Python - Lists, Arrays, and Data Frames

e Lists are fundamental in Python

e \We construct them in a variety of ways
o Explicit: my_list =[1,2,3]
o Computationally: my_list.append(4)
o List comprehension: my_list = [x for x in range(4)]
o Reading from a file:
with open(filename, 'r') as f:
my_list = [line.split(\n") for line in f]

Python - Lists, Arrays, and Data Frames

_ _ .] o Definition: In computer programming, list (array) slicing
e Manipulating lists: list slicing is an operation that extracts a subset of elements from a
° I\/Iy Iist[start:stop:increment] list (grray) and.package.s them as another Ii§t .(array),
- _ _ possibly in a different dimension from the original.
@) Start - inclusive (Wlklpedla)
o Stop - exclusive
o Increment - positive or negative!
o All can be optional
: >>>my_list = [1,2,3,4,5,6]
e Some Examples: S>> my_list[2]
[3, 4, 5, 6] >>>|st = [x for x in range(10)]
>>>my_list[:2] >>> even = [st[::2]
>>> |st = [x for x in range(10)] [1, 2] >>> even
>>>rev = Ist[::-1] >>>my_list[:] [0, 2, 4,6, g]
>>> rev [1,2,3, 4,5, 6] >>> odd = Ist[1::2]
[9,8,7,6,5,4,3,2,1,0] >>>my_list[::2] >>> odd
>>> [1, 3, 5] [1,3,5,7, 9]
>>> >>>

Python - Lists, Arrays, and Data Frames

We can also assign into list slices:

>>> |st = [x for x in range(10)]
>>> st
[0,1,2,3,4,5,6,7,8, 9]
>>> |st[2:5] = [0,0,0]

>>> |st
[0,1,0,0,0,5,6,7,8, 9]
>>>

>>> bit_vec = [1 for i in range(16)]

>>> bit_vec
M,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1]
>>> bit_vec[1::2] = [0 for i in range(8)]
>>> bit_vec
[1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1, 0]
>>>

For more info see:

http://www.i-programmer.info/programming/python/3942-arrays-in-python.html

Python - Lists, Arrays, and Data Frames

Python does not have arrays - they can be constructed with lists of lists.

>>> arr = [[1,2,3],
... [4,5,6],

.. [7,8,9]]

>>> arr[1]

[4, 5, 6]

>>> arr[1][1]

5

>>>

>>> for row in arr:
... foreinrow:
print(e)

VO Oo~NOOAWN=:

>>> arr[1][1] = 0
>>> print(arr)
[[1, 2, 3], [4, 0, 6], [7, 8, 9]

>>>

>>> arr = [[0 for j in range(3)] for i in range(3)]
>>> print(arr)
[[o, 0, 01, [0, O, O], [0, O, O]

>>>

Python - Lists, Arrays, and Data Frames

However, slicing does not work properly on arrays!

>>> arr = [[1,2,3],

... [4,5,6],

... [7,8,8]]

>>> arr[1][:]

[4, 5, 6]

>>> arr[:][1]

[4, 5, 6]

>>> arr:]

[[1, 2, 3], [4, 5, 6], [7, 8, 8]]

>>>

Python - Lists, Arrays, and Data Frames

Pandas data frames - 2D arrays specifically designed for data processing!

We will have much more to say about data frames later on

>>> import pandas .
>>> arr = [[1,2,3], ;>> df.iloc[1,1]
{égg}] >>> df.iloc[1,1] = 0
>>> df = pandas.DataFrame(data=arr,columns=['a','b','c']) >z Sf
ey Oa‘l 2C3

12 1406
0123 1490
1456 27
27388
>>>

Python - Lists, Arrays, and Data Frames

In data frames slicing works as expected!

(0 IN&) I \O)

Python — Classes and Objects

® C(Classes are dynamic objects in the spirit of Python: variables become defined when they
appear in the program text.

® |t matters where they appear!

® No protection mechanisms — everything is globally visible!

® C(Classes also support inheritance (I let you explore that...)

In [16]: class Dog:

kind = 'canine' # class variable shared by all instances

def init_(self, name): # constructor function -- automatically called
self.name = name # instance variable unique to each instance
self.tricks = [] # another instance variable!

def str (self): # function to compute string representation of object
return "{} can do the following tricks: {}".format(self.name,self.tricks)

def add trick(self, trick):
self.tricks.append(trick)

Python — Classes and Objects

In [12]: Dog.kind

Out[12]: 'canine'

In [13]: fido = Dog('Fido')
buddy = Dog('Buddy"')
fido.add trick('roll over')
buddy.add trick('play dead')

In [14]: fido.tricks

Out[1l4]: ['roll over']

In [15]: print(buddy)

Buddy can do the following tricks: ['play dead']

Note: this is in Jupyter Notebook style — In is a program statement — Out is the interpreter output

Programming Exercise

e You are to implement Conway’s Game of Life in Python:
en.wikipedia.org/wiki/Conway's Game_of Life

e Your board size should be a parameter so you can try it on different
sized boards
Your ‘number of generations’ should also be a parameter
Your main data structure should be an array — or two if you use
double buffering (recommended)

e No fancy graphics necessary, just displaying ascii is fine. (see
function on next slides)

Programming Exercise

Rules for the Game:

e Any live cell with fewer than two live neighbors dies, as if caused by
underpopulation.

e Any live cell with two or three live neighbors lives on to the next generation.
Any live cell with more than three live neighbors dies, as if by overpopulation.
Any dead cell with exactly three live neighbors becomes a live cell, as if by
reproduction.

Programming Exercise

In [24]: import os

import time

def display array(ar):
"clear the screen,
os.system('clear')

"

display the contents of an array, wait for lsec'

rows = len(ar) # grab the rows
if rows == 0:
raise ValueError("Array contains no data")
cols = len(ar[0]) # grab the columns - indices start at 0!
for i in range(rows):
for j in range(cols):
print(ar[i][j],end="'
print()

') # no carriage return, space separated

time.sleep(1l)

n [19]:

n [21]:

ar = [[1,2,3],
[4,5,6],

[7,8,9]1]

display array(ar)

12 3

4 5 6

789

board = [[" ','*'," '],
l*l,l |'|*|]’
1] |,'*|'| |]]

display array(board)

*

Programming Exercise

In [19]: ar = [[1,2,3],
[4I5l6]l
[7,8,9]]

display array(ar)

In [21]: board = [[' ','*'," '],

[l*l] |,l*l],
|’l*|’l l]]
display array(board)

*

*

Programming Exercise

Teamwork allowed - see Teams

Team:

Team O: ['Alber', 'Alexander’, 'Shamal']
Team 1: ['David', 'Matt', 'Najib']

Team 2: ['Evelyn', 'Peter’, 'Cory']

Team 3: ['Joe', 'Kermalyn', 'Baez']
Team 4: ['Geron', 'Harout', 'Susallin']
Team 5: ['Christopher’, 'Aguilar', 'Gabe']
Team 6: ['Aakash’, 'Kevin', 'David']
Team 7: ['Ben']

