

SVM: Algorithms of Choice for Challenging Data

Boriana Milenova, Joseph Yarmus, Marcos Campos Data Mining Technologies ORACLE Corp.

Overview

SVM theoretical framework

 \boxtimes ORACLE data mining technology

- SVM parameter estimation
- SVM optimization strategy

⊠SVM on challenging data

SVM Model Defines a Hyperplane

 Linear models in feature space
 Hyperplane defined by a set of coefficients and a bias term

Maximum Margin Models

SVM Optimization Problem

Minimize $||\mathbf{w}||$ subject to $y_i f(x_i) \ge 1$ Lagrangian in primal space:

$$L_{p}(\mathbf{w}) = \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle - \sum \alpha_{i} [y_{i} (\langle \mathbf{w} \cdot \mathbf{x}_{i} \rangle + b) - 1]$$

subject to $\alpha_{i} \ge 0$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L_p}{\partial b} = 0 \qquad \sum \alpha_i y_i = 0$$

Duality

Lagrangian in dual space:

$$L_{D} = \sum \alpha_{i} - \frac{1}{2} \sum \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i} \cdot \mathbf{x}_{j} \rangle$$

subject to $\alpha_{i} \ge 0 \quad \sum \alpha_{i} y_{i} = 0$

Dot products!

- dimension-insensitive optimization
- generalized dot products via non-linear map $\boldsymbol{\varphi}$

$$K(\mathbf{x}_i,\mathbf{x}_j) = \left\langle \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \right\rangle$$

Towards Higher Dimensionality via Kernels

- 1. Transform data via non-linear mapping ϕ to an inner product feature space
- 2. Train a linear machine in the new feature space

Mercer's kernels:

- symmetry
 - $K(\mathbf{x}_i, \mathbf{x}_j) = K(\mathbf{x}_j, \mathbf{x}_i)$
- positive semi-definite kernel matrix
- reproducing property

$$\langle K(\mathbf{x}_i,.) \cdot K(\mathbf{x}_j,.) \rangle = K(\mathbf{x}_i,\mathbf{x}_j)$$

Soft Margin: Non-Separable Data

$$L_p(\mathbf{w}) = \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle + C \sum \xi^k$$

subject to $y_i \left(\left\langle \mathbf{w} \cdot \mathbf{x}_i \right\rangle + b \right) \ge 1 - \xi_i$

Capacity parameter *C* trades off complexity and empirical risk

1-Norm Dual Problem

Lagrangian in dual space:

$$L_{D} = \sum \alpha_{i} - \frac{1}{2} \sum \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

subject to $0 \le \alpha_{i} \le C \quad \sum \alpha_{i} y_{i} = 0$

Quadratic problem

- linear and inequality constraints

SVM Regression

$$\begin{split} \mathbf{\xi} & \mathbf{\xi} \\ L_{p}(\mathbf{w}) = \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle + C \sum (\mathbf{\xi}^{k} + \mathbf{\xi}^{k}) \\ \text{subject to} \\ (\langle \mathbf{w} \cdot \mathbf{x}_{i} \rangle + b) - y_{i} \leq \varepsilon + \xi_{i} \\ y_{i} - (\langle \mathbf{w} \cdot \mathbf{x}_{i} \rangle + b) \leq \varepsilon + \xi_{i} \end{split}$$

 y_i

SVM Fundamental Properties

⊠Convexity

- single global minimum
- ⊠Regularization
 - trades off structural and empirical risk to avoid overfitting
- \boxtimes Sparse solution
 - usually only a fraction of training data become support vectors
- ⊠Not probabilistic

Solvable in polynomial time...

SVM in the Database

ORACLE Data Mining (ODM)

- commercial SVM implementation in the database
- product targets application developers and data mining practitioners
- focuses on ease of use and efficiency

Challenges:

- effective and inexpensive parameter tuning
- computationally efficient SVM model optimization

SVM Out-Of-The-Box

Inexperienced users can get dramatically poor results

LIBSVM examples:

	Out-of-the-box correct rate	After tuning correct rate
Astroparticle Physics	0.67	0.97
Bioinformatics	0.57	0.79
Vehicle	0.02	0.88

SVM Parameter Tuning

⊠Grid search (+ cross-validation or generalization error estimates)

- naive
- guided (Keerthi & Lin, 2002)
- ⊠Parameter optimization
 - gradient descent (Chapelle et al., 2000)

⊠Heuristics

ODM On-the-Fly Estimates

Standard deviation for Gaussian kernel

- single kernel parameter
- kernel has good numeric properties
 bounded, no overflow

⊠Capacity

- key to good classification generalization
- ⊠Epsilon estimate for regression
 - key to good regression generalization

ODM Standard Deviation Estimate

Goal: Estimate distance between classes

- 3. Pick random pairs from opposite classes
- 4. Measure distances
- 5. Order descending
- 6. Exclude tail (90th percentile)
- 7. Select minimum distance

ODM Capacity Estimate

- 2. Pick m random examples per class
- 3. Compute y_i assuming $\alpha = C$ $y_i = \sum_{j=1}^{2m} C y_j K(\mathbf{x}_j, \mathbf{x}_i)$
- 5. Exclude noise (incorrect sign)
- 6. Scale C, $\frac{y_i = \pm 1}{C = y_i / \sum_{j=1}^{2m} y_j K(\mathbf{x}_j, \mathbf{x}_i)}$ (non bounded sv)
- 8. Order descending
- 9. Exclude tail (90th percentile)

10. Select minimum value

Some Comparison Numbers

LIBSVM examples:

	Out-of-	On-the-fly	Grid search
	the-box	estimates	+ xval
Astroparticle Physics	0.67	0.97	0.97
Bioinformatics	0.57	0.84	0.85
Vehicle	0.02	0.71	0.88

ODM Epsilon Estimate

Goal: estimate target noise by fitting a preliminary model

- 3. Pick m random examples
- 4. Train SVM model with $\varepsilon \rightarrow 0$
- 5. Compute residuals on remaining data
- 6. Scale $\varepsilon_t = (\varepsilon_{t-1} + \sigma_n)/2$
- 7. Retrain

Comparison Numbers Regression

	On-the-fly estimates RMSE	Grid search RMSE
Boston housing	6.57	6.26
Computer activity	0.35	0.33
Pumadyn	0.02	0.02

Optimization Approaches

 \blacksquare QP solvers

- MINOS, LOQO, quadprog (Matlab)

⊠Gradient descent methods

- Sequentially update one α coefficient at a time

⊠Chunking and decomposition

- optimize small "working sets" towards global solution
- analytic solution possible (SMO Platt, 1998)

Chunking strategy

```
/* WS working set */
select initial WS randomly;
while (violations)
{
 Solve QP on WS;
 Select new WS;
}
```


ODM Working Set Selection

⊠Avoid oscillations

- overlap across chunks
- retain non-bounded support vectors
- ⊠Choose among violators
 - add large violators
- ⊠Computational efficiency
 - avoid sorting

Who to Retain?

```
/* Examine previous working set */
if (non-bounded sv < 50%)
{
  retain all non-bounded sv;
  add other randomly selected up to 50%;
}
else
{
  randomly select non-bounded sv;
}
```


Who to Add?

```
create violator list;
/* Scan I - pick largest violators */
while (new examples < 50% AND WS Not Full)
{
  if (violation > avg violation)
      add to WS;
}
/* Scan II - pick other violators */
while (new examples < 50% AND WS Not Full)
{
      add randomly selected violators to WS;
```

ORACLE

SVM in Feed-Forward Framework

DOF in Neural Nets / RBF

DOF in SVM

SVM vs. Neural Net / RBF

	SVM	NN / RBF
Regularization	\checkmark	
Global minimum	\checkmark	—
Compact model		\checkmark

Text Mining

Domain characteristics:

- thousands of features
- hundreds of topics
- -sparse data

SVM in Text Mining

Reuters corpus

~10K documents, ~10K terms, 115 classes Accuracy: recall / precision breakeven point

Naive	Rocchio	C4.5	K-NN	SVM	SVM
Bayes				linear	non-linear
0.72	0.80	0.79	0.82	0.84	0.86

Joachims, 1998

Biomining

microarray data

Domain characteristics: - thousands of features - very few data points

-dense data

SVM on Microarray Data

Multiple tumor types

144 samples, 16063 genes, 14 classes Accuracy: correct rate

Naive Bayes	Weighted voting	K-NN	SVM linear
0.43	0.62	0.68	0.78

Ramaswamy et al., 2001

Other domains

High dimensionality problems:

- image (color and texture histograms)
- satellite remote sensing
- speech

Linear kernels sufficient in most cases

- data separability
- single parameter tuning (capacity)
- small model size

Final Note

SVM classification and regression algorithms available in ORACLE 10G database

- ⊠Two APIs
 - JAVA (J2EE)
 - PL/SQL

References

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2001). Choosing Multiple Parameters for Support Vector Machines.

Hsu C., Chang C., & Lin, C. (2003). A Practical Guide to Support Vector Classification.

Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning with Many Relevant Features.

Keerthi, S. & Lin, C. (2002). Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel.

Platt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines.

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E., Golub, T. (2001). Multi-Class Cancer Diagnosis Using Tumor Gene Expression Signatures.

