
Evolutionary Search in Machine
Learning

Lutz Hamel

Dept. of Computer Science & Statistics

University of Rhode Island

What is Machine Learning?

 Programs that get better with experience
given some task and some performance
measure.

 Most common is inductive learning, that is
learning from a set of positive and negative
examples or facts.

 Learning to:
 classify customers;
 recognize spoken words;
 play games.

Machine Learning Today

 Today's machine learning tools are "single-
table" oriented:
 attribute-value oriented
 objects are represented by a fixed set of attributes.

 Here we consider learning using first-order
logic as representation, instead of just
attribute values;
 propositional vs. predicated representation

First-Order Equational Logic
Equational logic is the logic of substituting equals for equals with
algebras as models and term rewriting as the operational semantics.

theory LIST is
 sort List .
 protecting INT .

 op cons : Int List -> List .
 op nil : List .
 op length : List -> Int .

 var I : Int .
 var L : List .

 eq length(nil) = 0 .
 eq length(cons(I,L)) = 1 + length(L) .
end

A Deduction:
length(cons(3,cons(2,nil)))

{equation 2: I ← 3, L ← cons(2,nil)}
⇒ 1 + length(cons(2,nil))

{equation 2: I ← 2, L ← nil}
⇒ 1 + 1 + length(nil)

{equation 1}
⇒ 1 + 1 + 0

{INT module: basic arithmetic}
⇒ 2

Inductive Equational Logic

 In inductive equational logic we induce equational theories
(hypotheses) from equations which represent the facts.

 This seems to be opposite of what we do in ordinary
(deductive) logic -deduce facts from theories.

Theories Facts

Deduction

Induction

Equational Induction

Given a fact theory F = P ∪ ¬N,where
P represents the positive examples,
N represents the negative examples,

and B represents background or domain
information,

then a Hypothesis is a theory H which explains
all the facts using the background theory B,
formally:

H ∪ B f, ∀ f∈F

Example: The Predicate Even
theory EVEN-FACTS is
 sort Int .
 op 0 : -> Int .
 op s : Int -> Int .
 op even : Int -> Bool .

 eq even(0) = true .
 eq even(s(s(0))) = true .
 eq even(s(s(s(s(0))))) = true .
 eq even(s(0)) = false .
 eq even(s(s(s(0)))) = false .
 eq even(s(s(s(s(s(0)))))) = false .
end

theory EVEN is
 sort Int .
 op 0 : -> Int .
 op s : Int -> Int .
 op even : Int -> Bool .
 var X : Int .

 eq even(s(s(X))) = even(X) .
 eq even(0) = true .
end

Implementation: Genetic Programming

Implemented in the OBJ3 System:
 Compute an initial (random) population of candidate

theories.
 Evaluate each candidate theory's fitness using the OBJ3

rewrite engine:
 fitness(T) = facts2(T) + 1/length(T)

 Perform candidate theory reproduction according to the
genetic programming paradigm: crossover & mutation.

 Compute new population of candidate theories.
 Goto Step 2 or stop if target criteria have been met.

Crossover

Theories are represented
as abstract syntax trees in
memory.

The amount of crossover and
mutation is governed by preset
parameters.

Strongly typed equational logic
-therefore we need to be careful with
the types and generate appropriate
subtrees.

Crossover -breed a new theory
based on the structure of two parent
theories.

Mutation
Mutation -breed a new theory
based on a single parent with a
single mutation in the abstract
syntax tree.

Experiment I: Multi-Objective Learning
theory STACK-FACTS is
 sorts Stack Element .
 ops a b c d: -> Element .
 op v : -> Stack .
 op top : Stack -> Element .
 op pop : Stack -> Stack .
 op push : Stack Element -> Stack .

 eq top(push(v,a)) = a .
 eq top(push(push(v,a),b)) = b .
 eq top(push(push(v,b),a)) = a .
 eq top(push(push(v,d),c)) = c .

 eq pop(push(v,a))= v .
 eq pop(push(push(v,a),b)) = push(v,a) .
 eq pop(push(push(v,b),a)) = push(v,b) .
 eq pop(push(push(v,d),c)) = push(v,d) .
end

theory STACK is
 sorts Stack Element .
 ops a b c d: -> Element .
 op v : -> Stack .
 op top : Stack -> Element .
 op pop : Stack -> Stack .
 op push : Stack Element -> Stack .
 var S : Stack .
 var E : Element .

 eq top(push(S,E)) = E .
 eq pop(push(S,E)) = S .
end

Statistics:
Evolution over 50 generations.
Population of 150 individuals.
Converged to canonical stack
theory in 20 of 150 runs.
Convergence rate ~15%.

Comparison:
The FLIP system did not produce a
solution at all!

Experiment II: Learning in Noise
theory EVEN-FACTS is
 sort Int .
 op 0 : -> Int .
 op s : Int -> Int .
 op even : Int -> Bool .
 eq even(0) = true .
 eq even(s(s(0))) = true .
 eq even(s(s(s(s(0))))) = true .
 eq even(s(0)) = false .
 eq even(s(s(0))) = false .
 eq even(s(s(s(0)))) = false .
 eq even(s(s(s(s(s(0)))))) = false .
end

theory EVEN is
 sort Int .
 op 0 : -> Int .
 op s : Int -> Int .
 op even : Int -> Bool .
 var X : Int .
 eq even(s(s(X))) = even(X) .
 eq even(0) = true .
end

Statistics:
Evolution over 50 generations.
Population of 150 individuals.
Converged to canonical theory in 41 of 50 runs.
Convergence rate ~80%.

Definition:
Noise are inconsistencies in a fact theory.

Comparison:
The FLIP system produced an
incorrect solution!

Summary

 Here we presented a framework for machine learning
with logic.

 The logic we considered was equational logic
-inductive equational logic

 We sketched a prototype implementation based on
genetic programming.

 We showed that this implementation seems to be
very robust in multi-objective learning and learning in
the presence of noise.

 This work will appear in the proceedings of the
CEC2003 conference.

