lst = [x for x in range(10)]
>>> even = lst[::2]
>>> even
[0, 2, 4, 6, 8]
>>> odd = lst[1::2]
>>> odd
[1, 3, 5, 7, 9]
>>>

>>> lst = [x for x in range(10)]
>>> rev = lst[::-1]
>>> rev
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>>

Definition: In computer programming, list (array) slicing
is an operation that extracts a subset of elements from a
list (array) and packages them as another list (array),
possibly in a different dimension from the original.
(Wikipedia)

Python - Lists, Arrays, and Data Frames
We can also assign into list slices:

>>> lst = [x for x in range(10)]
>>> lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> lst[2:5] = [0,0,0]
>>> lst
[0, 1, 0, 0, 0, 5, 6, 7, 8, 9]
>>>

>>> bit_vec = [1 for i in range(16)]
>>> bit_vec
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> bit_vec[1::2] = [0 for i in range(8)]
>>> bit_vec
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
>>>

For more info see:
http://www.i-programmer.info/programming/python/3942-arrays-in-python.html

Python - Lists, Arrays, and Data Frames
Python does not have arrays - they can be constructed with lists of lists.

>>> arr = [[1,2,3],
... [4,5,6],
... [7,8,9]]
>>> arr[1]
[4, 5, 6]
>>> arr[1][1]
5
>>>

>>> for row in arr:
... for e in row:
... print(e)
...
1
2
3
4
5
6
7
8
9
>>>

>>> arr[1][1] = 0
>>> print(arr)
[[1, 2, 3], [4, 0, 6], [7, 8, 9]]
>>>

>>> arr = [[0 for j in range(3)] for i in range(3)]
>>> print(arr)
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>>

Python - Lists, Arrays, and Data Frames
However, slicing does not work properly on arrays!

>>> arr = [[1,2,3],
... [4,5,6],
... [7,8,8]]
>>> arr[1][:]
[4, 5, 6]
>>> arr[:][1]
[4, 5, 6]
>>> arr[:]
[[1, 2, 3], [4, 5, 6], [7, 8, 8]]
>>>

Python - Lists, Arrays, and Data Frames
Pandas data frames - 2D arrays specifically designed for data processing!

We will have much more to say about data frames later on

>>> import pandas
>>> arr = [[1,2,3],
... [4,5,6],
... [7,8,8]]
>>> df = pandas.DataFrame(data=arr,columns=['a','b','c'])
>>> df

a b c
0 1 2 3
1 4 5 6
2 7 8 8
>>>

>>> df.iloc[1,1]
5
>>> df.iloc[1,1] = 0
>>> df

a b c
0 1 2 3
1 4 0 6
2 7 8 8
>>>

Python - Lists, Arrays, and Data Frames
In data frames slicing works as expected!

>>> df
a b c

0 1 2 3
1 4 5 6
2 7 8 8
>>> df.iloc[1,:]
a 4
b 5
c 6
>>> df.iloc[:,1]
0 2
1 5
2 8

Python – Classes and Objects
● Classes are dynamic objects in the spirit of Python: variables become defined when they

appear in the program text.
● It matters where they appear!
● No protection mechanisms – everything is globally visible!
● Classes also support inheritance (I let you explore that…)

Python – Classes and Objects

Note: this is in Jupyter Notebook style – In is a program statement – Out is the interpreter output

Programming Exercise
● You are to implement Conway’s Game of Life in Python:

en.wikipedia.org/wiki/Conway's_Game_of_Life
● Your board size should be a parameter so you can try it on different

sized boards
● Your ‘number of generations’ should also be a parameter
● Your main data structure should be an array – or two if you use

double buffering (recommended)
● No fancy graphics necessary, just displaying ascii is fine. (see

function on next slides)

Programming Exercise
Rules for the Game:
● Any live cell with fewer than two live neighbors dies, as if caused by

underpopulation.
● Any live cell with two or three live neighbors lives on to the next generation.
● Any live cell with more than three live neighbors dies, as if by overpopulation.
● Any dead cell with exactly three live neighbors becomes a live cell, as if by

reproduction.

Programming Exercise

Programming Exercise

Programming Exercise
● Teamwork allowed - see Teams

Team:
Team 0: ['Alber', 'Alexander', 'Shamal']
Team 1: ['David', 'Matt', 'Najib']
Team 2: ['Evelyn', 'Peter', 'Cory']
Team 3: ['Joe', 'Kermalyn', 'Baez']
Team 4: ['Geron', 'Harout', 'Susallin']
Team 5: ['Christopher', 'Aguilar', 'Gabe']
Team 6: ['Aakash', 'Kevin', 'David']
Team 7: ['Ben']

