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What is Machine Learning?

 Programs that get better with experience 
given some task and some performance 
measure.

 Most common is inductive learning, that is 
learning from a set of positive and negative 
examples or facts.

 Learning to:
 classify customers; 
 recognize spoken words;
 play games.



Machine Learning Today

 Today's machine learning tools are "single-
table" oriented:
 attribute-value oriented
 objects are represented by a fixed set of attributes.

 Here we consider learning using first-order 
logic as representation, instead of just 
attribute values;
 propositional vs. predicated representation



First-Order Equational Logic
Equational logic is the logic of substituting equals for equals with 
algebras as models and term rewriting as the operational semantics.

theory LIST is
  sort List .
  protecting INT .

  op cons : Int List -> List .
  op nil  : List .
  op length : List -> Int .

  var I : Int .
  var L : List .

  eq length(nil) = 0 .                   
  eq length(cons(I,L)) = 1 + length(L) . 
end

A Deduction:
length(cons(3,cons(2,nil)))

{equation 2: I ← 3, L ← cons(2,nil)}
⇒ 1 + length(cons(2,nil)) 

{equation 2: I ← 2, L ← nil}
⇒ 1 + 1 + length(nil)

{equation 1}
⇒ 1 + 1 + 0 

{INT module: basic arithmetic}
⇒ 2



Inductive Equational Logic

 In inductive equational logic we induce equational theories 
(hypotheses) from equations which represent the facts.

 This seems to be opposite of what we do in ordinary 
(deductive) logic -deduce facts from theories.

Theories Facts

Deduction

Induction



Equational Induction

Given a fact theory F = P ∪ ¬N,where
P represents the positive examples,
N represents the negative examples,

and B represents background or domain 
information, 

then a Hypothesis is a theory H which explains 
all the facts using the background theory B, 
formally:

H ∪ B  f, ∀ f∈F



Example: The Predicate Even
theory EVEN-FACTS is 
  sort Int .
  op 0 : -> Int .
  op s : Int -> Int .
  op even : Int -> Bool .

  eq even(0) = true .
  eq even(s(s(0))) = true .
  eq even(s(s(s(s(0))))) = true .
  eq even(s(0)) = false .
  eq even(s(s(s(0)))) = false .
  eq even(s(s(s(s(s(0)))))) = false .
end

theory EVEN is 
  sort Int .
  op 0 : -> Int .
  op s : Int -> Int .
  op even : Int -> Bool .
  var X : Int .

  eq even(s(s(X))) = even(X) .
  eq even(0) = true .
end



Implementation: Genetic Programming

Implemented in the OBJ3 System:
 Compute an initial (random) population of candidate 

theories.
 Evaluate each candidate theory's fitness using the OBJ3 

rewrite engine:
        fitness(T) = facts2(T) + 1/length(T)

 Perform candidate theory reproduction according to the 
genetic programming paradigm: crossover & mutation.

 Compute new population of candidate theories.
 Goto Step 2 or stop if target criteria have been met.



Crossover

Theories are represented 
as abstract syntax trees in 
memory.

The amount of crossover and 
mutation is governed by preset 
parameters.

Strongly typed equational logic 
-therefore we need to be careful with 
the types and generate appropriate 
subtrees.

Crossover -breed a new theory 
based on the structure of two parent 
theories.



Mutation
Mutation -breed a new theory 
based on a single parent with a 
single mutation in the abstract 
syntax tree.



Experiment I: Multi-Objective Learning
theory STACK-FACTS is
  sorts Stack Element . 
  ops a b c d: -> Element . 
  op v : -> Stack . 
  op top : Stack -> Element . 
  op pop : Stack -> Stack . 
  op push : Stack Element -> Stack . 
  
  eq top(push(v,a)) = a . 
  eq top(push(push(v,a),b)) = b . 
  eq top(push(push(v,b),a)) = a . 
  eq top(push(push(v,d),c)) = c . 
  
  eq pop(push(v,a))= v . 
  eq pop(push(push(v,a),b)) = push(v,a) . 
  eq pop(push(push(v,b),a)) = push(v,b) . 
  eq pop(push(push(v,d),c)) = push(v,d) . 
end

theory STACK is
  sorts Stack Element . 
  ops a b c d: -> Element . 
  op v : -> Stack . 
  op top : Stack -> Element . 
  op pop : Stack -> Stack . 
  op push : Stack Element -> Stack . 
  var S : Stack . 
  var E : Element . 

  eq top(push(S,E)) = E . 
  eq pop(push(S,E)) = S . 
end 

Statistics:
Evolution over 50 generations.
Population of 150 individuals.
Converged to canonical stack 
theory in 20 of 150 runs.
Convergence rate ~15%.

Comparison:
The FLIP system did not produce a 
solution at all!



Experiment II: Learning in Noise
theory EVEN-FACTS is 
  sort Int .
  op 0 : -> Int .
  op s : Int -> Int .
  op even : Int -> Bool .
  eq even(0) = true .
  eq even(s(s(0))) = true .
  eq even(s(s(s(s(0))))) = true .
  eq even(s(0)) = false .
  eq even(s(s(0))) = false .
  eq even(s(s(s(0)))) = false .
  eq even(s(s(s(s(s(0)))))) = false .
end

theory EVEN is 
  sort Int .
  op 0 : -> Int .
  op s : Int -> Int .
  op even : Int -> Bool .
  var X : Int .
  eq even(s(s(X))) = even(X) .
  eq even(0) = true .
end

Statistics:
Evolution over 50 generations.
Population of 150 individuals.
Converged to canonical theory in 41 of 50 runs.
Convergence rate ~80%.

Definition: 
Noise are inconsistencies in a fact theory.

Comparison:
The FLIP system produced an 
incorrect solution!



Summary

 Here we presented a framework for machine learning 
with logic.

 The logic we considered was equational logic 
-inductive equational logic

 We sketched a prototype implementation based on 
genetic programming.

 We showed that this implementation seems to be 
very robust in multi-objective learning and learning in 
the presence of noise.

 This work will appear in the proceedings of the 
CEC2003 conference.


