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Overview

SVM theoretical framework

 ORACLE data mining technology
– SVM parameter estimation
– SVM optimization strategy

SVM on challenging data



SVM Model Defines a 
Hyperplane

Linear models in 
feature space

Hyperplane 
defined by a set of 
coefficients and a 
bias term
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Maximum Margin Models
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SVM Optimization Problem
Minimize ||w|| subject to
Lagrangian in primal space: 

subject to 
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Duality

Lagrangian in dual space:

subject to  

Dot products!
– dimension-insensitive optimization
– generalized dot products via non-linear map 
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Towards Higher Dimensionality 
via Kernels
1. Transform data via non-linear mapping  to an inner 

product feature space
2. Train a linear machine in the new feature space
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Mercer’s kernels:
– symmetry

– positive semi-definite 
kernel matrix

– reproducing property
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Soft Margin: Non-Separable Data 
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Capacity parameter C
trades off complexity and 
empirical risk



1-Norm Dual Problem

Lagrangian in dual space:

subject to  

Quadratic problem
– linear and inequality constraints
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SVM Regression
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SVM Fundamental Properties

Convexity
– single global minimum

Regularization
– trades off structural and empirical risk to 

avoid overfitting
Sparse solution

– usually only a fraction of training data 
become support vectors

Not probabilistic

Solvable in polynomial time…



SVM in the Database

ORACLE Data Mining (ODM)
– commercial SVM implementation in the 

database
– product targets application developers and 

data mining practitioners
– focuses on ease of use and efficiency

Challenges:
– effective and inexpensive parameter 

tuning
– computationally efficient SVM model 

optimization



SVM Out-Of-The-Box

Inexperienced users can get dramatically 
poor results

LIBSVM examples:

Vehicle
Bioinformatics
Astroparticle Physics

0.880.02
0.790.57
0.970.67

After tuning
correct rate

Out-of-the-box
correct rate



SVM Parameter Tuning

Grid search (+ cross-validation or 
generalization error estimates)

– naive
– guided (Keerthi & Lin, 2002)

Parameter optimization
– gradient descent (Chapelle et al., 2000)

Heuristics



ODM On-the-Fly Estimates

Standard deviation for Gaussian kernel
– single kernel parameter
– kernel has good numeric properties

 bounded, no overflow
Capacity

– key to good classification generalization
Epsilon estimate for regression

– key to good regression generalization



ODM Standard Deviation 
Estimate

Goal: Estimate distance 
between classes

3. Pick random pairs from 
opposite classes

4. Measure distances
5. Order descending
6. Exclude tail (90th percentile)
7. Select minimum distance



ODM Capacity Estimate
Goal: Allocate sufficient capacity 

to separate typical examples
2. Pick m random examples per class
3. Compute yi assuming  = C

5. Exclude noise (incorrect sign)
6. Scale C,             (non bounded sv)

8. Order descending
9. Exclude tail (90th percentile)
10.Select minimum value
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Some Comparison Numbers

LIBSVM examples:

0.71
0.84
0.97

On-the-fly 
estimates

Vehicle
Bioinformatics
Astroparticle Physics

0.880.02
0.850.57
0.970.67

Grid search 
+ xval

Out-of-
the-box



ODM Epsilon Estimate
Goal: estimate target noise 

by fitting a preliminary 
model

3. Pick m random examples 
4. Train SVM model with 
5. Compute residuals on 

remaining data
6. Scale 
7. Retrain
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Comparison Numbers 
Regression

0.02
0.35
6.57

On-the-fly estimates
RMSE

Pumadyn
Computer activity
Boston housing

0.02
0.33
6.26

Grid search
RMSE



Optimization Approaches

QP solvers
– MINOS, LOQO, quadprog (Matlab)

Gradient descent methods
– Sequentially update one  coefficient at a 

time
Chunking and decomposition

– optimize small “working sets” towards global 
solution

– analytic solution possible (SMO - Platt, 1998)



Chunking strategy

/* WS working set */
select initial WS randomly;
while (violations)
{
Solve QP on WS;
Select new WS;

}



ODM Working Set Selection

Avoid oscillations
– overlap across chunks
– retain non-bounded support vectors

Choose among violators
– add large violators

Computational efficiency
– avoid sorting



Who to Retain?

/* Examine previous working set */
if (non-bounded sv < 50%)
{

retain all non-bounded sv;
add other randomly selected up to 50%;

}
else
{

randomly select non-bounded sv;
}



Who to Add?
create violator list;
/* Scan I - pick largest violators */
while (new examples < 50% AND WS Not Full)
{

if (violation > avg_violation)
add to WS;

}

/* Scan II - pick other violators */
while (new examples < 50% AND WS Not Full)
{

add randomly selected violators to WS;
}



SVM in Feed-Forward 
Framework
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DOF in Neural Nets / RBF



DOF in SVM



SVM vs. Neural Net / RBF

Compact model

Global minimum

Regularization

–
–

–

NN / RBFSVM



Text Mining

Domain characteristics:
– thousands of features
– hundreds of topics
– sparse data

Science Sport Art



SVM in Text Mining

Reuters corpus
~10K documents, ~10K terms, 115 classes
Accuracy: recall / precision breakeven point

0.860.840.820.790.800.72

SVM
non-linear

SVM 
linear

K-NNC4.5RocchioNaive 
Bayes

Joachims, 1998



Biomining

Domain characteristics:
– thousands of features
– very few data points
– dense data

…

microarray data



SVM on Microarray Data

Multiple tumor types
144 samples, 16063 genes, 14 classes 
Accuracy: correct rate

0.43

Naive Bayes

0.780.680.62

SVM linearK-NNWeighted voting

Ramaswamy et al., 2001



Other domains

High dimensionality problems:
– image (color and texture histograms)
– satellite remote sensing
– speech

Linear kernels sufficient in most cases
– data separability
– single parameter tuning (capacity)
– small model size



Final Note

SVM classification and regression 
algorithms available in 
ORACLE 10G database

Two APIs
– JAVA (J2EE)
– PL/SQL
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