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ABSTRACT

The model selection strategy is an important determinant of the performance and acceptance of a medical diagnostic decision support system based on supervised learning algorithms. This research investigates the potential of bootstrap ensembles formed from a population of 24 classification models to increase the accuracy of decision support systems for the early detection and diagnosis of breast cancer. Our results suggest that ensembles formed from a diverse collection of models are generally more accurate than either pure-bagging ensembles (formed from a single model) or the selection of a “single best model”. The most effective ensembles are formed from a small and selective subset of the population of available models with potential candidates identified by jointly considering the properties of model generalization error, model instability, and the independence of model decisions relative to other ensemble members. A greedy ensemble construction method advanced in this research results in the lowest generalization error of all model selection strategies investigated.
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1. INTRODUCTION

Breast cancer is one of the most prevalent cancers, ranking third worldwide. In women, it is the most prevalent cancer worldwide, except for Japan, where it ranks third (Parkin, 1998). Most developed countries have seen increases in its incidence in the past 20 years. Based on the most recent available international data, breast cancer ranks second only to lung cancer as the most common newly diagnosed cancer (Parkin, 2001). The American Cancer Society predicts that in 2001 approximately 40,200 deaths will result in the United States from breast cancer and that 192,200 women will be newly diagnosed with breast cancer (Greenlee et al., 2001). Breast cancer outcomes have improved during the last decade with the development of more effective diagnostic techniques and improvements in treatment methodologies. A key factor in this trend is the early detection and accurate diagnosis of this disease. The long-term survival rate for women in whom breast cancer has not metastasized has increased, with the majority of women surviving many years after diagnosis and treatment. A medical diagnostic decision support system (MDSS) is one technology that can facilitate the early detection of breast cancer.

The MDSS (Miller, 1994; Sheng, 2000) is an evolving technology capable of increasing diagnostic decision accuracy by augmenting the natural capabilities of human diagnosticians in the complex process of medical diagnosis. A recent study finds that the physicians’ diagnostic performance can be strongly influenced by the quality of information produced by a diagnostic decision support system (Berner et al., 1999) QUOTE "(Berner, Maisiak, Cobbs, & Taunton, 1999)" 

. For MDSS implementations that are based on supervised learning algorithms, the quality of information produced is dependent on the choice of an algorithm that learns to predict the presence/absence of a disease from a collection of examples with known outcomes. This focus of this paper is MDSS systems based on these inductive learning algorithms and excludes expert system based approaches. Some of the earliest MDSS systems used simple parametric models like linear discriminant analysis and logistic regression. The high costs of making a wrong diagnosis has motivated an intense search for more accurate algorithms, including non-parametric methods such as k nearest neighbor or kernel density, feed-forward neural networks such as multilayer perceptron or radial basis function, and classification-and-regression trees. Unfortunately, there is no theory available to guide the selection of an algorithm for a specific diagnostic application. Traditionally, the model selection is accomplished by selecting the “single best” (i.e. most accurate) method after comparing the relative accuracy of a limited set of models in a cross validation study.

Recent research suggests that an alternate strategy to the selection of the “single best model” is to employ ensembles of models. Breiman (Breiman, 1996) reports that “bootstrap ensembles", combinations of models built from perturbed versions of the learning sets, may have significantly lower errors than the “single best model” selection strategy. In fact, several authors provide evidence that the “single best model” selection strategy may be the wrong approach (Breiman, 1995; Breiman, 1996; Wolpert, 1992; Zhang, 1999a; Zhang 1999b).

The purpose of this research is to investigate the potential of bootstrap ensembles to reduce the diagnostic errors of MDSS applications for the early detection and diagnosis of breast cancer. We specifically investigate the effect of model diversity (the number of different models in the ensemble) on the generalization accuracy of the ensemble. The ensemble strategies investigated include a “baseline-bagging” ensemble (that is an ensemble formed from multiple instances of a single model, a diverse ensemble with controlled levels of model diversity, and a highly accurate ensemble formed from a greedy construction methodology. The three ensemble strategies are benchmarked against the “single best model”. In all cases, an aggregate ensemble decision is achieved by majority vote of the decisions of the ensemble members.

In the next section of this paper we review the model decisions of several recent MDSS implementations. The third section will discuss our research methodology and the experimental design that we use to estimate the generalization error for the MDSS ensembles. The fourth section presents our results, the mean generalization error for several ensemble strategies. This paper concludes with a discussion of these results, and implications to guide the ensemble formation strategy for a medical diagnostic decision support system.

2. MDSS MODEL SELECTION

Virtually all MDSS implementations to date use the “single best model” selection strategy. This strategy selects a model from a limited set of potential models whose accuracy is estimated in cross validation tests  QUOTE "(Anders & Korn, 1999; Kononenko & Bratko, 1991)" 
(Anders et al., 1999; Kononenko et al., 1991)

 QUOTE ""  ADDIN PROCITE ÿ\11\05‘\19\02\00\00\00\00\01\00\00\1A\00\00\00MC:\5CProgram Files\5CProCite5\5CDatabase\5CClassification and pattern recognition.pdt\1DKononenko & Bratko 1991 #1040\00\1D\00 
. The most accurate model in the cross validation study is then selected for use in the MDSS. A brief discussion of some of the single model MDSS implementations reported in the research literature follows. It is not possible to present a complete survey of MDSS applications. The readers interested in more information on this subject are referred to the following survey papers for more detail (Miller, 1994; Lisboa, 2001).

2.1 Single Model MDSS Applications

Linear discriminant analysis has been used to diagnosis coronary artery disease (Detrano et al., 1989), acute myocardial infarction (Gilpin et al., 1983), and breast cancer (West et al., 2000). Logistic regression has been used to predict or diagnose spondylarthropathy (Dougados et al., 1991), acute myocardial infarction (Gilpin et al., 1983), coronary artery disease (Hubbard et al., 1992), liver metastases (Makuch et al., 1988), gallstones (Nomura et al., 1988), ulcers (Schubert et al., 1993), mortality risk for reactive airway disease (Tierney et al., 1997), and breast cancer (West et al., 2000). Non-parametric models have also been used to diagnose or predict various pathologies. K nearest neighbor was used in comparative studies to diagnose lower back disorders (Bounds et al., 1990), to predict 30-day mortality and survival following acute myocardial infarction (Gilpin et al., 1983), and to separate cancerous and non-cancerous breast tumor masses (West et al., 2000). Kernel density has been utilized to determine outcomes from a set of patients with severe head injury (Tourassi et al., 1993) and to differentiate malignant and benign cells taken from fine needle aspirates of breast tumors (Wolberg et al., 1995). Neural networks have also been used in a great number of MDSS applications because of the belief that they have greater predictive power (Tu et al., 1998). The traditional multilayer perceptron has been used to diagnose breast cancer (Baker et al., 1995; Baker et al., 1996; Josefson, 1997; Wilding et al., 1994; Wu et al., 1995), acute myocardial infarction (Baxt, 1990; Baxt 1991; Baxt 1994; Fricker, 1997; Rosenberg et al., 1993), colorectal cancer (Bottaci et al., 1997), lower back disorders (Bounds et al., 1990), hepatic cancer (Maclin et al., 1994), sepsis (Marble et al., 1999), cytomegalovirus retinopathy (Sheppard et al., 1999), trauma outcome (Palocsay et al., 1996), and ovarian cancer (Wilding et al., 1994). PAPNET, an MDSS based on an MLP is now available for screening gynecologic cytology smears (Mango, 1994; Mango, 1996). The radial basis function neural network has been used to diagnose lower back disorders (Bounds et al., 1990), classify micro-calcifications in digital mammograms (Tsujji et al., 1999), and in a comparative study of acute pulmonary embolism (Tourassi et al., 1993). Classification and regression trees have been used to predict patient function following head trauma  QUOTE "(Temkin, Holubkov, Machamer, Winn, & Dikmen, 1995)" 
(Temkin, et al., 1995)
, to evaluate patients with chest pains (Buntinx et al., 1992), and to diagnose anterior chest pain  QUOTE "(Crichton, Hinde, & Marchini, 1997)" 
(Crichton, et al., 1997)
.

2.2 Ensemble Applications

There is a growing amount of evidence that ensembles, a committee of machine learning algorithms, result in higher prediction accuracy. One of the most popular ensemble strategies is bootstrap aggregation or bagging predictors advanced by Breiman (1996). This strategy, depicted in Figure 1, uses multiple instances of a learning algorithm (C1(x) ( Cb(x)) trained on bootstrap replicates of the learning set (TB1 ( TBB). Plurality vote is used to produce an aggregate decision from the models’ individual decisions. If the classification algorithm is unstable in the sense that perturbed versions of the training set produce significant changes in the predictor, then bagging predictors can increase the decision accuracy. Breiman demonstrates this by constructing bootstrap ensemble models from classification and regression trees and tests the resulting ensembles on several benchmark data sets. On these data sets, the CART bagging ensembles achieve reductions in classification errors ranging from 6% to 77%. Breiman found that ensembles with as few as ten bootstrap replicates are sufficient to generate most of the improvement in classification accuracy  QUOTE "(Breiman, 1996)" 
(Breiman, 1996)
. Model instability is therefore an important consideration in constructing bagging ensembles. Models with higher levels of instability will achieve greater relative improvement in classification accuracy as a result of a bagging ensemble strategy. 


Insert Figure 1 about here

The available research on ensemble strategies is very current and focuses primarily on ensembles of a single classification algorithm. For example, Zhang (Zhang, 1999b) aggregates 30 multilayer-perceptron neural networks with varying numbers of hidden neurons to estimate polymer reactor quality while Cunningham, Carney and Jacob (2000) report improved diagnostic prediction for MDSS systems that aggregate neural network models. Bay (1999) tested combinations of nearest neighbor classifiers trained on a random subset of features, and found the aggregate model to outperform standard nearest neighbor variants. Zhilkin and Somorjai explore model diversity in bagging ensembles by using combinations of linear and quadratic discriminant analysis, logistic regression, and multilayer perceptron neural networks to classify brain spectra by magnetic resonance measurement (Zhilkin et al., 1996). They report that the bootstrap ensembles are more accurate in this application than any “single best model”, and that the performance of the single models varies widely, performing well on some data sets and poorly on others.

Research to date confirms that the generalization error of a specific model can be reduced by bootstrap ensemble methods. There has been little systematic study of the properties of multi-model MDSS systems. The contribution of this paper is to investigate more thoroughly the model selection strategies available to the practitioner implementing an MDSS system including the role of model diversity in bagging ensembles.

3. RESEARCH METHODOLOGY

Our research methodology is presented in three parts. Part one describes the two data sets that we examine in this study. Part two describes the 24 models that we employ for our MDSS ensembles and part three presents our experimental design.

3.1 Breast Cancer Data Sets

The two data sets investigated in this research are both contributed by researchers at the University of Wisconsin. The Wisconsin breast cancer data consists of records of breast cytology first collected and analyzed by Wolberg, Street, and Mangasarian (Mangasarian et al., 1995; Wolberg et al., 1995). This data, which we will refer to as the “cytology data”, consists of 699 records of virtually assessed nuclear features of fine needle aspirates from patients whose diagnosis resulted in 458 benign and 241 malignant cases of breast cancer. A malignant label is confirmed by performing a biopsy on the breast tissue. Nine ordinal variables measure properties of the cell, including thickness, size, and shape, are used to classify the case as benign or malignant.

The second data set investigated is the Wisconsin prognostic breast cancer data generated from follow-up visits for breast cancer cases seen by Dr. Wolberg, and includes only those cases exhibiting invasive breast cancer without evidence of distant metastases at the time of diagnosis (Mangasarian et al., 1995; Wolberg et al., 1995). Thirty features, computed from a digitized image of a fine needle aspirate of a breast mass, describe characteristics of the cell nuclei present in the image. There are 198 examples; 47 are recurrent cases and 151 are non-recurrent cases. We refer to this data as the “prognostic data.” Both data sets are available from the UCI Machine Learning Repository (Blake, et al., 1998).

3.2 Model Description

The learning algorithms employed in this research have been selected to represent most of the methods used in prior MDSS research and commercial applications. In this paper, we use the term “model” to refer to a specific configuration of a learning architecture. Details of the 24 models used in this research are given in the Appendix. These include linear discriminant analysis (LDA), logistic regression (LR), three different neural network algorithms (multilayer perceptron (MLP), mixture-of-experts (MOE), and radial basis functions (RBF)), classification and regression trees (CART), nearest neighbor classifier (KNN), and kernel density (KD). Many of these algorithms require specific configuration decisions or parameter choices. In these cases, the specific configurations and parameters we use are guided by principles of model simplicity and generally accepted practices. For example, the neural network models are limited to a single hidden layer with the number of hidden layer neurons, generally ranging from 2 to 8. A total of four specific neural network configurations are created for each of the three architectures. Four different configurations are also created for KNN, with a range of nearest neighbors from 3 to 11. For KD, density widths range from 0.1 to 7.0. Both the Gini and Twoing splitting rules are used to create two different CART configurations. 

3.3 Experimental Design

The purpose of the experimental design is to provide reliable estimates the generalization error of the “single best model” selection strategy and three ensemble formation strategies at controlled levels of model diversity. To estimate the mean generalization error of each strategy, the available data, D, is split into three partitions: a training set, Tij, a validation set, Vij, and a final independent holdout test set, Hi which is used to measure the model’s generalization error. The subscript i is an index for the run number varying from 1 to 100 while j indexes the cross validation partition number varying from 1 to 10.

3.3.1 Estimating “single best model” Generalization Error

The “single best” generalization error is estimated by generating 10-fold cross validation partitions, training all 24 models with Tij, determining the model with the lowest error on the validation set Vij, and finally measuring that model’s generalization error on the independent holdout test set Hi. The ten-fold cross validation partitioning is repeated 100 times.  The validation set Vij is used to implement early stopping during training of the neural networks to avoid model overfitting. The details of this process are specified in the algorithm below. We begin the process in step 1 by randomly selecting an independent test set and removing the test set from the available data (step 2). The test set is sized to be approximately 10% of the available data. The remaining data, Di (where Di = D - Hi), is partitioned into ten mutually exclusive sets in step 3. One partition is used as a validation set (step 4a) and the other nine are consolidated and used as a training set (step 4b). This is repeated ten times so that each partition functions as a validation set. The “single best model” is then identified as the model with the lowest error on the ten validation sets (step 5 and 6). An estimate of this model’s accuracy on future unseen cases is measured using the independent test set (step 7). The seven steps are repeated 100 times to determine a mean generalization error for the “single best model” strategy (step 8).

Repeat for i=1 to 100

1. Create holdout test set, Hi, by randomly sampling without replacement from the available data, D. Hi is sized to be approximately 10% of D

2. Remove Hi from D forming Di = D - Ei
3. Partition Di into j=1(10 mutually exclusive partitions, Dij
4. Repeat for j=1 to 10
a. Form validation set Vij = Dij
b. Form training set Tij = Di - Vij by consolidating the remaining partitions 
c. Repeat for model number B where B=1 to 24 
i. Train each classifier model CB(x) with training set Tij
ii. Evaluate classifier error EVijB on validation set, Vij
end loop B

end loop j

5. Determine average validation error 
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6. Identify the “single best model” 
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7. Estimate the generalization error for the winning model, 
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, using the independent hold out test set, Hi 
end loop i

8. Determine the mean generalization error for the “single best model” strategy, 
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3.3.2 Estimating Bagging Ensemble Generalization Error

The generalization error for bagging ensembles is estimated at several controlled levels of ensemble model diversity (the number of different models in the ensemble). Each ensemble will consist of exactly 24 models. We choose 24 ensemble members because of the symmetry with the number of models investigated and it exceeds the minimum of 10 members reported by Breiman (1996) as necessary to achieve the improvement in generalization accuracy. We use the term baseline-bagging ensembles to describe ensembles whose membership is limited to replications of a single model. These are the least diverse ensembles.  The most diverse ensembles are constructed from the 24 different models. Intermediate levels of diversity (between the baseline ensembles and the most diverse ensembles) are constructed with 12, 8, 6, 4, 3, and 2 distinct models. For these intermediate levels of diversity, the ensembles are formed by randomly selecting the specified number of models without replacement from the set of 24 available models. The models chosen are replicated to maintain a total of 24 ensemble members. For example, 12 models would be replicated twice, and 8 models would be replicated three times. The population of available models from which the ensembles are formed is also an important determinant of ensemble accuracy. To explore this effect we also form diverse models whose members are sampled from a population of the 12 most accurate models (top 50%) and the 6 most accurate models (top 25%). The ensemble configurations for these restricted populations are limited to those defined in Table 1 below.

Insert Table 1 about here

A methodology for measuring comparable generalization errors for bagging ensembles is discussed next. This methodology parallels the work of Breiman, 1996; Wolpert, 1992; and Zhang, 1999b. All bagging ensembles investigated in this research consist of 24 voting members that have been trained with different bootstrap replicate data. The purpose of the bootstrap replicates is to create a different learning perspective for each of the 24 models, thereby increasing the independence of the prediction errors and generating more accurate ensembles. The data partitions used to train and test the ensemble members (i.e. Tij, Vij Hi) are the same partitions created in the earlier section for the “single best model” strategy. For clarity in expressing the ensemble algorithm, the steps 1-3 used to create these partitions are repeated below. The ensemble algorithm first differs from the “single best model” strategy tenfold cross validation algorithm in step 4.c.i where 100 bootstrap training replicates are formed by sampling with replacement from the training set Tij. We refer to these bootstrap training sets by the symbol TBijk where i refers to the run number, j the cross validation partition and k the bootstrap replicate. A total of k=1 (100 bootstrap samples are created for each cross validation for a total of 1,000 bootstrap replicates. We create more than the minimum number of bootstrap replicates required by the 24 models to produce better estimates of the generalization error during the sampling process (steps 5-7) described next. 

Steps 5 through 7 define a process of randomly creating ensembles with controlled levels of diversity from the test sets created for each model in step 4.c.ii.2 where each trained classifier is tested on the independent holdout test set Hi. For each level of diversity investigated, 500 different ensembles are formed to estimate a mean generalization error. For each level of diversity, the number of models included in the ensemble membership is defined in Table 1 and varies from 1 for the baseline-bagging ensemble to 24 for the most diverse ensembles. For the baseline-bagging ensembles, we form 24 ensembles, one for each model. For the most diverse ensembles, all models are included in the ensemble. The intermediate levels of diversity include ensembles with 2, 3, 4, 6, 8, and 12 models and are formed by randomly sampling from the population of models without replacement (step 5). Once the models are specified, step 6 defines a process to identify the test results by randomly sampling without replacement from the set of 100 bootstrap replicates produced in step 4cii2. Ensemble generalization errors can then be estimated by a majority vote of the 24 ensemble members, step (7). This process of sampling-training-testing is repeated 500 times to estimate a mean generalization error for all of the ensemble formation strategies investigated.

Repeat for i=1 to 100

9. Create holdout test set, Hi, by randomly sampling without replacement from the available data, D. Hi is sized to be approximately 10% of D

10. Remove Hi from D forming Di = D - Ei
1. Partition Di into j=1(10 mutually exclusive partitions, Dij
2. Repeat for j=1 to 10
a. Form validation set Vij = Dij
b. Form training set Tij = Di - Vij by consolidating the remaining partitions 
c. Repeat for k=1 to 100
i. Form bootstrap training TBijk set by sampling with replacement from Tij
ii. Repeat for B=1 to 24
1. Train each classifier model CB(x) with bootstrap training set TBijk
2. Test each classifier CB(x) on test set Hi
end loop B

end loop k

end loop j

Repeat for z = 1 to 500  */ these steps form 500 different ensembles for each level of ensemble                              diversity*/

3. For intermediate levels of diversity {2,3,4,6,8,and 12 models}, randomly identify models without replacement from the population of models and form ensembles with 24 members

4. For each model selected retrieve test results for respective model for run i, for j=1 to 10 and for random k ={1…100}

5. Estimate the generalization error, 
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end loop z

end loop i

4. GENERALIZATION ERROR RESULTS OF ENSEMBLE STRATEGIES

4.1 “Single Best Model” Strategy Generalization Results

We first estimate the generalization error of a strategy that selects the “single best model” (as in lowest generalization error) from the 24 models investigated. The most accurate model is identified from a ten-fold crossvalidation study. These “single best” generalization errors are reported at the bottom of Table 2 in the line labeled “average error”. They are mean values of the 100 runs conducted. The estimate of the generalization error for the “single best” strategy is 0.226 for the prognostic data and 0.029 for the cytology data. The model “winning frequency” is also reported in Table 2. The “winning frequency” is the proportion of times each model is determined to be most accurate for the validation data during the 100 cross validation trials. It is recognized that the “single best model” selection procedure is very dependent on the data partitions used to train and test the models  QUOTE "(Cunningham et al., 2000)" 
(Cunningham et al., 2000)
. The results of Table 2 demonstrate this deficiency. As the composition of the cross validation training and test sets change during the 100 trials, different models are judged to be most accurate. Of the 24 models investigated, 16 different models are determined to be most accurate on at least one trial for the prognostic data, while the cytology data has 11 models judged most accurate. It is also evident from Table 2 that the neural network models (particularly the radial basis function networks) tend to win a disproportionate share of the time for both data sets.

Insert Table 2 about here

4.2 Baseline-bagging Ensemble Generalization Results

The generalization error of ensembles formed with 24 members of a single model (baseline-bagging ensembles) is investigated next. Each of these baseline-bagging ensembles consists of 24 members that are variations of a single classification model, e.g. MLPa or CARTb. Diversity in the baseline-bagging ensembles is introduced by differences in the bootstrap learning sets and in some instances from different parameter initialization (i.e. neural network models). The average generalization errors as well as the maximum, minimum, and standard deviation for each of the baseline-bagging ensembles are summarized in Table 3 for the prognostic data and Table 4 for the cytology data. Each table is sorted in ascending order by the generalization error. It is evident that the most accurate baseline-bagging ensembles correspond to models with high winning frequency in the crossvalidation studies. For the prognostic data, there are a total of eight (one third of the models) baseline-bagging ensembles that achieve a mean generalization error lower than the 0.226 for the “single best” strategy. For the cytology data, only the RBFc and RBFd baseline-bagging ensembles achieve comparable or lower errors than the 0.029 for the “single best” strategy. There is considerable variation in the generalization error among the collection of baseline-bagging ensembles. For the prognostic data, the RBFc model has the lowest generalization error at 0.209, compared to the highest error of 0.385 for the KNNa model. For the cytology data, the RBFc model is again most accurate with a generalization error of 0.028, compared to the highest error of 0.071 for the KDd model. This suggests that model selection is still an important consideration in the design of baseline-bagging ensembles. In this application, it is not feasible to produce a baseline-bagging ensemble with low generalization error from any randomly selected model.

Insert Tables 3 and 4 about here

While many of the baseline-bagging ensembles for the prognostic data achieve meaningful error reductions relative to the “single best” strategy, the same effect is not as pronounced for the cytology data. The reason for the ineffectiveness of ensemble methods for the cytology application may be that the decision concepts to be learned result in relatively similar decision among the ensemble members. Sharkey argues that the reduction of error by bagging ensembles is limited in situations where the ensemble members exhibit a high degree of decisions consensus  QUOTE "(Sharkey, 1996)" 
(Sharkey, 1996)
. The levels of concurrence among ensemble members can be inferred by inspecting the correlation of the model outputs expressed as posterior probabilities of class membership. The correlation of model outputs for pairs of potential ensemble members is given in Table 5 for the prognostic data and Table 6 for the cytology data. To save space, only models in the upper 67th percentile of accuracy are included in these tables. The average correlation of all models is 0.475 for the prognostic data and 0.616 for the cytology data. The substantially higher level of model concurrence among the cytology ensemble members indicates that a diverse set of independent ensemble experts has not been achieved, and that the potential for error reduction from the use of bagging ensembles will be more modest. We also notice that the intra-architecture correlations are very high for both data sets. For example, the correlations for the four radial basis function models for the prognostic data range from 0.90 to 0.95, correlations for the mixture-of-experts models range from 0.81 to 0.84, and correlations for the multi-layer perceptron models range from 0.72 to 0.75. These correlations suggest that a more effective ensemble formation strategy may be to select different architectures for ensemble membership and in particular those architectures with low levels of correlation. For the prognostic data, logistic regression, linear discriminant analysis, and CART appear to be good potential candidates as these models have correlations substantially lower than the average of all models. For the cytology data, logistic regression and CART have the lowest correlations and are potentially good candidates for ensemble membership. We will use these insights later in a greedy algorithm to select models for ensemble membership.

Insert Table 5 about here

Insert Table 6 about here

4.3 Ensemble Generalization Results at Controlled Levels of Model Diversity

We next investigate the strategy of forming ensembles with higher levels of model diversity. We expect that this additional source of diversity will result in more accurate ensembles. This new source of diversity is induced in the ensemble by controlling ensemble membership to include different models and different architectures. Including all of the 24 models investigated forms the most diverse ensembles. We also create intermediate levels of diversity by forming ensembles with 12, 8, 6, 4, 3, and 2 different models. In all cases the models to include in ensemble membership are chosen randomly without replacement from the set of 24 models and are replicated to maintain a total of 24 ensemble members. For example, to form ensembles with 12 different models requires forming a random subset of 12 of the 24 models and replicating each of the 12 models two times in the ensemble. The test results for each model are randomly chosen without replacement from the 100 available bootstrap test results for each data partition. The generalization error for each level of model diversity is estimated from 500 repetitions of ensemble construction. There errors are plotted as rectangular markers in Figures 2 and 3 for the prognostic data and the cytology data respectively. Also included in these figures are the average from the “single best” results of the crossvalidation study (plotted as a solid horizontal line), the results of the baseline-bagging ensembles, and the results of a greedy algorithm discussed in the next subsection. Figures 2 and 3 also report the effect of restricting the population of available models for the ensembles to the 12 most accurate models (represented by triangular markers), and to the 6 most accurate models (represented by circular makers). All generalization errors estimates are means values from the 500 repetitions of ensemble formation.


Insert figure 2 about here


Insert figure 3 about here

The results depicted in Figures 2 and 3 demonstrate that higher levels of model diversity result in lower ensemble generalization error, although the improvement is fairly modest for ensembles with 3 or more different models. It is also clear that the policy of restricting the population of potential ensemble members to a smaller subset of the more accurate models produces ensembles with lower mean generalization errors for both data sets. For example, ensembles of 6 different models sampled from a population of 24 possible models for the prognostic data have an average generalization error of 0.225. The corresponding error for similar ensembles with members sampled from the top 12 models is 0.212, and for ensembles sampled from the top 6 models is 0.203. Similarly, for the cytology data the expected generalization error is 0.033 for ensembles formed from 24 potential models, 0.031 for ensembles formed from 12 potential members, and 0.027 for ensembles formed from 6 potential members. Two other conclusions are possible from Figures 2 and 3. In both applications, the more diverse ensembles are more accurate than the expected error of the “single best” strategy. For the prognostic data, the strategy of diverse bagging ensembles is universally superior to the “single best” strategy for ensembles with six or more models. For the cytology data, the bagging ensembles are superior to the “single best” strategy only for the most restricted model population. For both data sets the diverse ensembles sampled from the population of the top 6 models has a lower error than any of the corresponding baseline-bagging ensembles.

4.4 Greedy Ensemble Construction Results

The prior observations suggest a strategy of selective diversity that motivates a “greedy methodology” for forming an ensemble by identifying three candidate models that have the properties of low relative generalization error, low levels of model correlation, and high relative instability. In this paper we will measure model instability by the range (maximum-minimum) of generalization errors for the 500 baseline ensembles constructed. Figures 4 and 5 are used to identify these “high potential” candidates for ensemble membership. These figures plot the baseline-bagging ensemble generalization error as a function of model instability. Notice that a significant positive slope exists for both data sets with a regression model R2 of 0.746 and 0.803 respectively. This positive trend inhibits the effectiveness of more diverse ensembles because higher model instability is achieved by sacrificing model accuracy. An “efficient frontier” for identifying high potential ensemble members exists in the lower right areas of the instability regression plots where models with low error and high instability are identified. For the prognostic data, the RBFd model is favored over RBFc because of increased model instability. For similar reasons, the CARTb model is preferred over CARTa. The greedy methodology of ensemble construction for the prognostic application is to combine RBFd, the most accurate model with two other members from the set MOEc (0.52), MLPa (0.49), LR (0.34), and CARTb (0.38). The average model correlation is given in parenthesis and shown in Figure 4. The preferred models are CARTb and LR, as they both have higher levels of instability and relatively low correlation. The generalization error of the resulting greedy ensemble (RBFd, LR, CARTb), based on 500 repetitions of ensemble construction, is 0.194 and is plotted in Figure 2 as a horizontal dashed line. Applying a similar greedy ensemble construction strategy to the cytology application produces an ensemble of RBFc, RBFb, and MOEa with a resulting generalization error of 0.027. This value is plotted on Figure 3 as a dashed horizontal line.

Insert figure 4 about here

Insert figure 5 about here

Table 7 presents a summary of the minimum mean generalization errors achieved for each of the ensemble strategies. For both of these data sets, ensembles are an effective means to reduce diagnostic error. The strategy of forming a baseline-bagging ensemble from a single classification model lowers the generalization error from the error of a “single best” strategy for both data sets. More diverse ensembles result in larger error reductions than those achieved by the baseline-bagging ensembles, but also requires careful consideration of relative model error as well as model instability and independence of model decisions. The greedy ensemble, a selective strategy of forming ensembles from a subset of 3 models, yields the lowest generalization error of all strategies. The greedy result for the cytology data (0.027) can be compared to two other comparable bagging ensemble studies that have been published. Breiman (1996) reports a generalization error of 0.037 for baseline-bagging ensembles consisting of CART models while Parmanto et al (1996) report a generalization error of 0.039 using ensembles of neural networks.

Insert Table 7 about here

The reader is obviously interested in understanding the level of statistical significance of the results reported in earlier discussions. To facilitate this understanding we include 95% confidence intervals for the generalization errors of the ensembles investigated in Figure 6 (Cytology Data) and Figure 7 (Prognostic Data). To improve the interpretability we limit inclusion in these figures to the “single best” cross validation result, the 24 baseline-bagging ensembles, and the greedy algorithm. The reader can conclude that the error differences are not statistically significant between pairs if their 95% confidence intervals overlap. If there is no overlap of the confidence intervals, the difference are statistically significant at a 95% confidence level.

Insert figure 6 about here

Insert figure 7 about here

5. CONCLUDING DISCUSSION

Breast cancer outcomes, like many decision support applications in the health care field, are critically dependent on early detection and accurate diagnosis. The accuracy of diagnostic decisions can be increased by an effective medical decision support system. Recent research has shown that physicians’ diagnostic performance is directly linked to the quality of information available from the decision support system  QUOTE "(Berner et al., 1999)" 
(Berner et al., 1999)
. The model selection strategy is an important determinant of the performance and acceptance of a MDSS application. The primary strategy used to date to select a model for an MDSS application is the identification of the single most accurate model in a cross validation study. We show that this strategy is critically dependent on the data partitions used in the cross validation study, and that the “single best” strategy does not result in a MDSS with the lowest achievable generalization error. A strategy of forming ensembles (a collection of individual models) provides more accurate diagnostic guidance for the physician. 

While the theory of bagging ensembles may give the impression that model selection is no longer relevant, our results demonstrate that the identification of high-potential candidate models for ensemble membership remains critically important. Our results also suggest that ensembles formed from a diversity of models are generally more accurate than the baseline-bagging ensembles and the “single best” strategy. The most effective ensembles are formed from a small and selective subset of the population of available models, with potential candidates identified by jointly considering the properties of model generalization error, model instability, and the independence of model decisions relative to other ensemble members. A greedy ensemble construction method advanced in this research results in the lowest generalization error of all model selection strategies investigated. The greedy algorithm for the cytology data is also more accurate than results reported for baseline-bagging ensembles of CART models  QUOTE "(Breiman, 1996)" 
(Breiman, 1996)
 and ensembles of neural network models  QUOTE "(Parmanto, Munro, & Doyle, 1996)" 
(Parmanto, et al., 1996)
.

The expected generalization error for using ensembles reduces the “single best” strategy for the Prognostic data formed with the greedy algorithm. This is a statistically significant reduction of error at a p value less than 0.05 and represents a 14.1% reduction in error. The clinical significance of this improvement is that there are potentially 27,000 fewer incorrect diagnosis per year based on the US breast cancer incidence rate alone. Although with the cytology data the greedy algorithm did not result in a statistically significant reduction compared to the “single best model” strategy for reasons explained earlier it did show an error reduction of 6.9%. While the focus of this paper is to minimize total misclassification errors, it is likely that a clinical implementation would be designed at a specificity-sensitivity tradeoff that minimizes the occurrence of false negatives. This can be accomplished with ensembles by a modification to the majority vote rule. For example it is feasible to require that 20 of 24 ensemble members are necessary to establish the clinical outcome that the disease is not present.

The reader is cautioned that there are a number of combining theories described in the research literature for constructing optimal ensembles. The use of these combining algorithms might result in more accurate ensembles than the ensembles formed in this research using majority vote. The numerical instability and associated estimation problems typical of these combining theories, however, may mitigate against their use in healthcare applications. While we feel the medical data used in this research is representative of diagnostic decision support applications, the reader is cautioned that the conclusions are based on two specific applications in the breast cancer diagnosis domain. More research is needed to verify that these results generalize to other medical domains and to areas beyond health care.

APPENDIX

	Model Definitions

Prognostic Data

	Model
	Parameter
	Note

	Neural Network
	
	

	
MLPa
	32x2x2
	MLP = Multi-layer Perceptron

	
MLPb
	32x4x2
	Format IxH1xO where:

	
MLPc
	32x6x2
	    I = number of input nodes

	
MLPd
	32x8x2
	    H1 = number of nodes in hidden layer 1

	
	
	    O = number of output nodes

	
	
	

	
MOEa
	32x2x2(2x2)
	MOE = Mixture of Experts

	
MOEb
	32x4x2(3x2)
	Format IxHxO (GhxGo) where:

	
MOEc
	32x6x2(4x2)
	    I = number of input nodes

	
MOEd
	32x8x2(4x2)
	    H = number of nodes in hidden layer 

	

	
	    O = number of output nodes

	
	
	    Gh = number of nodes in Gating hidden layer

	
	
	    Go = Number of Gating output nodes

	
	
	

	
RBFa
	32x20x2
	RBF = Radial Basis Function

	
RBFb
	32x40x2
	Format IxHxO where:

	
RBFc
	32x60x2
	    I = number of input nodes

	
RBFd
	32x80x2
	    H = number of nodes in hidden layer 

	
	
	    O = number of output nodes

	Parametric
	
	

	
LDA
	
	LDA = Fisher’s Linear Discriminant Analysis

	
LR
	
	LR = Logistic Regression

	
	
	

	Nonparametric
	
	

	
KNNa
	k = 3
	KNN = k Nearest Neighbor

	
KNNb
	k = 5
	Format k= i where: 

	
KNNc
	k = 7
	    i = number of nearest neighbors

	
KNNd
	k = 9
	

	
	
	

	
KDa
	R = 1
	KD = Kernel Density

	
KDb
	R = 3
	Format R = j where:

	
KDc
	R = 5
	j = radius of kernel function

	
KDd
	R = 7
	

	
	
	

	
CARTa
	Gini
	Splitting Rule

	
CARTb
	Twoing
	


	Model Definitions

Cytology Data

	Model
	Parameter
	Note

	Neural Network
	
	

	
MLPa
	9x2x2
	MLP = Multi-layer Perceptron

	
MLPb
	9x4x2
	Format IxH1xO where:

	
MLPc
	9x6x2
	    I = number of input nodes

	
MLPd
	9x8x2
	    H1 = number of nodes in hidden layer 1

	
	
	    O = number of output nodes

	
	
	

	
MOEa
	9x2x2(2x2)
	MOE = Mixture of Experts

	
MOEb
	9x4x2(3x2)
	Format IxHxO (GhxGo) where:

	
MOEc
	9x6x2(4x2)
	    I = number of input nodes

	
MOEd
	9x8x2(4x2)
	    H = number of nodes in hidden layer 

	

	
	    O = number of output nodes

	
	
	    Gh = number of nodes in Gating hidden layer

	
	
	    Go = Number of Gating output nodes

	
	
	

	
RBFa
	9x20x2
	RBF = Radial Basis Function

	
RBFb
	9x40x2
	Format IxHxO where:

	
RBFc
	9x60x2
	    I = number of input nodes

	
RBFd
	9x80x2
	    H = number of nodes in hidden layer 

	
	
	    O = number of output nodes

	Parametric
	
	

	
LDA
	
	LDA = Fisher’s Linear Discriminant Analysis

	
LR
	
	LR = Logistic Regression

	
	
	

	Nonparametric
	
	

	
KNNa
	k = 5
	KNN = k Nearest Neighbor

	
KNNb
	k = 7
	Format k= i where: 

	
KNNc
	k = 9
	    i = number of nearest neighbors

	
KNNd
	k = 11
	

	
	
	

	
KDa
	R = 0.1
	KD = Kernel Density

	
KDb
	R = 0.5
	Format R = j where:

	
KDc
	R = 1.0
	j = radius of kernel function

	
KDd
	R = 1.5
	

	
	
	

	
CARTa
	Gini
	Splitting Rule

	
CARTb
	Twoing
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Table 1

Ensemble Configurations for Model Diversity

	Population of Models:
	24 models
	12 models
	6 models

	Number of Different Models
	Number of

Model Replications
	
	
	

	24
	1
	X
	
	

	12
	2
	X
	X
	

	8
	3
	X
	X
	

	6
	4
	X
	X
	X

	4
	6
	X
	X
	X

	3
	8
	X
	X
	X

	2
	12
	X
	X
	X

	1*
	24
	X
	
	


* Baseline ensemble

	Table 2

Single Best Model Winning Frequency and Average Generalization Error

	
	
	Proportion of Wins

	
	Model
	Cytology
	Prognostic

	1
	MLPa
	0.02
	0.05

	2
	MLPb
	0.02
	0.03

	3
	MLPc
	0
	0.08

	4
	MLPd
	0
	0.07

	5
	MOEa
	0.03
	0.02

	6
	MOEb
	0.01
	0.04

	7
	MOEc
	0.02
	0.04

	8
	MOEd
	0.05
	0.08

	9
	RBFa
	0.08
	0.08

	10
	RBFb
	0.11
	0.08

	11
	RBFc
	0.22
	0.12

	12
	RBFd
	0.42
	0.22

	13
	CARTa
	0
	0.04

	14
	CARTb
	0
	0.03

	15
	LDA
	0
	0

	16
	LR
	0
	0

	17
	KNNa
	0
	0

	18
	KNNb
	0.02
	0.01

	19
	KNNc
	0
	0.01

	20
	KNNd
	0
	0

	21
	KDa
	0
	0

	22
	KDb
	0
	0

	23
	KDc
	0
	0

	24
	KDd
	0
	0

	Average error

Standard deviation
	0.029

(0.001)
	0.226

(0.007)


Table 3 Results of Baseline-bagging Ensembles

Prognostic Data

	Model
	Average
	Min 
	Max
	Stdev

	RBFc
	0.209
	0.195
	0.226
	0.006

	RBFd
	0.212
	0.195
	0.237
	0.007

	RBFb
	0.211
	0.195
	0.232
	0.006

	MOEc
	0.223
	0.200
	0.247
	0.009

	RBFa
	0.217
	0.200
	0.232
	0.007

	MOEd
	0.222
	0.200
	0.242
	0.009

	MOEa
	0.223
	0.200
	0.242
	0.008

	MOEb
	0.225
	0.205
	0.247
	0.008

	MLPc
	0.233
	0.211
	0.253
	0.008

	MLPb
	0.230
	0.200
	0.253
	0.009

	MLPd
	0.239
	0.211
	0.263
	0.009

	MLPa
	0.221
	0.195
	0.247
	0.010

	CARTa
	0.250
	0.216
	0.284
	0.015

	CARTb
	0.250
	0.205
	0.295
	0.015

	LR
	0.255
	0.221
	0.284
	0.012

	LDA
	0.282
	0.253
	0.316
	0.012

	KDa
	0.315
	0.279
	0.358
	0.014

	KDb
	0.317
	0.279
	0.363
	0.015

	KDc
	0.347
	0.300
	0.400
	0.015

	KNNb
	0.357
	0.305
	0.416
	0.016

	KNNd
	0.369
	0.326
	0.426
	0.016

	KNNc
	0.379
	0.332
	0.421
	0.017

	KDd
	0.380
	0.337
	0.421
	0.014

	KNNa
	0.385
	0.337
	0.432
	0.015


Table 4 Results of Baseline-bagging Ensembles

Cytology Data

	Model
	Average
	Min 
	Max
	Stdev

	RBFc
	0.028
	0.026
	0.031
	0.001

	RBFd
	0.029
	0.026
	0.031
	0.001

	RBFa
	0.030
	0.028
	0.032
	0.001

	RBFb
	0.030
	0.026
	0.032
	0.001

	MOEd
	0.033
	0.029
	0.037
	0.002

	MOEa
	0.034
	0.029
	0.038
	0.001

	MLPb
	0.034
	0.031
	0.038
	0.001

	MOEc
	0.034
	0.031
	0.038
	0.001

	MOEb
	0.035
	0.032
	0.038
	0.001

	MLPa
	0.035
	0.031
	0.038
	0.002

	MLPd
	0.035
	0.031
	0.040
	0.002

	MLPc
	0.036
	0.031
	0.041
	0.002

	KNNd
	0.036
	0.035
	0.040
	0.001

	KNNb
	0.036
	0.034
	0.040
	0.001

	KNNa
	0.037
	0.032
	0.040
	0.002

	KNNc
	0.037
	0.034
	0.040
	0.001

	LDA
	0.040
	0.040
	0.043
	0.001

	KDc
	0.043
	0.037
	0.049
	0.002

	KDb
	0.046
	0.040
	0.051
	0.002

	CARTa
	0.047
	0.040
	0.054
	0.003

	CARTb
	0.047
	0.040
	0.054
	0.003

	KDa
	0.048
	0.038
	0.054
	0.003

	LR
	0.062
	0.051
	0.071
	0.003

	KDd
	0.071
	0.068
	0.076
	0.002


Table 7

Comparison of Generalization Errors

	Model Selection Strategy
	Prognostic Data
	Cytology Data

	Single Best CV model
	0.226

(0.007)
	0.029

(0.0013)

	Baseline-Bagging Ensemble
	0.209

(0.006)
	0.028

(0.0013)

	Diverse Ensembles
	
	

	    Ensemble-24 potential members
	0.215

(0.014)
	0.033

(0.0024)

	    Ensemble-12 potential members
	0.209

(0.013)
	0.031

(0.0033)

	    Ensemble-6 potential members
	0.203

(0.010)
	0.027

(0.0011)

	    Greedy ensemble
	0.194

(0.011)
	0.027

(0.0012)



Parenthesis identify standard errors

Table 5

Correlation of Models for Prognostic Ensemble Members

	
	RBFc
	RBFd
	RBFb
	RBFa
	MOEd
	MOEa
	MOEb
	MOEc
	MLPa
	MLPc
	MLPb
	MLPd
	LR
	LDA
	CARTA
	CARTB

	RBFc
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	RBFd
	0.94
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	RBFb
	0.95
	0.93
	1
	
	
	
	
	
	
	
	
	
	
	
	
	

	RBFa
	0.91
	0.90
	0.93
	1
	
	
	
	
	
	
	
	
	
	
	
	

	MOEd
	0.65
	0.64
	0.64
	0.63
	1
	
	
	
	
	
	
	
	
	
	
	

	MOEa
	0.66
	0.65
	0.66
	0.64
	0.84
	1
	
	
	
	
	
	
	
	
	
	

	MOEb
	0.66
	0.65
	0.66
	0.64
	0.83
	0.82
	1
	
	
	
	
	
	
	
	
	

	MOEc
	0.67
	0.66
	0.67
	0.65
	0.82
	0.81
	0.81
	1
	
	
	
	
	
	
	
	

	MLPa
	0.66
	0.66
	0.66
	0.67
	0.73
	0.73
	0.73
	0.74
	1
	
	
	
	
	
	
	

	MLPc
	0.67
	0.66
	0.67
	0.66
	0.73
	0.74
	0.75
	0.75
	0.72
	1
	
	
	
	
	
	

	MLPb
	0.67
	0.66
	0.67
	0.66
	0.74
	0.74
	0.74
	0.74
	0.72
	0.75
	1
	
	
	
	
	

	MLPd
	0.67
	0.66
	0.66
	0.66
	0.74
	0.74
	0.74
	0.74
	0.72
	0.76
	0.75
	1
	
	
	
	

	LR
	0.34
	0.34
	0.33
	0.33
	0.38
	0.38
	0.36
	0.37
	0.34
	0.34
	0.34
	0.34
	1
	
	
	

	LDA
	0.26
	0.26
	0.25
	0.24
	0.40
	0.40
	0.37
	0.37
	0.32
	0.33
	0.33
	0.33
	0.53
	1
	
	

	CARTA
	0.37
	0.37
	0.36
	0.36
	0.35
	0.35
	0.36
	0.35
	0.34
	0.35
	0.34
	0.34
	0.22
	0.21
	1
	

	CARTB
	0.36
	0.37
	0.36
	0.36
	0.35
	0.35
	0.36
	0.35
	0.34
	0.35
	0.34
	0.34
	0.22
	0.21
	0.50
	1


Average correlation = 0.476

Table 6

Correlation of Models for Cytology Ensemble Members

	
	RBFc
	RBFd
	RBFb
	RBFa
	MOEd
	MOEa
	MOEb
	MOEc
	MLPa
	MLPc
	MLPb
	MLPd
	LR
	LDA
	CARTA
	CARTB

	RBFc
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	RBFd
	0.96
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	RBFb
	0.96
	0.96
	1
	
	
	
	
	
	
	
	
	
	
	
	
	

	RBFa
	0.96
	0.96
	0.96
	1
	
	
	
	
	
	
	
	
	
	
	
	

	MOEd
	0.76
	0.76
	0.75
	0.74
	1
	
	
	
	
	
	
	
	
	
	
	

	MOEa
	0.73
	0.73
	0.72
	0.72
	0.87
	1
	
	
	
	
	
	
	
	
	
	

	MOEb
	0.71
	0.71
	0.70
	0.70
	0.85
	0.84
	1
	
	
	
	
	
	
	
	
	

	MOEc
	0.70
	0.70
	0.69
	0.69
	0.84
	0.82
	0.81
	1
	
	
	
	
	
	
	
	

	MLPa
	0.68
	0.68
	0.67
	0.67
	0.78
	0.77
	0.77
	0.76
	1
	
	
	
	
	
	
	

	MLPc
	0.65
	0.65
	0.64
	0.64
	0.75
	0.75
	0.75
	0.74
	0.72
	1
	
	
	
	
	
	

	MLPb
	0.67
	0.67
	0.66
	0.66
	0.77
	0.76
	0.75
	0.74
	0.72
	0.69
	1
	
	
	
	
	

	MLPd
	0.64
	0.64
	0.63
	0.63
	0.73
	0.73
	0.72
	0.72
	0.70
	0.68
	0.68
	1
	
	
	
	

	LR
	0.36
	0.36
	0.36
	0.36
	0.39
	0.39
	0.38
	0.38
	0.37
	0.37
	0.37
	0.36
	1
	
	
	

	LDA
	0.59
	0.59
	0.59
	0.60
	0.69
	0.69
	0.66
	0.64
	0.64
	0.61
	0.62
	0.59
	0.38
	1
	
	

	CARTA
	0.44
	0.44
	0.43
	0.43
	0.46
	0.46
	0.46
	0.45
	0.46
	0.44
	0.44
	0.43
	0.34
	0.43
	1
	

	CARTB
	0.44
	0.44
	0.43
	0.43
	0.46
	0.46
	0.46
	0.45
	0.46
	0.44
	0.44
	0.43
	0.34
	0.43
	0.86
	1



Average correlation = 0.616
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Figure 1

Bagging Ensemble Schema for Classification Decisions
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Data summary

		Baseline																Bags of		All Models		24												Bags of		ANN only		12				Bags of		ANN only		6						Bags of		Greedy algorithm				rbfnetc and LDA

		Bag		Average		Min		Max		Stdev		Range						24																24		Top 50%						24		Top 25%								24

		rbfnetc		0.2086526316		0.1947368421		0.2263157895		0.0059973628		0.0315789474						Number of		Bootstrap				Converged		Error								Number of		Bootstrap		Converged				Number of		Bootstrap		Converged						Number of		Bootstrap				Converged		Error

		rbfnetd		0.2119157895		0.1947368421		0.2368421053		0.0069850442		0.0421052632						Models		per model		Average		Min		Max		Stdev		Range				Models		per model		Error				Models		per model		Error						Models		per model		Average		Min		Max		Stdev		Range

		rbfnetb		0.2110947368		0.1947368421		0.2315789474		0.0057970973		0.0368421053						1		24		0.2775												1		24		0.2208210526				1		24		0.2155368421						rbfnetc		lda		0.2094736842		0.1842105263		0.2421052632		0.0113795009		0.0578947368

		moenetc		0.2234105263		0.2		0.2473684211		0.0087475289		0.0473684211						2		12		0.2453												2		12		0.2156631579				2		12		0.2061684211						rbfnetc		logistic		0.1974315789		0.1736842105		0.2210526316		0.009646513		0.0473684211

		rbfneta		0.2170947368		0.2		0.2315789474		0.0071894811		0.0315789474						3		8		0.2348												3		8		0.2135157895				3		8		0.2056210526						rbfnetc		CARTB		0.2055368421		0.1842105263		0.2263157895		0.0086997069		0.0421052632

		moenetd		0.2224210526		0.2		0.2421052632		0.0092439079		0.0421052632						4		6		0.2317												4		6		0.2111578947				4		6		0.2030736842						rbfnetd		CARTB		0.2071368421		0.1842105263		0.2315789474		0.0088706096		0.0473684211

		moeneta		0.2229894737		0.2		0.2421052632		0.0080336818		0.0421052632						6		4		0.2247												6		4		0.2121263158				6		4		0.2031578947						rbfnetc		moenetc		0.2027368421		0.1842105263		0.2210526316		0.0079098706

		moenetb		0.2250105263		0.2052631579		0.2473684211		0.0080231507		0.0421052632						8		3		0.223												8		3		0.2096631579												rbfnetc		moenetc		bpneta		0.2091157895		0.1894736842		0.2421052632		0.0094518408

		bpnetc		0.2328421053		0.2105263158		0.2526315789		0.0081399937		0.0421052632						12		2		0.2177												12		2		0.2092842105				based on 10x CV results								rbfnetc		CARTB		logistic		0.1945684211		0.1631578947		0.2315789474		0.0116964504

		bpnetb		0.2302315789		0.2		0.2526315789		0.0093368068		0.0526315789						24		1		0.2146																												average of 3 models of 6						0.2030368421		0.1684210526		0.2526315789		0.0121685035

		bpnetd		0.2387157895		0.2105263158		0.2631578947		0.0093825675		0.0526315789																																						rbfnetd		CARTB		logistic		0.1941052632		0.1578947368		0.2368421053		0.0113211171

		bpneta		0.2207789474		0.1947368421		0.2473684211		0.0104750602		0.0526315789								improvement =		22.67%														improvement =		5.22%						improvement =		5.74%				rbfnetc		CARTB		logistic		0.1942105263		0.1631578947		0.2263157895		0.0110837529

		carta		0.2495368421		0.2157894737		0.2842105263		0.0147760598		0.0684210526																																						moeneta		CARTB		logistic		0.2058105263		0.1684210526		0.2421052632		0.0133085813
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		lda		0.2815578947		0.2526315789		0.3157894737		0.0118417929		0.0631578947

		kernela		0.3147157895		0.2789473684		0.3578947368		0.0141059667		0.0789473684

		kernelb		0.3169473684		0.2789473684		0.3631578947		0.0145497224		0.0842105263

		kernelc		0.3466526316		0.3		0.4		0.0146809339		0.1
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Data summary

		Baseline		Average		Min		Max		Stdev		Range		10x CV				Bags of		All Models		24												Bags of		ANN only		12												Bags of		ANN only		6

		Bag												Results				24																24																24																		Greedy algorithm

		rbfnetc		0.0284529412		0.0264705882		0.0308823529		0.0013004724		0.0044117647						Number of		Bootstrap				Converged		Error								Number of		Bootstrap				Converged		Error								Number of		Bootstrap				Converged		Error

		rbfnetd		0.0286058824		0.0264705882		0.0308823529		0.0012910886		0.0044117647						Models		per model		Average		Min		Max		Stdev		Range				Models		per model		Average		Min		Max		Stdev		Range				Models		per model		Average		Min		Max		Stdev		Range

		rbfneta		0.0297411765		0.0279411765		0.0323529412		0.0009009382		0.0044117647						1		24		0.0384882353		0.0264705882		0.0647058824		0.0072137812		0.0382352941				1		24		0.0330352941		0.0264705882		0.0397058824		0.0028023211		0.0132352941				1		24		0.0306058824		0.0264705882		0.0382352941		0.0024870323		0.0117647059				rbfnetc		rbfnetb		kernelc		0.0290764706		0.0279411765		0.0323529412		0.0009131373		bias

		rbfnetb		0.0298352941		0.0264705882		0.0323529412		0.0010430486		0.0058823529						2		12		0.0343470588		0.0264705882		0.0485294118		0.0042332536		0.0220588235				2		12		0.0313		0.025		0.0382352941		0.0032828316		0.0132352941				2		12		0.0291117647		0.025		0.0367647059		0.002105863		0.0117647059				rbfnetc		moeneta		bpnetc		0.0313294118		0.0264705882		0.0352941176		0.00191196		correlation

		moenetd		0.0329411765		0.0294117647		0.0367647059		0.0015482673		0.0073529412						3		8		0.0334470588		0.025		0.0470588235		0.0036089548		0.0220588235				3		8		0.0313588235		0.025		0.0382352941		0.0030807256		0.0132352941				3		8		0.0280588235		0.025		0.0338235294		0.0017395242		0.0088235294				rbfnetc		logistic		CARTA		0.0334		0.0264705882		0.0411764706		0.0027884764		correlation

		moeneta		0.0339941176		0.0294117647		0.0382352941		0.0013233522		0.0088235294						4		6		0.0331058824		0.0264705882		0.0411764706		0.0029595223		0.0147058824				4		6		0.0313529412		0.025		0.0382352941		0.0032342738		0.0132352941				4		6		0.0281294118		0.025		0.0323529412		0.0013945123		0.0073529412				rbfnetc		rbfnetc		rbfnetb		0.0290823529		0.0264705882		0.0308823529		0.0012622849		guess

		bpnetb		0.0344176471		0.0308823529		0.0382352941		0.0014016316		0.0073529412						6		4		0.0329764706		0.0264705882		0.0411764706		0.0028098733		0.0147058824				6		4		0.0313882353		0.025		0.0367647059		0.0026432106		0.0117647059				6		4		0.0271235294		0.025		0.0308823529		0.0011326747		0.0058823529				average 500 30f 6 best						0.0308941176		0.025		0.0382352941		0.0024911936

		moenetc		0.0344823529		0.0308823529		0.0382352941		0.0011855309		0.0073529412						8		3		0.0328352941		0.025		0.0397058824		0.0025541209		0.0147058824				8		3		0.0313411765		0.025		0.0367647059		0.0025988871		0.0117647059																				rbfnetc		rbfnetb		moeneta		0.0269264706		0.025		0.0308823529		0.0012084357

		moenetb		0.0346647059		0.0323529412		0.0382352941		0.001247571		0.0058823529						12		2		0.0325294118		0.025		0.0382352941		0.0023949417		0.0132352941				12		2		0.0315470588		0.0264705882		0.0367647059		0.0020416329		0.0102941176																				rbfnetc		rbfnetb		moenetd		0.0271382353		0.025		0.0308823529		0.0011812168

		bpneta		0.0347		0.0308823529		0.0382352941		0.0015710876		0.0073529412						24		1		0.0329117647		0.0279411765		0.0397058824		0.0021714575		0.0117647059

		bpnetd		0.0352882353		0.0308823529		0.0397058824		0.001745993		0.0088235294

		bpnetc		0.0355941176		0.0308823529		0.0411764706		0.0017647945		0.0102941176								improvement =		15.48%														improvement =		4.50%

		knnd		0.0363529412		0.0352941176		0.0397058824		0.0009967917		0.0044117647

		knnb		0.0364941176		0.0338235294		0.0397058824		0.001199051		0.0058823529

		knna		0.0366235294		0.0323529412		0.0397058824		0.0016025594		0.0073529412								Calculate ambiguity

		knnc		0.0371529412		0.0338235294		0.0397058824		0.0011282955		0.0058823529

		lda		0.0401470588		0.0397058824		0.0426470588		0.0007005121		0.0029411765

		kernelc		0.0425058824		0.0367647059		0.0485294118		0.0021889777		0.0117647059

		kernelb		0.0459352941		0.0397058824		0.0514705882		0.0022309895		0.0117647059

		carta		0.0470058824		0.0397058824		0.0544117647		0.0026632768		0.0147058824

		cartb		0.0470235294		0.0397058824		0.0544117647		0.0028782786		0.0147058824

		kernela		0.0477588235		0.0382352941		0.0544117647		0.0025664215		0.0161764706

		logistic		0.0615058824		0.0514705882		0.0705882353		0.0033913873		0.0191176471

		kerneld		0.0712176471		0.0676470588		0.0764705882		0.001659819		0.0088235294

		Average		0.0392683824						average of single best =		0.029243

																								single		best				greedy		algorithm

																				Graph

																		1		0.0284529412				1		0.029243				1		0.0269264706

																		1		0.0286058824				2		0.029243				2		0.0269264706

																		1		0.0297411765				3		0.029243				3		0.0269264706

																		1		0.0298352941				4		0.029243				4		0.0269264706

																		1		0.0329411765				6		0.029243				6		0.0269264706

																		1		0.0339941176				8		0.029243				8		0.0269264706

																		1		0.0344176471				12		0.029243				12		0.0269264706

																		1		0.0344823529				24		0.029243				24		0.0269264706

																		1		0.0346647059

																		1		0.0347

																		1		0.0352882353

																		1		0.0355941176

																		1		0.0363529412

																		1		0.0364941176

																		1		0.0366235294

																		1		0.0371529412

																		1		0.0401470588

																		1		0.0425058824

																		1		0.0459352941

																		1		0.0470058824

																		1		0.0470235294

																		1		0.0477588235

																		1		0.0615058824

																		1		0.0712176471



David West:
varys initial conditrions only

David West:
varys bootstrap learning set for diversity

David West:
varys model and uses bootstrap learning set, up to 24 different models used

David West:
varys models and bootstrap learning, uses only top 50% of CV models

David West:
uses to 25% of CV models

David West:
varys models and bootstrap learning, uses only top 50% of CV models

David West:
uses to 25% of CV models
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