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ABSTRACT

Data mining can be defined as the process of retrieving information from a large database.  Traditional statistical techniques were not able to analyze large amounts of data in a timely manner, so data mining was born.  Modern data mining techniques have been developed by the areas of computer science, management information systems, and statistics.  They have resulted in query languages and database organizations that are flexible, fast, and accurate in terms of data storage and retrieval.  Search routines and pattern-recognition methods to adapt to these large amounts of data have also been developed.

Proponents of data mining claim that it can discover new relationships in raw data, and the techniques themselves can determine what is important within a variety of possible relationships.  They claim that the process of asking questions (stating hypothesis) is counterproductive to the data mining process.  Extraordinary claims such as these require extraordinary proof.

This study takes a small step towards assessing data mining claims by addressing the following questions:

1. Are new data mining regression techniques superior to classical regression?

2. Can data analysis methods implemented naively (through default automated routines) yield useful results consistently?

This assessment is done by conducting a 3x3x2 experiment, with the factors varied being regression method, type of function being estimated, and presence of contamination in the data.

In each instance default settings were used in the following automated routines: STATISTICA forward stepwise multiple regression, STATISTICA Neural Networks, and Salford Systems MARS software.

The assessment criteria for the above methods are: Mean Square Error (normalized for differences in scale across treatments), underspecification (the omission of significant predictors in a final model), and overspecification (the inclusion of non-significant predictors in a final model).
 The results suggest that MARS and Neural Networks outperformed classical regression in nonlinear functions.  Relatively simple functions were fitted with 10 repetitions in each case.  There were relatively large standard deviations of the estimate for all the measures in most cases, this indicates a surprising lack of consistency, the reasons for which need to be investigated.   

Introduction

Data mining can be defined as the process of retrieving information from a large database.  Traditional statistical techniques were not able to analyze large amounts of data in a timely manner, so data mining was born.  Modern data mining techniques have been developed by the areas of computer science, management information systems, and statistics.  They have resulted in query languages and database organizations that are flexible, fast, and accurate in terms of data storage and retrieval.  Search routines and pattern-recognition methods to explore and analyze these large amounts of data have also been developed.

Proponents of data mining claim that it can discover new relationships in raw data, and the techniques themselves can determine what is important within a variety of possible relationships.  Data mining proponents claim that the techniques themselves can determine what is important within a multitude of possible relationships, verify reliability, and confirm validity.  They claim that the process of asking questions (stating hypothesis) is counterproductive to the data mining process (Megaputer Intelligence 1999, Levy 1999).  Extraordinary claims such as these require extraordinary proof.

Data miners make bold claims as to the capabilities and success of data mining techniques, but offer no proof of such claims.  This places the integrity of large-scale data analysis in peril.  The application of flawed methods to issues in contexts such as business, economics, finance, genetics, medicine, and sociology are of grave concern.

It is probably safe to say that the majority of data collected in business settings is not linear in nature.  That means using ordinary least squares regression is inappropriate in the sense that one of the assumptions of regression is being violated (assumption of linearity).  If the results of this study hint that violations of that assumption have few implications when compared to non-parametric techniques that have no such assumption, then regression should remain the tool of choice for business professionals.  If, however, data mining techniques such as MARS and Neural Networks can perform better and reliably in cases where the data sets more closely represent those found in business settings then we may have potential replacements for regression as the tool of choice available to businesses in common desktop software (such as excel).  

This study takes a small step towards assessing data mining claims.  Specifically, it addresses the questions:

1. Are new data mining regression techniques superior to classical regression?

2. Can data analysis methods implemented naively (through default automated routines) yield useful results consistently?

This assessment is done through a 3x3x2 factorial experiment, with the factors varied being:

1. Regression methods (3): classical OLS regression using forward stepwise techniques, feedforward neural networks with sigmoidal activation functions, and Multivariate Adaptive Regression Splines (MARS).

2. Type of function being estimated (3): linear, and two types of nonlinear (A), and (B).

3. Shock (2): The presence of contamination in generated data – (contaminated, uncontaminated).

Only one level of other potentially important factors such as sparsity (the proportion of significant predictors), dimension (number of variables), type of noise (Gaussian vs. not), and multicolinearity are considered in this instance. Ten repetitions are performed at each of the 18 levels, resulting in a total sample of 180.

The analysis protocol in each instance is to use default settings in automated routines: STATISTICA forward stepwise multiple regression and Neural Networks, and Salford Systems MARS software.

The assessment criteria are Mean Square Error (normalized for differences in scale across treatments) and two specification measures: underspecification (the omission of significant predictors in a final model) and overspecification (the inclusion of non-significant predictors in a final model).

Background

Data Analysis

The purposes of data analysis are classification or prediction.  Classification is the process of setting objects into two or more mutually exclusive categories, often pursued through a technique such as discriminant analysis.  Prediction formulates a model capable of predicting the value of a dependent variable based on the values of independent variables, often pursued through techniques like regression analysis and time-series analysis (see Zikmund, 2000).

The success of data analysis is measured by fit and specification.  Fit is generally accuracy: how well does the model reproduce the data?

Specification is the faithful representation of the shape of the relationship(s) and of the relevant explanatory variables.  The degree to which variables included in the model reflect reality takes into account problems such as multicollinearity (redundancy).  A perfect specification will not be overspecified (i.e., not include spurious variables), or underspecified (i.e., omit significant variables).  Future values predicted by the model will also accurately approximate the shape of the original data (see Zikmund, 2000).

Previous Studies

In an April 2001 article Sephton (Septhon, 2001) considered two questions.  First, how well does MARS fit historical data, that is how well can MARS predict a recession at time t using information available at time (t - k)?  Second, how well can MARS predict future recessions?  The traditional way to predict recessions is using a probit model, which is a regression model where the dependent variable takes on two values.

Sephton found that MARS probability estimates are superior to the probit estimates with a root-mean-squared-error of 16.7 percent for MARS and 28.9 percent for probit.  Recessions were predicted at three, six, nine, and twelve-month horizons.  MARS had its lowest root-mean-squared-error at the three-month horizon, and it’s highest at the twelve-month horizon at about 24 percent.  At all horizons MARS was superior to the probit model.

Sephton argues that this is not to be unexpected since nonlinear nonparametric models excel at explaining relationships in-sample.  The real question is whether or not MARS can excel at explaining relationships out-of-sample.  In this arena Sephton found that MARS specification does not perform as well as the probit model, with root-mean-squared-errors around 30 percent.  Although we should note that the probit model did not vastly outperform MARS using out-of-sample relationships, suggesting there is value in using MARS in place of or in conjunction with the traditional probit model.

Banks, Olszewski, and Maxion, (Banks, 1999) compared the performance of many different regression techniques including MARS, neural networks, stepwise linear regression, and additive models.  They created many datasets each having a different embedded structure; the accuracy of each technique was determined by its ability to correctly identify the structure of each dataset, averaged over all datasets, measured by the mean integrated squared error (MISE).  

In relation to this paper it is only important to discuss the differences found betweens MARS and neural networks.  MARS outperformed neural networks in a variety of tests including linear functions, sets where all variables were spurious, Gaussian functions, small dimensions with correlated Gaussian functions, mixture functions, and product functions.  As a result they concluded that neural networks is unreliable because it is capable of doing well but usually has a very large MISE compared to other techniques.  MARS is less capable in higher dimensions, but overall performs admirably.  MARS rarely has a large MISE compared to other techniques, but also rarely performs the best of any technique.

De Veaux, Psichogios, and Ungar (De Veaux, 1993) compared MARS and neural networks.  They tested the techniques under a variety of circumstances looking to compare speed and accuracy.  The authors evaluated the accuracy of the techniques by comparing mean squared prediction errors (SPE).  In running the techniques all parameters were left at their default values, since a major attraction of both MARS and neural networks is not to have to worry about fine tuning.

To summarize the authors’ results: neural networks tend to overfit data, especially on smaller data sets.  MARS has the ability to “prune” the model in order to minimize redundancy and maximize parsimony.  MARS was also found to perform with greater speed on serial computers compared to neural networks.  MARS creates models that are easier to interpret than neural networks.  This is stated to be important so as to enable the user to interpret the underlying function, which is the first step in discovering the structure of the system.  Neural networks are not able to provide this function.  MARS was found to be not as robust as neural networks during tests where removing a single data points from the data sets caused MARS to generate considerably different final models; this was not the case with neural networks.  In short they found that when data involves correlated and noisy inputs MARS and neural networks perform equally well.  However, for low-order interactions MARS outperforms neural networks.  

In 2001 Zhu, Zhang, and Chu (Zhu, 2001) conducted a study to test the accuracy of three data mining methods in network security intrusion detection.  Intrusion detection systems are designed to help network administrators deal with breaches of network security.  Three data mining techniques (rough sets, neural networks, inductive learning) were tested for classification accuracy.  In the end rough sets performed the best, followed by neural networks and inductive learning for all cases.  They did not compare these methods to traditional statistical techniques, which are very common in intrusion detection systems, so it is difficult to directly compare to this study.

Methods Used in this Study

This study focuses on model-building methods.  The methods chosen thus had to be capable of (a) estimating parameters which specify the relationships between dependent and independent variables, and (b) identifying an appropriate subset of predictor variables (specification).  Furthermore, the method implementation had to be capable of proceeding to completion with minimal guidance.  On those criteria, the methods chosen were (1) Forward Stepwise Regression (FSWR), (2) Neural Networks (NNW), and (3) Multivariate Adaptive Regression Splines (MARS).

Forward Stepwise Regression (FSWR)
Stepwise regression is a method for estimating the parameters of f(X) in fitting Y = f(X) + ( which minimizes a function of the error ( and selects a subset of potential predictors which meets certain criteria such as simplicity, completeness, and lack of redundancy.  The basic stepwise procedure involves (1) identifying an initial model, (2) using the "stepping" criteria to add or remove a predictor variable and (3) continuing until no additional variables meet the stepping criteria or when a specified maximum number of steps has been reached (see Hocking, 1996).

The Forward Stepwise Method (FSWR) employs a combination of forward selection and backward removal of predictors.  An eligible predictor variable is added to the model if its marginal contribution to the model’s overall F value exceeds a specified threshold; an eligible predictor variable is removed from the model if its marginal contribution to the model’s overall F value is below a specified threshold.  The process continues until there are no more eligible predictors or the specified maximum number of steps has been performed.  This method has proven effective in guarding against under-specification (not including a significant predictor), but less so in guarding against over-specification (including spurious predictors) (see Hocking, 1996).

In this study, FSWR was implemented in STATISTICA with default values for entry (F=1), removal (F=0), and number of steps (S=number of independent variables in the data). No transformations were performed to account for apparent nonlinearity.

Neural Networks (NNW)
Like traditional linear regression methods, NNW attempts to find a specification for the functional form f(X) which will best fit a set of data observations Y, where “best” usually means satisfying a goodness-of-fit criterion such as a function of ( = Y – f(X).  Unlike traditional linear regression methods, however, NNW is a non-parametric, data-driven method which thoroughly explores a functional neighborhood for a solution, and can represent both linear and nonlinear effects.  This power comes at the cost of less formal confirmation and thus of the ability to generalize results.

A neural network is a model of a biological neural system.  The model includes models of  individual neurons, models for the propagation and integration of signals, and models for the form of the network, as well as  methods for arriving at a suitable solution.

The fundamental basis of Neural Networks is a neuron (Lievano and Kyper, 2002).  The model of a neuron:

· Receives a number of inputs (either from original data, or from the output of other neurons in the network) through a connection which has a strength (or weight). corresponding to the efficiency of a biological neuron.

· Has a single input threshold value.  The weighted sum of the inputs is formed, and the threshold subtracted, to compose the activation of the neuron (also known as the Post-Synaptic Potential, or PSP, of the neuron).

· The activation signal is passed through an activation function (also known as a transfer function) to produce the output of the neuron.

The output of a neuron is modeled by choosing a type of activation or transfer function. Common types are step (0-1 binary), linear, or—frequently—the sigmoidal (logistic) function.

Network Architecture
The network is composed of input, transfer (hidden) and output neurons working through feedback/feedforward structures (see Haykin, 1999).  A simple network has a feedforward structure.  The hidden and output layer neurons are each connected to all of the units in the preceding layer (fully-connected network).  Signals flow from inputs, forward through the hidden units, and eventually reach the output units. 

When the network is executed (used), the input variable values are placed in the input units, and then the hidden and output layer units are progressively executed.  Each of them calculates its activation value by taking the weighted sum of the outputs of the units in the preceding layer, and subtracting the threshold.  The activation value is passed through the activation function to produce the output of the neuron. When the entire network has been executed, the outputs of the output layer act as the output of the entire network. 

Perhaps the most popular network architecture in use today is multi-layered perceptrons (MLP) (see Rumelhart, 1986).  In MLP, the units each perform a weighted sum of their inputs and pass this activation level through a transfer function to produce their output; the units have a layered feedforward arrangement. The network is thus a form of input-output model, with the weights and thresholds being the free parameters of the model. Such networks can model functions of great complexity, with the number of layers and the number of units in each layer determining the degree of complexity. 

Solving the Network: “Training” Multilayer Perceptrons

In traditional linear model-fitting it is possible to determine the model configuration which absolutely minimizes an error function (usually the sum of squared errors).  In Neural Networks the network can be adjusted to lower its error, but finding the minimum point cannot be guaranteed (Lievano and Kyper, 2002).

An error surface can be created as the N+1th dimension of a surface composed of the values of the N weights and thresholds of the network (i.e. the free parameters of the model).  For any possible configuration of weights, the error can be plotted in the N+1th dimension, forming an error surface.  The objective of network training is to find the lowest point on this surface.  The global minimum of this error surface cannot, in general, be found analytically; so neural network training is essentially a search of the error surface for minima.  From an initially random configuration of weights and thresholds (i.e. a random point on the error surface), the training algorithms incrementally seek for the global minimum.  Typically, this is done by calculating the gradient (slope) of the error surface at the current point, and then using that information to make a downhill move.  Eventually, the algorithm stops at a low point, which may be a local minimum, or, hopefully, a global one.

One of the most used search algorithms is back propagation (BP) (see Haykin, 1999; Fausett, 1994), which uses the data to adjust the network's weights and thresholds so as to minimize the error in its predictions on the training set.  In BP, the gradient vector of the error surface is calculated.  This vector points along the line of steepest descent from the current point, so moving along it incrementally will decrease the error.  The algorithm therefore progresses iteratively through a number of passes through the data.  On each pass, the training cases are each submitted in turn to the network, and target and actual outputs compared and the error calculated.  This error, together with the error surface gradient, is used to adjust the weights, and then the process repeats.  The initial network configuration is random, and training stops when a given number of passes elapses, or when the error reaches an acceptable level, or when the error stops improving.

If the network is properly trained, it has then learned to model the (unknown) function which relates the input variables to the output variables, and can subsequently be used to make predictions where the output is not known.

NNW Implementation in This Study

The default settings of the “Intelligent Problem Solver” in STATISTICA Neural Networks were used in this study.  This includes sigmoidal activation functions, a three-layer MLP architecture, and back propagation.

Multivariate Adaptive Regression Splines (MARS)
Like NNW, MARS is a non-parametric technique which can represent a large variety of linear and nonlinear relationships.  Instead of relying on a dense representation of the error function and massive computation, however, MARS relies on a clever method of representing the response functions of the predictor variables.

MARS (see Friedman, 1991) builds models by fitting piecewise linear regressions.  Each piece (spline) is allowed to vary, permitting the representation of practically any shape.  Each spline begins and ends at a “knot.”  Which variables to represent in this manner and where to set the knots are determined by an intensive search procedure.

These splines are combined through devices called “basis functions,” (Friedman, 1991) which are similar to principal components.  These basis functions continue to be added until no more can be formed profitably, or until some pre-defined maximum number has been reached.  In the second stage of MARS modeling, basis functions are deleted based on their contribution to a linear regression fit until the best model is found.

The MARS model may be represented as: 
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Where Wj(Xi) is the jth basis function of Xi   Note that Y is linear in the parameters, whereas the basis functions can be of practically any shape.  Estimates of the parameters (j are obtained through linear regression

MARS Implementation in This Study

The default settings in the user interface in Salford Systems MARS for Windows package was utilized.  The most important default setting is a maximum of 15 basis functions.

Study Results

The Study

This study consisted of comparing the modeling capabilities of three methods.  The hypotheses tested against their negations are:

H1:  The three methods are equivalent in accuracy (goodness-of-fit).

H2:  The three methods are equivalent in ability to select valid predictors.



H2a:  The three methods are equivalent in the degree of underfitting.

H2b:  The three methods are equivalent in the degree of overfitting.

To test these hypotheses, pseudodata were generated and a 3x3x2 factorial experiment was conducted in which comparisons were made between methods, the four factors of which were method, function, and shock.    The levels of the factors and their descriptions are:

Methods.  The methods compared were Forward Stepwise Regression (FSWR), Neural Networks (NNW), and Multivariate Adaptive Regression Splines (MARS) as described previously.

Function.  Three types of functions were modeled: linear, nonlinear (Type A), and nonlinear (Type B).


Linear:  
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Nonlinear (A): 
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Nonlinear (B): 
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denotes the number of subsets.

The value of K=5 in all cases. 

Shock. Each method was tested on two types of data sets, contaminated and uncontaminated.  The contaminated sets contained a contamination (shock) variable, while the uncontaminated sets did not.  Contamination is the net effect of observation, transcription, omission, and commission errors.  Shock variables are uniformly distributed random values added to an arbitrary subset of observations of selected variables to simulate contamination.  In the contaminated cases variable X1 was contaminated by adding a value equivalent to 2.5 percent of the mean value of X1 for the first 25 observations.

Data Generation and Development

The procedure for developing primary (input) data was as follows:

1. Specify the type of and parameters of the function

2. Generate values of the relevant prediction (independent) variables

3. Generate values of the noise factor

4. Generate values of non-relevant (nuisance) independent variables (3 in all cases)

5. Compute values of the dependent variable

6. Repeat r times for each combination

7. Repeat steps 1 thru 6 while generating values for shock factor

Ten samples of each function-shock combination were generated using the random number and variable modification functions in STATISTICA, resulting in 10x3x2 = 60 sets of data with 10 variables (5 relevant predictors, 3 nuisance variables, 1 noise variable, and 1 dependent variable) and 500 records each.

To develop the data for the comparisons, the parameters of the generated functions were estimated with each of the three methods, resulting in 3*60 = 180 sets of results, from which the following were extracted:

· The variance of the error (lack of fit) term: MSE in FSWR, the “Verification” MSE in NNW, and the Generalized Cross-Validation (GCV) for MARS.  To remove the effects of scale and of measurement unit, these values were normalized by dividing by 10,000.  This results in a set of values which measure the proportion of the mean irreducible error resulting from an estimate (PMSE).  (Note: since a particular data set is created from a random sample of values of the predictors and the noise term, its irreducible error may be more or less than the corresponding mean error value.  Thus, PMSE can be more or less than 1 regardless of the goodness of fit.  This creates no problem in comparisons, since the actual irreducible error is the same for all of the methods in all of the cases)

· The degree of underfit: the number of relevant predictors not included in the final estimate (NUSPEC).

· The degree of overfit: the number of non-relevant (nuisance) variables included in the final estimate (NOVSPEC).

Results

The tables below summarize the results of the study.  Nonlinear results from both functions were combined for comparison purposes.

Relatively large variations in accuracy are evident in Table 1 below between linear and nonlinear, and within nonlinear contaminated and uncontaminated.  MARS and NNW had lower means than FSWR in both contaminated and uncontaminated nonlinear, while MARS had a lower means and standard deviations than NNW.

TABLE 1 - PMSE MEANS/(SD)






LINEAR

      NONLINEAR
METHOD

Contam.      Uncontam.       Contam.
        Uncontam.     All

MARS


   1.007
1.048

2.047

1.179
       1.32




  (0.083)
(0.044)

(0.949)

(0.137)

NNW


   0.974
1.046

3.602

1.646
       1.82




  (0.121)
(0.125)

(2.077)

(0.422)

FSWR

      
   0.966
1.012

6.831

6.814
       3.91
 
 


  (0.077)
(0.041)

(4.917)

(4.859)


ALL
      
   
    0.98

1.04

4.16

3.21

The differences between methods, functions, and noise sizes in the average degree of underfitting (NUSPEC table below) are much less evident than for PMSE.  The overall mean for MARS is less than those for NNW and FWSR, and the means for the linear fits are less than for the nonlinear.

TABLE 2 - NUSPEC MEANS/(SD)






LINEAR

      NONLINEAR
METHOD

Contam.      Uncontam.       Contam.
        Uncontam.     All

MARS


   0.000
0.000

0.050

0.000
       .0125




  (0.000)
(0.000)

(0.224)

(0.000)

NNW


   0.000
0.100

1.200

0.650
       .49




  (0.000)
(0.316)

(1.399)

(0.813)

FSWR

      
   0.000
0.000

0.150

0.600
       .19
 
 


  (0.000)
(0.000)

(0.366)

(0.681)


ALL
      
   
    0.0

.03

.47

.42

The results for overfitting (NOVSPEC) are similar to those for underfitting. FSWR has the lowest values in the linear cases, while MARS has the lowest values in all nonlinear cases. 

TABLE 3 - NOVSPEC MEANS/(SD)






LINEAR


NONLINEAR
METHOD

Contam.      Uncontam.       Contam.
        Uncontam.     All

MARS


   0.300
0.400

0.100

0.000
       .2




  (0.483)
(0.516)

(0.308)

(0.000)

NNW


   1.500
1.400

0.550

1.200
       1.16




  (1.179)
(1.075)

(0.887)

(1.152)

FSWR

      
   0.100
0.000

0.400

0.050
       .14
 
 


  (0.316)
(0.000)

(0.503)

(0.224)


ALL
      
   
    0.63

.06

.35

.42

ANOVA Results

Overall

All three main factors have significant PMSE effects at the ( = 0.05 level, and an additional 4 significant effects in combination, as is shown in Table 4 below.  More importantly, the effect of primary interest is significant, so H1 (The three methods are equivalent in accuracy) can be rejected at the ( = 0.05 level.  The significant effect of the Function factor was perhaps to be expected: estimating the parameters of a nonlinear relationship is more difficult.  The interactions indicate that the results have a complex depth.  The effects of Method are moderated by Function and by Shock (contaminated), so different methods may perform better on different types of functions varying with data contamination.  Also, the effects of Function are moderated by Shock, indicating—perhaps not surprisingly—that the degree of error depends on the degree of the cleanliness of the data available.

TABLE 4 - ANOVA of PMSE

Significant Effects (( = 0.05)

           
         df    
   MS    
     df    
    MS    
          


Effect   
      Effect  
  Effect  
   Error  
   Error  
     F    
  p-level

 METHOD
         2
  202.1484
      162
 .406450
  497.3515
  .000000

 FUNCTION           2
 360.4431
      162
 .406450
 886.8083
  .000000

 SHOCK 
         1
  16.9629
      162
 .406450
  41.7343
  .000000

 Meth-Fn                  4
  166.8625
      162
 .406450
  410.5365
  .000000

 Meth-Shock 
         2
  6.2077
      162
 .406450
  15.2731
  .000001

 Fn-Shock                 2
  19.8589
      162
 .406450
  48.8594
  .000000

 Meth-Fn-Shock       4
            6.6778 
  162
       .406450
      16.4295
    .000000
The validity of an ANOVA is dependent on 1) normality of distribution sample means and combinations 2) homogeneity of variance (see Press, 1972).

A test for homogeneity of variance was conducted with the following results.

Homogeneity of Variance Results
Box M Test Results

Box M

Chi Square
df
p-level
410.79

394.73

17
0.00

The results indicate that the hypothesis of equality can be rejected at a high level of significance.  This makes the ANOVA results questionable since heterogeneity of variance would bias the significance.  However, it is possible to test the validity of the equal variance assumption before performing one-factor analysis.  These tests for variance equality are more adversely affected by violations of the normality assumption than is one-factor analysis by violations of the constant variance assumption.  Because of this some practitioners question whether the tests for variance equality should be performed (see Bowerman, 1990).

A perusal of statistical textbooks did not mention the importance of homogeneity of variance tests, or a remedy if the test failed.  The failure of the above homogeneity of variance test could be due to lack of multivariate normality.

It should be noted that previous studies omitted this test, perhaps because they felt it had no relevance, or their results failed the test but they felt that made little difference.  

TABLE 5 - ANOVA of NUSPEC

Significant Effects (( = 0.05)


     df    
      MS    
       df    
    MS    
          


Effect   
  Effect  
  Effect  
Error  
        Error  
     F    
  
    p-level

METHOD
       2
 5.81667
    162
  .166667
 34.90000
  .000000

FUNCTION          2
 12.81667
    162
  .166667
 76.90000
  .000000

Meth-Fn      
       4
 4.03333
    162
  .166667
 24.20000
  .000000

Meth-Shock    
       2
 1.50556
    162
  .166667
 9.03333
  .000191

Meth-Fn-Shock      4
 2.02222
    162
  .166667
12.13333
  .000000

The effects of Method are significant in terms of underfitting (results for NUSPEC above) so H2a (The three methods are equivalent in the degree of underfitting) can also be rejected at the ( = 0.05 level.  

TABLE 6 - ANOVA of NOVSPEC

Significant Effects (( = 0.05)

           
    df    
      MS    
       df    
      MS    
          


Effect   
  Effect  
  Effect  
Error
          Error  
     F    
  
     p-level

METHOD   
     2
 16.50556
      162
  .445062
 37.08599
  .000000

Meth-Shock
     2
  1.71667
      162
  .445062
  3.85714
  .023095

Meth-Fn-Shock    4
  1.36667
      162
  .445062
  3.07073
  .018018

The effects on overfitting (results for NOVSPEC, above) are significantly different for Methods, so H2b (The three methods are equivalent in the degree of overfitting) can be rejected at the ( = 0.05 level.  

To summarize, the methods differ significantly in accuracy, underspecification, and overspecification.

Methods Comparisons and Contrasts

The results in the three tables below list the method that performed the best within the stated measure (PMSE, NUSPEC, NOSPEC).  The listed method is the result of a two-way comparison (ANOVA) between the listed method and the method with the next closest mean within the stated measure.

Table 7 – PMSE

FACTOR


Method with smallest PMSE
p-level*
LINEAR


FSWR




.000042

NONLINEAR A 

MARS




.000007

NONLINEAR B

MARS




.000000

CONTAMINATED

MARS




.000636

UNCONTAMINATED
MARS




.000636

Table 8 – NOSPEC

FACTOR


Method with smallest NOSPEC
p-level*
LINEAR


FSWR




.000000

NONLINEAR A

MARS




.000820

NONLINEAR B

MARS




.001462

CONTAMINATED

MARS




.000000

UNCONTAMINATED
MARS




.000000

Table 9 – NUSPEC

FACTOR


Method with smallest NUSPEC
p-level*
LINEAR


FSWR




.010795

NONLINEAR A

MARS




.000000

NONLINEAR B

---




---

CONTAMINATED

MARS




.000000

UNCONTAMINATED
MARS




.000000

The results are different from previous studies.  Generally in other studies NNW outperformed the others in the accuracy of nonlinear fits, but tended to be less accurate in specification.  In this study MARS performed the best overall in terms of fit and specification.  FWSR performed well in linear fits.  MARS also seemed to be the most consistent overall in terms of having the lowest standard deviations for each measure.  

Conclusions

The two primary questions of this study (Are new data mining regression techniques superior to classical regression? and Can data analysis methods implemented naively (through default automated routines) yield useful results consistently?) cannot be answered more clearly without further study.  The data mining techniques employed in the study did outperform classical regression in some respects, but the study protocol (default settings, no data transformations) possibly affected FSWR more than the others, particularly in the nonlinear case (the protocol led to fitting a function known to be nonlinear with a linear specification).  Furthermore—and relevant to the second question—even though relatively simple functions were being fitted with 10 repetitions in each case, there were relatively large standard deviations for all the measures in all cases except for PMSE linear.  This indicates a surprising lack of consistency, the reasons for which need to be investigated.  Perhaps the setting of options for the models interactively (seeking the best model in each repetition, a much more time-consuming approach) would result in greater consistency, so modifying the study protocol could again be beneficial.

Finally, several other potentially important factors such as sparsity (the proportion of significant predictors), dimension (number of variables), type of noise (Gaussian vs. not), and multicolinearity should be included, as well as additional and more demanding levels of included factors (Function type and Shock).

Future Implications

The results of this study have implications in potentially any field of business as well as natural and social sciences.  It is probably safe to say that in practice the majority of data is represented by a nonlinear function.  If managers or researchers are implementing classical regression techniques on non-transformed nonlinear data they are violating one of the basic assumptions of classical regression.  Whether this is done through ignorance or lack of caring makes no difference.  Data mining techniques such as MARS may provide a suitable alternative for classical regression.  The results it provides may not be the best in all cases, but likely are better than regression in most of the cases used in practice.  
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APPENDIX - DATA DESCRIPTION

	Linear Uncontaminated
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Equation
	Y =230+3.4*x1+8*x2-12*x3+5*x4-2.2*x5+NOISE
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Sample Size 500
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Descriptive Statistics
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Valid N
	Mean
	Minimum
	Maximum
	Std.Dev.
	
	
	
	
	

	X1
	500
	10.269
	0.00732
	19.9219
	5.72075
	
	
	
	
	

	X2
	500
	15.2714
	0.00458
	29.9744
	8.2503
	
	
	
	
	

	X3
	500
	19.5293
	0.10254
	39.9329
	11.3898
	
	
	
	
	

	X4
	500
	24.9434
	0.1297
	49.9374
	14.2345
	
	
	
	
	

	X5
	500
	30.2671
	0.06775
	59.9506
	17.2132
	
	
	
	
	

	X6
	500
	12.3356
	0.1999
	24.8657
	7.10594
	
	
	
	
	

	X7
	500
	14.7224
	0.01648
	29.9368
	8.7768
	
	
	
	
	

	X8
	500
	17.518
	0.00855
	34.9968
	10.4443
	
	
	
	
	

	NOISE
	500
	1.13294
	-253.93
	361.086
	98.3219
	
	
	
	
	

	Y
	500
	211.996
	-395.18
	756.842
	194.344
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Correlations, Casewise MD deletion, N=500 (lu1.sta)
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	X1
	X2
	X3
	X4
	X5
	X6
	X7
	X8
	NOISE
	Y

	X1
	1.00
	-0.07
	-0.05
	-0.01
	0.03
	0.03
	0.05
	-0.03
	0.02
	0.11

	X2
	-0.07
	1.00
	0.03
	0.01
	-0.02
	0.00
	-0.06
	0.03
	0.00
	0.32

	X3
	-0.05
	0.03
	1.00
	0.03
	0.02
	-0.06
	0.05
	-0.03
	0.03
	-0.67

	X4
	-0.01
	0.01
	0.03
	1.00
	0.03
	-0.09
	-0.01
	0.04
	-0.01
	0.34

	X5
	0.03
	-0.02
	0.02
	0.03
	1.00
	-0.06
	-0.02
	0.01
	0.01
	-0.19

	X6
	0.03
	0.00
	-0.06
	-0.09
	-0.06
	1.00
	-0.08
	0.08
	-0.01
	0.02

	X7
	0.05
	-0.06
	0.05
	-0.01
	-0.02
	-0.08
	1.00
	0.00
	0.02
	-0.04

	X8
	-0.03
	0.03
	-0.03
	0.04
	0.01
	0.08
	0.00
	1.00
	0.08
	0.08

	NOISE
	0.02
	0.00
	0.03
	-0.01
	0.01
	-0.01
	0.02
	0.08
	1.00
	0.48

	Y
	0.11
	0.32
	-0.67
	0.34
	-0.19
	0.02
	-0.04
	0.08
	0.48
	1.00

	* Significant at 0.05 level
	
	
	
	
	
	
	
	


	Linear Contaminated
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Equation
	y =230+3.4*x1C+8*x2-12*x3+5*x4-2.2*x5+NOISE
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Sample Size 500
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Descriptive Statistics (lc1.sta)
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Valid N
	Mean
	Minimum
	Maximum
	Std.Dev.
	
	
	
	
	
	
	

	X1
	500
	10.3576
	0.09583
	19.9396
	5.63928
	
	
	
	
	
	
	

	SHOCK
	500
	2.10046
	0
	77.3217
	10.426
	
	
	
	
	
	
	

	X1C
	500
	12.4581
	0.09583
	86.0909
	11.671
	
	
	
	
	
	
	

	X2
	500
	15.1344
	0.13001
	29.9799
	8.79051
	
	
	
	
	
	
	

	X3
	500
	20.0893
	0.06958
	39.9683
	11.8276
	
	
	
	
	
	
	

	X4
	500
	24.6704
	0.10834
	49.7681
	14.2952
	
	
	
	
	
	
	

	X5
	500
	30.0013
	0.13733
	59.8444
	17.1836
	
	
	
	
	
	
	

	X6
	500
	12.695
	0.04425
	24.9947
	7.05994
	
	
	
	
	
	
	

	X7
	500
	14.7351
	0.00549
	29.8865
	8.87337
	
	
	
	
	
	
	

	X8
	500
	18.2582
	0.16022
	34.8921
	9.76879
	
	
	
	
	
	
	

	NOISE
	500
	7.61196
	-282.28
	280.671
	103.295
	
	
	
	
	
	
	

	Y
	500
	217.323
	-418.9
	807.767
	208.113
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Correlations, Casewise MD deletion, N=500 (lc1.sta)
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	X1
	SHOCK
	X1C
	X2
	X3
	X4
	X5
	X6
	X7
	X8
	NOISE
	Y

	X1
	1.00
	-0.04
	0.45
	0.05
	-0.05
	0.05
	0.06
	0.04
	-0.07
	0.01
	0.04
	0.16

	SHOCK
	-0.04
	1.00
	0.88
	-0.01
	-0.03
	0.02
	0.04
	0.00
	0.00
	0.03
	0.04
	0.20

	X1C
	0.45
	0.88
	1.00
	0.01
	-0.05
	0.04
	0.06
	0.02
	-0.03
	0.03
	0.06
	0.26

	X2
	0.05
	-0.01
	0.01
	1.00
	-0.02
	-0.05
	-0.01
	-0.01
	0.06
	-0.04
	-0.07
	0.31

	X3
	-0.05
	-0.03
	-0.05
	-0.02
	1.00
	0.04
	-0.06
	0.04
	0.08
	0.05
	-0.01
	-0.68

	X4
	0.05
	0.02
	0.04
	-0.05
	0.04
	1.00
	0.04
	0.05
	-0.01
	0.02
	0.06
	0.33

	X5
	0.06
	0.04
	0.06
	-0.01
	-0.06
	0.04
	1.00
	0.01
	-0.05
	0.05
	0.03
	-0.10

	X6
	0.04
	0.00
	0.02
	-0.01
	0.04
	0.05
	0.01
	1.00
	-0.03
	-0.03
	0.03
	0.00

	X7
	-0.07
	0.00
	-0.03
	0.06
	0.08
	-0.01
	-0.05
	-0.03
	1.00
	-0.05
	-0.04
	-0.06

	X8
	0.01
	0.03
	0.03
	-0.04
	0.05
	0.02
	0.05
	-0.03
	-0.05
	1.00
	0.00
	-0.04

	NOISE
	0.04
	0.04
	0.06
	-0.07
	-0.01
	0.06
	0.03
	0.03
	-0.04
	0.00
	1.00
	0.51

	Y
	0.16
	0.20
	0.26
	0.31
	-0.68
	0.33
	-0.10
	0.00
	-0.06
	-0.04
	0.51
	1.00

	* Significant at 0.05 level
	
	
	
	
	
	
	
	
	
	


	Nonlinear A Uncontaminated
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Equation
	y =0.1*exp(0.5*x1)+1/(exp(-0.2*x2))-3*x3+5*x4-2*x5+NOISE
	
	

	
	
	
	
	
	
	
	
	
	
	

	Sample Size 500
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Descriptive Statistics (nau1.sta)
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Valid N
	Mean
	Minimum
	Maximum
	Std.Dev.
	
	
	
	
	

	X1
	500
	10.261
	0.10926
	19.9908
	5.75868
	
	
	
	
	

	X2
	500
	14.6514
	0.11444
	29.8865
	8.81846
	
	
	
	
	

	X3
	500
	19.6309
	0.12452
	39.8816
	11.2831
	
	
	
	
	

	X4
	500
	24.2192
	0.18616
	49.9359
	14.0261
	
	
	
	
	

	X5
	500
	29.8414
	0.06775
	59.9927
	16.9085
	
	
	
	
	

	X6
	500
	12.2915
	0.03281
	24.9725
	7.26885
	
	
	
	
	

	X7
	500
	13.7752
	0.04028
	29.989
	8.69657
	
	
	
	
	

	X8
	500
	17.6312
	0.05875
	34.9925
	9.68246
	
	
	
	
	

	NOISE
	500
	-7.4822
	-267.34
	254.312
	95.4093
	
	
	
	
	

	Y
	500
	285.882
	-393.75
	2452.08
	448.602
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Correlations, Casewise MD deletion, N=500 (nau1.sta)
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	X1
	X2
	X3
	X4
	X5
	X6
	X7
	X8
	NOISE
	Y

	X1
	1.00
	0.03
	0.02
	0.04
	-0.06
	-0.03
	0.00
	-0.06
	-0.05
	0.66

	X2
	0.03
	1.00
	0.00
	0.06
	-0.04
	0.00
	0.00
	-0.01
	-0.01
	0.18

	X3
	0.02
	0.00
	1.00
	0.02
	0.11
	-0.05
	0.04
	-0.04
	0.06
	-0.03

	X4
	0.04
	0.06
	0.02
	1.00
	-0.07
	-0.01
	0.00
	-0.07
	0.12
	0.25

	X5
	-0.06
	-0.04
	0.11
	-0.07
	1.00
	0.00
	0.11
	-0.02
	0.00
	-0.14

	X6
	-0.03
	0.00
	-0.05
	-0.01
	0.00
	1.00
	0.00
	0.02
	-0.08
	-0.01

	X7
	0.00
	0.00
	0.04
	0.00
	0.11
	0.00
	1.00
	0.03
	-0.02
	0.02

	X8
	-0.06
	-0.01
	-0.04
	-0.07
	-0.02
	0.02
	0.03
	1.00
	0.01
	-0.06

	NOISE
	-0.05
	-0.01
	0.06
	0.12
	0.00
	-0.08
	-0.02
	0.01
	1.00
	0.12

	Y
	0.66
	0.18
	-0.03
	0.25
	-0.14
	-0.01
	0.02
	-0.06
	0.12
	1.00

	* Significant at 0.05 level
	
	
	
	
	
	
	
	


	Nonlinear A Contaminated
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Equation
	y =0.1*exp(0.5*x1)+1/(exp(-0.2*x2))-3*x3+5*x4-2*x5+NOISE
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Sample Size 500
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Descriptive Statistics (nac1.sta)
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Valid N
	Mean
	Minimum
	Maximum
	Std.Dev.
	
	
	
	
	
	
	

	X1
	500
	9.82763
	0.00732
	19.9982
	5.88116
	
	
	
	
	
	
	

	SHOCK
	500
	0.23902
	0
	9.12961
	1.21585
	
	
	
	
	
	
	

	X1C
	500
	10.0666
	0.00732
	21.2809
	5.84425
	
	
	
	
	
	
	

	X2
	500
	15.2226
	0.02838
	29.9423
	9.02699
	
	
	
	
	
	
	

	X3
	500
	19.5769
	0.14283
	39.9658
	11.2459
	
	
	
	
	
	
	

	X4
	500
	25.5973
	0.0763
	49.8825
	14.1293
	
	
	
	
	
	
	

	X5
	500
	29.8915
	0.09888
	59.9908
	17.2121
	
	
	
	
	
	
	

	X6
	500
	12.5081
	0
	24.9741
	7.29011
	
	
	
	
	
	
	

	X7
	500
	14.5316
	0.12726
	29.9963
	8.87103
	
	
	
	
	
	
	

	X8
	500
	18.0698
	0
	34.9968
	9.83825
	
	
	
	
	
	
	

	NOISE
	500
	-1.8765
	-291.65
	300.16
	99.4673
	
	
	
	
	
	
	

	Y
	500
	299.206
	-295.73
	2405.41
	466.705
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Correlations, Casewise MD deletion, N=500 (nac1.sta)
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	X1
	SHOCK
	X1C
	X2
	X3
	X4
	X5
	X6
	X7
	X8
	NOISE
	Y

	X1
	1.00
	-0.13
	0.98
	0.01
	0.00
	-0.05
	0.04
	0.02
	0.02
	0.03
	0.05
	0.65

	SHOCK
	-0.13
	1.00
	0.07
	-0.02
	0.04
	0.11
	0.03
	0.00
	0.04
	-0.02
	0.02
	-0.07

	X1C
	0.98
	0.07
	1.00
	0.00
	0.01
	-0.03
	0.05
	0.02
	0.03
	0.03
	0.05
	0.64

	X2
	0.01
	-0.02
	0.00
	1.00
	-0.08
	-0.01
	-0.03
	-0.07
	0.06
	-0.06
	-0.03
	0.17

	X3
	0.00
	0.04
	0.01
	-0.08
	1.00
	-0.05
	0.03
	-0.04
	-0.08
	0.05
	-0.02
	-0.13

	X4
	-0.05
	0.11
	-0.03
	-0.01
	-0.05
	1.00
	0.04
	0.02
	0.00
	-0.05
	-0.03
	0.14

	X5
	0.04
	0.03
	0.05
	-0.03
	0.03
	0.04
	1.00
	-0.02
	0.00
	0.00
	-0.03
	0.00

	X6
	0.02
	0.00
	0.02
	-0.07
	-0.04
	0.02
	-0.02
	1.00
	0.03
	-0.10
	-0.02
	0.02

	X7
	0.02
	0.04
	0.03
	0.06
	-0.08
	0.00
	0.00
	0.03
	1.00
	0.05
	0.03
	0.11

	X8
	0.03
	-0.02
	0.03
	-0.06
	0.05
	-0.05
	0.00
	-0.10
	0.05
	1.00
	0.01
	0.00

	NOISE
	0.05
	0.02
	0.05
	-0.03
	-0.02
	-0.03
	-0.03
	-0.02
	0.03
	0.01
	1.00
	0.17

	Y
	0.65
	-0.07
	0.64
	0.17
	-0.13
	0.14
	0.00
	0.02
	0.11
	0.00
	0.17
	1.00

	* Significant at 0.05 level
	
	
	
	
	
	
	
	
	
	


	Nonlinear B Uncontaminated
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Equation
	y =230+6*(x1+x1g6+x1g15)+8*x2-12*(x3+x3jp)+5*x4-2.2*x5+NOISE
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Sample Size 500
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Descriptive Statistics (nbu1.sta)
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Valid N
	Mean
	Minimum
	Maximum
	Std.Dev.
	Error
	
	
	
	
	
	
	

	X1
	500
	9.91505
	0.05005
	19.9628
	5.65827
	0.25305
	
	
	
	
	
	
	

	X1G6
	500
	10.36
	0
	20
	10.0035
	0.44737
	
	
	
	
	
	
	

	X1G15
	500
	4.76
	0
	20
	8.52571
	0.38128
	
	
	
	
	
	
	

	X2
	500
	15.3934
	0.07965
	29.9945
	8.98799
	0.40196
	
	
	
	
	
	
	

	X3
	500
	20.3008
	0.16114
	39.9731
	11.9583
	0.53479
	
	
	
	
	
	
	

	X3JP
	500
	4.8
	0
	20
	8.55022
	0.38238
	
	
	
	
	
	
	

	X4
	500
	24.9433
	0.09766
	49.9893
	15.0284
	0.67209
	
	
	
	
	
	
	

	X5
	500
	28.9666
	0.02014
	59.5331
	17.2219
	0.77019
	
	
	
	
	
	
	

	X6
	500
	12.8863
	0.02365
	24.9863
	7.16808
	0.32057
	
	
	
	
	
	
	

	X7
	500
	15.0415
	0.18677
	29.9551
	8.669
	0.38769
	
	
	
	
	
	
	

	X8
	500
	16.5479
	0.0502
	34.8494
	10.1396
	0.45346
	
	
	
	
	
	
	

	NOISE
	500
	-0.1426
	-305.4
	257.338
	98.8556
	4.42096
	
	
	
	
	
	
	

	Y
	500
	262.995
	-446.03
	980.123
	286.738
	12.8233
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Correlations, Casewise MD deletion, N=500 (nbu1.sta)
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	X1
	X1G6
	X1G15
	X2
	X3
	X3JP
	X4
	X5
	X6
	X7
	X8
	NOISE
	Y

	X1
	1.00
	0.87
	0.72
	-0.04
	-0.01
	-0.09
	0.08
	0.00
	0.04
	-0.02
	-0.04
	0.01
	0.48

	X1G6
	0.87
	1.00
	0.54
	-0.03
	0.03
	-0.10
	0.07
	0.00
	0.04
	-0.05
	-0.09
	-0.01
	0.44

	X1G15
	0.72
	0.54
	1.00
	-0.03
	0.01
	-0.11
	0.06
	-0.03
	0.02
	0.00
	-0.07
	0.03
	0.43

	X2
	-0.04
	-0.03
	-0.03
	1.00
	-0.07
	-0.04
	-0.02
	-0.01
	-0.03
	0.01
	0.07
	0.05
	0.30

	X3
	-0.01
	0.03
	0.01
	-0.07
	1.00
	0.24
	0.00
	-0.06
	0.04
	-0.01
	0.02
	-0.02
	-0.59

	X3JP
	-0.09
	-0.10
	-0.11
	-0.04
	0.24
	1.00
	0.00
	-0.03
	-0.02
	0.03
	0.00
	0.00
	-0.54

	X4
	0.08
	0.07
	0.06
	-0.02
	0.00
	0.00
	1.00
	0.00
	-0.01
	0.00
	0.02
	-0.02
	0.28

	X5
	0.00
	0.00
	-0.03
	-0.01
	-0.06
	-0.03
	0.00
	1.00
	0.00
	0.05
	0.02
	0.04
	-0.08

	X6
	0.04
	0.04
	0.02
	-0.03
	0.04
	-0.02
	-0.01
	0.00
	1.00
	0.01
	0.05
	-0.06
	-0.03

	X7
	-0.02
	-0.05
	0.00
	0.01
	-0.01
	0.03
	0.00
	0.05
	0.01
	1.00
	-0.11
	-0.02
	-0.03

	X8
	-0.04
	-0.09
	-0.07
	0.07
	0.02
	0.00
	0.02
	0.02
	0.05
	-0.11
	1.00
	0.06
	0.00

	NOISE
	0.01
	-0.01
	0.03
	0.05
	-0.02
	0.00
	-0.02
	0.04
	-0.06
	-0.02
	0.06
	1.00
	0.36

	Y
	0.48
	0.44
	0.43
	0.30
	-0.59
	-0.54
	0.28
	-0.08
	-0.03
	-0.03
	0.00
	0.36
	1.00

	* Significant at 0.05 level
	
	
	
	
	
	
	
	
	
	
	


	Nonlinear B Contaminated
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Equation
	y =230+6*(x1c+x1g6+x1g15)+8*x2-12*(x3+x3jp)+5*x4-2.2*x5+NOISE
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Sample Size 500
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Descriptive Statistics (nbc1.sta)
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Valid N
	Mean
	Minimum
	Maximum
	Std.Dev.
	
	
	
	
	
	
	
	
	
	

	X1
	500
	9.95396
	0.07996
	19.96765
	5.88142
	
	
	
	
	
	
	
	
	
	

	SHOCK
	500
	0.23905
	0.00000
	9.54131
	1.17783
	
	
	
	
	
	
	
	
	
	

	X1C
	500
	10.19301
	0.07996
	23.38908
	5.96578
	
	
	
	
	
	
	
	
	
	

	X1G6
	500
	9.88000
	0.00000
	20.00000
	10.00929
	
	
	
	
	
	
	
	
	
	

	X1G15
	500
	4.96000
	0.00000
	20.00000
	8.64569
	
	
	
	
	
	
	
	
	
	

	X2
	500
	15.14379
	0.20234
	29.95880
	8.74225
	
	
	
	
	
	
	
	
	
	

	X3
	500
	19.94184
	0.05737
	39.82543
	11.58185
	
	
	
	
	
	
	
	
	
	

	X3JP
	500
	5.08000
	0.00000
	20.00000
	8.71467
	
	
	
	
	
	
	
	
	
	

	X4
	500
	23.46922
	0.10224
	49.95727
	14.44414
	
	
	
	
	
	
	
	
	
	

	X5
	500
	30.48385
	0.04761
	59.98169
	17.29012
	
	
	
	
	
	
	
	
	
	

	X6
	500
	12.39161
	0.02747
	24.91150
	6.96997
	
	
	
	
	
	
	
	
	
	

	X7
	500
	15.09933
	0.01556
	29.89654
	8.57776
	
	
	
	
	
	
	
	
	
	

	X8
	500
	17.28953
	0.26276
	34.96155
	9.92253
	
	
	
	
	
	
	
	
	
	

	NOISE
	500
	0.69764
	-281.46550
	300.16021
	101.37322
	
	
	
	
	
	
	
	
	
	

	Y
	500
	252.06556
	-383.65207
	997.86286
	275.09599
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Correlations, Casewise MD deletion, N=500 (nbc1.sta)
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	X1
	SHOCK
	X1C
	X1G6
	X1G15
	X2
	X3
	X3JP
	X4
	X5
	X6
	X7
	X8
	NOISE
	Y

	X1
	1.00
	-0.03
	0.98
	0.87
	0.74
	-0.03
	0.01
	-0.03
	0.06
	0.01
	-0.05
	0.07
	-0.08
	0.02
	0.48

	SHOCK
	-0.03
	1.00
	0.17
	0.00
	-0.06
	0.00
	-0.03
	-0.01
	0.02
	-0.04
	0.04
	0.02
	0.00
	0.08
	0.07

	X1C
	0.98
	0.17
	1.00
	0.86
	0.72
	-0.02
	0.00
	-0.03
	0.06
	0.00
	-0.04
	0.08
	-0.08
	0.03
	0.49

	X1G6
	0.87
	0.00
	0.86
	1.00
	0.58
	-0.06
	0.03
	0.01
	0.09
	0.03
	-0.05
	0.06
	-0.03
	0.01
	0.43

	X1G15
	0.74
	-0.06
	0.72
	0.58
	1.00
	-0.01
	0.04
	-0.06
	0.06
	0.02
	-0.07
	0.08
	-0.09
	0.02
	0.43

	X2
	-0.03
	0.00
	-0.02
	-0.06
	-0.01
	1.00
	-0.03
	-0.01
	0.06
	0.05
	0.02
	-0.03
	-0.05
	-0.07
	0.23

	X3
	0.01
	-0.03
	0.00
	0.03
	0.04
	-0.03
	1.00
	0.26
	0.02
	0.00
	-0.04
	0.02
	-0.07
	-0.01
	-0.60

	X3JP
	-0.03
	-0.01
	-0.03
	0.01
	-0.06
	-0.01
	0.26
	1.00
	0.06
	-0.05
	0.01
	-0.03
	0.06
	0.05
	-0.48

	X4
	0.06
	0.02
	0.06
	0.09
	0.06
	0.06
	0.02
	0.06
	1.00
	0.08
	0.13
	0.03
	-0.03
	0.03
	0.28

	X5
	0.01
	-0.04
	0.00
	0.03
	0.02
	0.05
	0.00
	-0.05
	0.08
	1.00
	-0.01
	-0.06
	0.10
	-0.02
	-0.09

	X6
	-0.05
	0.04
	-0.04
	-0.05
	-0.07
	0.02
	-0.04
	0.01
	0.13
	-0.01
	1.00
	0.07
	0.00
	0.00
	0.03

	X7
	0.07
	0.02
	0.08
	0.06
	0.08
	-0.03
	0.02
	-0.03
	0.03
	-0.06
	0.07
	1.00
	-0.06
	-0.05
	0.03

	X8
	-0.08
	0.00
	-0.08
	-0.03
	-0.09
	-0.05
	-0.07
	0.06
	-0.03
	0.10
	0.00
	-0.06
	1.00
	0.07
	-0.03

	NOISE
	0.02
	0.08
	0.03
	0.01
	0.02
	-0.07
	-0.01
	0.05
	0.03
	-0.02
	0.00
	-0.05
	0.07
	1.00
	0.36

	Y
	0.48
	0.07
	0.49
	0.43
	0.43
	0.23
	-0.60
	-0.48
	0.28
	-0.09
	0.03
	0.03
	-0.03
	0.36
	1.00

	* Significant at 0.05 level
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