
Performance Analysis of Deep Neural Maps

Boren Zheng and Lutz Hamel

Dept. of Computer Science and Statistics
University of Rhode Island
Kingston, RI 02881–2018

boren zheng@uri.edu, lutzhamel@uri.edu

Abstract. Deep neural maps are unsupervised learning and visualiza-
tion methods that combine autoencoders with self-organizing maps. An
autoencoder is a deep artificial neural network that is widely used for di-
mension reduction and feature extraction in machine learning tasks. The
self-organizing map is a neural network for unsupervised learning often
used for clustering and the representation of high-dimensional data on
a 2D grid. Deep neural maps have shown improvements in performance
compared to standalone self-organizing maps when considering clustering
tasks. The key idea is that a deep neural map outperforms a standalone
self-organizing map in two dimensions: (1) Better convergence behav-
ior by removing noisy/superfluous dimensions from the input data, (2)
faster training due to the fact that the cluster detection part of the DNM
deals with a lower dimensional latent space. Traditionally, only the basic
autoencoder has been considered for use in deep neural maps. However,
many different kinds of autoencoders exist such as the convolutional and
the denoising autoencoder and here we examine the effects of various
autoencoders on the performance of the resulting deep neural maps. We
investigate five types of autoencoders as part of our deep neural maps
using three different data sets. Overall we show that deep neural maps
perform better than standalone self-organizing maps both in terms of im-
proved convergence behavior and faster training. Additionally we show
that deep neural maps using the basic autoencoder outperform deep neu-
ral maps based on other autoencoders on non-image data. To our surprise
we found that deep neural maps based on contractive autoencoders out-
performed deep neural maps based on convolutional autoencoders on
image data.

Keywords: autoencoder, deep neural map, self-organizing map, deep
learning

1 Introduction

Deep neural maps (DNMs) [20] are unsupervised learning and visualization
methods that combine autoencoders with self-organizing maps. An autoencoder
(AE) is a deep artificial neural network that is widely used for dimensional-
ity reduction and feature extraction in machine learning tasks [14]. The self-
organizing map (SOM) is an artificial neural network designed for unsupervised

2 Boren Zheng et al.

learning [16]. It is often used for clustering and the representation of high-
dimensional data on a 2D grid. Deep neural maps have shown improvements
in performance compared to standalone self-organizing maps when considering
clustering tasks [22] [20].

In diverse fields such as genomic data clustering [21] and cluster analysis
of massive astronomical data [15], self-organizing maps are a good clustering
approach since they not only accomplish the clustering task but also provide an
accessible, visual clustering representation. However, because both genomic data
and astronomical data are extremely high-dimensional, convergence behaviors of
SOMs tend to be very slow and erratic. In deep neural maps, an autoencoder
is used to reduce the dimensionality of the original data as a preprocessing step
before the training of the underlying self-organizing map begins thus improving
the convergence behavior and speed of the map.

In all studies we are aware of, e.g. [4,5,20,22], only consider a single autoen-
coder architecture as part of their deep neural maps. Here, we investigate five
types of autoencoders as part of our deep neural maps using three different data
sets illuminating the performance characteristics of the various autoencoders.
The five autoencoder architectures we investigate are: (1) basic (2) sparse, (3)
contractive, (4) denoising, and (5) convolutional. Here autoencoder architectures
(2), (3), and (4) can be considered regularized versions of the basic autoencoder
architecture (1). Architecture (5), the convolutional autoencoder, is based on
convolutional deep neural networks commonly used for image processing [18].
The data sets we used in our analysis are the digits data set derived from the
MNIST database [19], the landsat data set [24], and a synthetic data set that
contains 16 well-defined clusters in 64-dimensional space.

We show that DNMs improve the performance of standalone SOMs along two
dimensions: (1) DNMs improve convergence behavior by removing noisy/superfluous
dimensions from the input data. The improved convergence behavior can be ob-
served by superior cluster homogeneity and convergence accuracy scores. (2)
DNMs train faster due to the fact that the cluster detection part of the DNM
deals with a lower dimensional latent space.

It is perhaps a surprise that for non-image data a DNM with a basic au-
toencoder outperforms all others. For image data we found that a DNM with
a contractive autoencoder performs best and not a DNM with a convolutional
autoencoder as one would expect.

The remaining sections of this paper are organized as follows. We give brief
overviews of self-organizing maps, autoencoders, and the design of our deep
neural maps in Section 2, Section 3, and Section 4, respectively. In Section 5
we detail our experiments, describe our data sets, and explain the evaluation
methods we used. We discuss our results in Section 6. Finally, We summarize
and propose future work in Section 7.

Deep Neural Maps 3

Fig. 1. Training a SOM.

2 Self-Organizing Maps

Self-organizing maps were introduced by Kohonen in the 1980’s as a way to
visualize high-dimensional data on a 2-D grid [16]. The 2-D grid consists of
high-dimensional neurons where the dimensionality of each neuron matches the
dimensionality of the training data. Figure 1 illustrates the training process of
a SOM. In the initial map, the neurons are initialized with small random values
and as the training data is repeatedly applied to the map the neurons are starting
to take on the form of the training data. What is particularly interesting is that
certain regions of the map become sensitized to certain traits in the training data.
Figure 4 shows typical 2-D starburst visualizations of the final neuron map. The
starbursts represent clusters in the high-dimensional training data space.

The basic SOM training algorithm can be summarized as follows [11]:

1. Initialization: initialize each neuron weight vector mi with small random
values.

2. Selection step: select a training data vector xk from the training data.
3. Competitive step: find the best matching neuron mc based on the Euclidean

distance between the training data vector xk and the neurons mi on the
map:

c = arg min
i

(‖mi − xk‖). (1)

4. Update step: update the winning neuron’s mc neighborhood using the fol-
lowing rule:

mi ←mi − η(mi − xk)h(c, i) (2)

where η(mi−xk) denotes the difference between a neuron and the training
instance scaled by the learning rate 0 < η < 1, h(c, i) denotes the following
loss function:

h(c, i) =

{
1 if i ∈ Γ (c),

0 otherwise,
(3)

where Γ (c) is the neighborhood of the best matching neuron mc.

Repeat steps 2, 3, and 4 until the map has converged.

4 Boren Zheng et al.

Fig. 2. The basic autoencoder architecture.

3 Autoencoders

Autoencoders are deep neural networks that conceptually consist of three parts:
(a) the encoder, (b) the neurons representing the latent space encoding the com-
pressed/encoded information, and (c) the decoder. Figure 2 shows the architec-
ture of a basic autoencoder. Each colored column represents a layer of neurons in
this illustration. Observe that both the encoder and the decoder are deep multi-
layer neural networks. In this basic architecture the encoder maps the input into
the hidden layer representing the latent space and the decoder reconstructs the
input from this hidden layer representation. An autoencoder where the latent
space is of lower dimensionality than the input space is called undercomplete
and we call an autoencoder for which the converse is true overcomplete. Regu-
larization can be used to prevent autoencoders from simply copying information
from the input to the latent space without learning anything useful [8].

The Basic Autoencoder: Let φ : X → F represents the encoder part
of a basic autoencoder (AE) as shown in Figure 2 that maps the input space
X into a latent space F . Also, let ψ : F → X be the decoder part of a basic
autencoder that maps the latent space F into the input space X. Training a
basic autoencoder can now be understood as the optimization problem,

arg min
φ,ψ

L
(
x, (ψ ◦ φ)x

)
,∀x ∈ X. (4)

That is, we want to find neural networks φ and ψ for the en- and decoders,
respectively, that minimize the loss L between the original input and the recon-
structed input available as output from the decoder. Individual layers φk and ψl
in the en- and decoder networks, respectively, can be written as the equations,

φk(hk−1) = σ(hk−1 •Wk) = hk

ψl(hl−1) = σ(hl−1 •Ul) = hl
(5)

where • is the dot product extended to matrices, σ is the activation function,
and the matrices Wk and Ul are the weight matrices of the corresponding layers.
For the input layer of the encoder network we then have,

φ0(x) = σ(x •W0) = h0 (6)

Deep Neural Maps 5

with x ∈ X and h0 an intermediate network representation of the input. For the
output layer p of the encoder network we have,

φp(hp−1) = σ(hp−1 •Wp) = hp (7)

where hp ∈ F is the representation of some point x ∈ X in latent space F . That
is,

φ(x) = (φp ◦ . . . ◦ φ1 ◦ φ0)x = hp. (8)

Similarly for the decoder network we have,

ψ(hp) = (ψq ◦ . . . ◦ ψp+2 ◦ ψp+1)hp ≈ x. (9)

with q > p. This optimization problem can be solved using a deep neural network
library such as Keras [1].

The Sparse Autoencoder: A sparse autoencoder (SAE) only has a small
number of nodes that are activated in the hidden code layer at any particular
time [2]. The objective function of an SAE is the objective function of the basic
AE plus a sparsity penalty term,

L
(
x, (ψ ◦ φ)x

)
+Ω(h) (10)

where φ and ψ denote the encoder and decoder networks, respectively, and h =
(h1, h2, . . . , hn) with n the dimensionality of the latent space is the output vector
of output layer of the encoder network defined as φ(x) = h. The sparsity penalty
term is defined as,

Ω(h) = λ

n∑
i

|hi|, (11)

where λ is a hyperparameter of the autoencoder model [8].
The Denoising Autoencoder: The denoising autoencoder (DAE) does

not directly add a regularization term to the objective function in order to avoid
overfitting but instead adds noise to the input signal before the input is applied
to the encoder network. The trick is that the output of the decoder is compared
to the original signal rather than the noisy input and therefore the network has
to learn to ignore noise thereby preventing it from overfitting.

Let x̂ = ω(x) for all x̂,x ∈ X. Here x denotes an original training instance
and x̂ represents the original instance with noise added by process ω. We can
now rewrite our objective function for the denoising autoencoder,

L
(
x, (ψθ′ ◦ φθ)ω(x)

)
, (12)

where θ and θ′ are additional parameters on the encoder and decoder networks,
respectively, that are trained to minimize the average reconstruction error over
the training set [8, 25].

The Contractive Autoencoder: The contractive autoencoder (CAE) adds
a regularization term to the loss function of the basic autoencoder based on the
Frobenius norm of the Jacobian matrix of the features of the latent space [23].

6 Boren Zheng et al.

This regularization term will make the autoencoder more robust to perturbations
of the input and is encouraged to contract the input neighborhood to a smaller
output neighborhood [8]. The objective function for the CAE is,

L
(
x, (ψ ◦ φ)x

)
+ λ‖Jf (x)‖2F , (13)

where the regularization term is defined as,

‖Jf (x)‖2F =

n∑
ij

(
∂hj
∂xi

)2

. (14)

Additionally, as before h = (h1, h2, . . . , hn) with n the dimensionality of the
latent space is the output vector of the hidden code layer defined as φ(x) = h.

The Convolutional Autoencoder: A convolutional autoencoder (Con-
vAE) is built with convolutional layers rather than fully connected layers and
hence tend to be well suited for image data sets. Here, single encoder and decoder
layers are defined, respectively, as follows [9]:

φk(hk−1) = σ(hk−1 ∗Wk) = hk

ψl(hl−1) = σ(hl−1 ∗Ul) = hl
(15)

With respect to the basic autoencoder in Section 3 above the only thing that has
changed is that the dot product operation has been replaced with a convolution
operator ∗. Our remarks on network composition from above also apply here
with,

φ(x) = (φp ◦ . . . ◦ φ1 ◦ φ0)x = hp,

ψ(hp) = (ψq ◦ . . . ◦ ψp+2 ◦ ψp+1)hp ≈ x.
(16)

Where x ∈ X, hp ∈ F , and q is the number of layers in the autoencoder with
p < q.

The underlying optimization problem is to minimize the mean squared error
between the input and output over all samples [9]:

arg min
φ,ψ

1

|X|
∑
x∈X
‖x− (ψ ◦ φ)x‖2. (17)

where x ∈ X represents the set of training instances in input space and |X| the
number of training instances.

4 Deep Neural Maps

The general architecture of our deep neural maps (DNMs) is shown in Figure 3.
It consists of an autoencoder and a self-organizing map. The idea is that the
autoencoder maps the input data into a latent space and the SOM is trained
using this latent space. Pesteie, Abolmaesumi and Rohling have shown that this

Deep Neural Maps 7

Fig. 3. Our deep neural map architecture.

architecture performs well in their experiments [20]. Similarly, Rajashekar [22]
proposed an autoencoder based self-organizing map framework that uses a basic
autoencoder with two hidden layers.

Training of DNMs consists of two phases shown with the red arrows in Fig-
ure 3. Phase I consists of training the autoencoder which in turn consists of
solving the optimization problems discussed in the previous section. Training
autoencoders is fairly fast. It takes about 200 epochs of batch size 128 to fully
train the autoencoders discussed here. This is very fast compared to training
a fully converged SOM which typically takes in the order of tens of thousands
of iterations. Furthermore, training time of the autoencoder is amortized over
the SOM model evaluation steps. Phase II is the training of the SOM using the
latent space mapping of the input data.

5 Experiments

We evaluate the performance of our deep neural maps with the various different
encoders on three different real-world and synthetic data sets.

Data Sets: For our experiments we used the following data sets:
(1) The dim064 [7] [6] is a 64-dimensional synthetic data set with 1024

observations that are well separated into 16 Gaussian clusters. We split the data
set as follows: 60% data for training (614 instances) and 40% data for testing (410
instances). (2) The landsat satellite data set from the UCI machine learning
repository [3] is a real-world data set with 6435 instances and 36 attributes
and 6 classes. The data set consists of the multi-spectral values of pixels in a
satellite images together with their classifications. The training set contains 4435
instances, and the test set contains 2000 instances, 500 of which were used for
phase II training of the DNMs. (3) The digits database from the UCI machine
learning repository [3] is derived from the MNIST database and represents hand-
written digits as 8× 8 pixel images [26]. The 1797 images are stored as vectors
with 64 features. For our purposes we split this data set into a training set (1437
instances) and a test set (360 instances).

8 Boren Zheng et al.

Model Evaluation and Selection: As mentioned before, training a deep
neural map consists of training two different models. One for the autoencoder
and one for the self-organizing map.

For the autoencoders our model selection criterion was the test loss error (or
reconstruction error). We chose a model architecture and the number of epochs
to train a model based on minimizing that loss. In this research we found that
all our autoencoder models had properly converged after 200 epochs.

Once an autoencoder has been properly trained we used its output to train
the self-organizing map part of a deep neural map. Here we used the convergence
accuracy [10] as a model selection criterion. For this research we selected the
model with the highest convergence accuracy. For the current work we trained
40 models for each deep neural map with varying numbers of training iterations
in order to compute the learning curve and select an appropriate model.

A fully trained deep neural network can then be used to produce a cluster
representation of the input data on a 2D map. A typical DNM cluster presen-
tation is shown in Figure 4. It is a heat map where deep red colors represent
cluster borders and yellow/white areas represent cluster centers. The starburst
graphic overlay emphasizes the cluster structure of the data [12].

Remarks on Self-Organizing Map Architectures: One of the most im-
portant hyper-parameters for SOMs is the size of the map. Here we use the
following rule of thumb: There should be as least as many neurons on the map
as there are observations in the training data. Since phase II training data con-
sists of roughly 500 observations for all three experiments we chose a map size
of 25 × 20 for all experiments. Another hyper-parameters is the learning rate.
Here we set the learning rate fairly aggressively at .6. Finally, the POPSOM
package [13] uses a constant neighborhood which contracts over the duration of
the training phase.

Remarks on Autoencoder Architectures: Our basic autoencoder was
implemented using a single fully-connected layer as encoder and as decoder. We
added an L1 regularizer to the basic AE in order to obtain the SAE. The CAE
used the same architecture as the SAE except that we used a different penalty
term. We implemented the penalty term of Equation 13 as,

‖Jf (x)‖2F =
∑
ij

(
∂hj
∂xi

)2

=
∑
j

[hj(1− hj)]2
∑
i

(
WT

ji

)2
(18)

where as before x ∈ X, h = (h1, . . . , hn) ∈ F is the input representation in
latent space, and W is the weight matrix of the encoder layer [17].

We set the noise factor to be 0.5 to create noisy input for the DAE. For the
models of dim064 and landsat data sets, both the encoded layer and the decoded
layer of the DAE are single fully-connected layers. For the digits data set, we
implemented the model as a Denoising Convolutional Autoencoder (DCAE).
The encoder consists of three 2D convolutional layers followed by down-sampling
layers (pooling size 2×2) and a flatten layer (encoded layer). The decoder consists
of four 2D convolutional layers followed by three up-sampling layers (size 2× 2),
the last convolutional layer is the decoded layer.

Deep Neural Maps 9

Table 1. DNM performance with different AEs on the dim064 data set.

SOM DNM(AE) DNM(SAE) DNM(CAE) DNM(DAE) DNM(ConvAE)

homog. 0.92 1.00 0.83 1.00 0.98 0.93
nclust 15 16 13 16 16 15
time (sec) 20.75 1.18 0.52 0.68 1.82 1.17
conv. 0.78 0.87 0.5 0.53 0.66 0.99
dim 64 11 7 9 12 8

We utilized 1D convolutional layers, 1D max-pooling layers, and 1D up-
sampling layers to build the ConvAE models for the dim064 and the landsat
data sets. For the model of the digits data set, the architecture of the ConvAE
is the same as DCAE. However, it uses the original data as input rather than
noisy data.

One more note, further dimension reduction was achieved by dropping columns
in the latent space representation that were all zeros.

6 Results

We look at the performance of DNMs with different autoencoder architectures
compared to standalone SOMs for each of our data sets. Our performance analy-
sis uses five dimensions in order to describe the performances for both standalone
SOMs and DNMs:

– homog. – Average homogeneity of the detected clusters. This is defined as

homog =
1

n

∑
c

lc (19)

where lc is the number of majority label instances in cluster c and n is the
total number of observations in the training data set.

– nclust – The number of clusters detected.
– time – Phase II training time in CPU seconds (total training time for stan-

dalone SOM).
– conv. – Phase II convergence accuracy (convergence accuracy for standalone

SOM).
– dim – Dimensions of the latent space (or in the case of the SOM it is the

dimensionality of the original space).

Using these criteria we validated the key advantages of deep neural maps over
self-organizing maps:

1. A better clustering behavior due to the removal of noisy and/or superfluous
dimensions in the input data.

2. Faster training times due to the lower dimensionality of the latent space.

Performance Analysis for Dim064: Table 1 shows the typical perfor-
mance values of the standalone SOM and the phase II performances of our vari-
ous DNMs when trained with the dim064 data set. We can see that the SOM has

10 Boren Zheng et al.

Fig. 4. The graphical output of the DNM(AE) for the dim064 data set.

an average homogeneity of .92, detected 15 clusters, took 20.75secs to converge
with a convergence accuracy of .78, and was trained with 64-dimensional data.
Now, in order to find the best DNM model we have to find a DNM model that:

1. Maximizes homogeneity,
2. minimizes the number of clusters,
3. minimizes training time,
4. maximizes convergence accuracy, and
5. uses the smallest number of dimensions.

Keep a couple of constraints in mind when looking for the best model: Maxi-
mizing homogeneity is more important than minimizing the number of clusters
(to a certain degree - we can always achieve a homogeneity of 1 if we treat each
point as a cluster) and producing better values in all the other dimensions is
more important than reducing the number of dimensions.

Applying these criteria we find that the deep neural map with the basic
autoencoder, DNM(AE), performs best with DNM(CAE) coming in as a close
second. The DNM(AE) has a homogeneity of 1, finds all 16 clusters in the data
set using a 11-dimensional latent space with a convergence accuracy of 0.87.
Phase II training is about 17 times faster than training the standalone SOM.

This validates our first point above. The DNM(AE) has a better clustering
behavior than the standalone SOM: A homogeneity value of 1 compared to .92
in the standalone SOM and a convergence accuracy of .87 compared to .78 in
the standalone SOM. Furthermore DNM(AE) phase II training is about 17 times
faster than training the standalone SOM validating our second point above.

Figure 4 shows the graphic output of the DNM(AE). The 16 homogeneous
clusters are clearly visible under the starbursts and we have mapped the labels
of the training instances on top of the map.

Performance Analysis for Landsat: Table 2 displays typical performance
data for the landsat data set. Here we find that the standalone SOM detected 10
clusters with an average homogeneity of .78 and a convergence accuracy of .95.
It took the standalone SOM 4.83 seconds to train on the 36 dimensional input
data.

Applying the same analysis from the previous section to the performance
of the phase II training of our various DNM architectures we again find the

Deep Neural Maps 11

Table 2. DNM performance with different AEs on the landsat data set.

SOM DNM(AE) DNM(SAE) DNM(CAE) DNM(DAE) DNM(ConvAE)

homog. 0.78 0.78 0.79 0.77 0.52 0.74
nclust 10 10 9 10 8 9
time (sec) 4.83 0.67 0.54 1.1 1.2 0.93
conv. 0.95 0.98 0.5 0.99 0.54 0.99
dim 36 3 2 3 2 5

Fig. 5. The graphical output of the DNM(AE) for the landsat data set.

DNM(AE) is the front runner. We chose it over the DNM(CAE) based on the fact
that it trains about twice as fast and has a slightly higher average homogeneity.
When comparing the phase II training of DNM(AE) to the standalone SOM we
find that it also detects 10 clusters with an average homogeneity of .78. However,
its convergence accuracy of .98 is higher than the .95 of the standalone SOM
and that it trains on 3-dimensional data compared to the 36 dimensions in the
standalone. Most notably is that the phase II training of DNM(AE) runs about
7 times faster than training the standalone SOM.

We can observe again that our two evaluation criteria for DNMs are fulfilled.
The DNM(AE) trains faster and has a higher convergence accuracy than the
standalone SOM.

Figure 5 shows the map produced by our DNM(AE) for this data set. The
clusters are clearly visible under the starbursts. What is interesting here is that
the cluster with label 2 is set apart from all the other clusters.

Performance Analysis for Digits: Table 3 shows the performance num-
bers for our digits data set. Here the deep neural map with the contractive
autoencoder, DNM(CAE), is clearly the winner. It has the highest average clus-
ter homogeneity of .78, detects a reasonable number of clusters, trains about 11
times faster than the standalone SOM, and has a convergence accuracy that is
about twice that of the standalone SOM. The latent space for this DNM has 12
dimensions.

Therefore, we can observe once more that our two evaluation criteria are
fulfilled: The DNM(CAE) trains faster than the standalone SOM and has a
better convergence behavior in terms of higher homogeneity and convergence
accuracy scores than the standalone SOM.

12 Boren Zheng et al.

Table 3. DNM performance with different AEs on the digits data set.

SOM DNM(AE) DNM(SAE) DNM(CAE) DNM(DCAE) DNM(ConvAE)

homog. 0.65 0.64 0.68 0.78 0.54 0.62
nclust 14 13 14 14 12 10
time (sec) 8.36 0.74 4.35 0.75 0.58 1.44
conv. 0.48 0.94 0.93 0.95 0.95 0.96
dim 64 12 12 12 5 11

Fig. 6. The graphical output of the DNM(AE) for the digits data set.

It is a bit disappointing that none of the models detected the ten clusters
due to the ten digits in the data set. However, the data set seems very noisy and
the clusters that were found seem to be a reasonable approximation to the ideal
clusters. Figure 6 shows the map produced by the DNM(CAE). What is perhaps
noteworthy is that the digit 0 has the strongest cluster towards the upper left
corner of the map. This is perhaps due to the fact that it is the most recognizable
and unique digit compared to all the other digits.

Observations: In all three of our data sets we found that DNMs outperform
standalone SOMs by training faster and exhibiting a better convergence behavior
as defined by the average cluster homogeneity and convergence accuracy scores.
To our surprise we found that deep neural maps with a convolutional autoencoder
did not perform well on the digit image data. One way of interpreting this might
be that the latent space here is geared towards reconstructability rather than
preserving features for clustering. In order to remedy this one would have to
extend the objective function to include a clustering term which would penalize
latent spaces that do not take preserving features for clustering into account.

7 Conclusions and Further Work

Deep neural maps are unsupervised learning and visualization methods that
combine autoencoders with self-organizing maps. Recent work has shown that
deep neural maps outperform standalone self-organizing maps when considering
clustering tasks. The key idea is that a deep neural map outperforms a stan-
dalone self-organizing map in two dimensions: (1) Better convergence behavior
by removing noisy/superfluous dimensions from the input data, (2) faster train-
ing due to the fact that the cluster detection part of the DNM deals with a lower

Deep Neural Maps 13

dimensional latent space. However, many different kinds of autoencoders exist
such as the convolutional and the denoising autoencoder and here we examined
the effects of various autencoders on the performance of the resulting deep neu-
ral maps. We investigated five types of autoencoders as part of our deep neural
maps using three different data sets. Overall we show that deep neural maps
perform better than standalone self-organizing maps both in terms of improved
convergence behavior and faster training. Additionally we show that deep neural
maps using the basic autoencoder outperform deep neural maps based on other
autoencoders on non-image data. To our surprise we found that deep neural
maps based on contractive autoencoders outperformed deep neural maps based
on convolutional autoencoders on image data.

Given the results from this limited study we would choose the basic autoen-
coder as our autoencoder of choice in order to construct deep neural maps geared
towards non-image data corroborating earlier work done by Rajashekar [22]. We
would like to develop a DNM R package for use by the non-deep learning spe-
cialists.

We need to further investigate why our DNM based on a convolutional au-
toencoder failed to deliver good results on image data. As we mentioned above,
the first step is to investigate extending the relevant objective function with a
clustering term.

References

1. F. Chollet. Keras, GitHub. https://github.com/fchollet/keras, 2015.

2. Pedro Domingos. The master algorithm: How the quest for the ultimate learning
machine will remake our world. The master algorithm: How the quest for the
ultimate learning machine will remake our world. Basic Books, New York, NY,
US, 2015.

3. D. Dua and E. Karra Taniskidou. “UCI Machine Learning Repository,” Irvine,
CA: University of California, School of Information and Computer Science,, 2019.

4. Christos Ferles, Yannis Papanikolaou, and Kevin J Naidoo. Denoising autoencoder
self-organizing map (dasom). Neural Networks, 105:112–131, 2018.

5. Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and
Gunnar Rätsch. Som-vae: Interpretable discrete representation learning on time
series. arXiv preprint arXiv:1806.02199, 2018.

6. P. Franti, O. Virmajoki, and V. Hautamaki. Fast Agglomerative Clustering Using
a k-Nearest Neighbor Graph. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(11):1875–1881, November 2006.

7. Pasi Fränti and Sami Sieranoja. K-means properties on six clustering benchmark
datasets. Applied Intelligence, 48(12):4743–4759, December 2018.

8. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016.

9. Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep Clustering with Con-
volutional Autoencoders. In Derong Liu, Shengli Xie, Yuanqing Li, Dongbin Zhao,
and El-Sayed M. El-Alfy, editors, Neural Information Processing, Lecture Notes in
Computer Science, pages 373–382. Springer International Publishing, 2017.

14 Boren Zheng et al.

10. Lutz Hamel. SOM Quality Measures: An Efficient Statistical Approach. In
Erzsébet Merényi, Michael J. Mendenhall, and Patrick O’Driscoll, editors, Ad-
vances in Self-Organizing Maps and Learning Vector Quantization, Advances in
Intelligent Systems and Computing, pages 49–59, Cham, 2016. Springer Interna-
tional Publishing.

11. Lutz Hamel. VSOM: Efficient, Stochastic Self-organizing Map Training. In Kohei
Arai, Supriya Kapoor, and Rahul Bhatia, editors, Intelligent Systems and Applica-
tions, volume 869, pages 805–821. Springer International Publishing, Cham, 2019.

12. Lutz Hamel and Chris W Brown. Improved interpretability of the unified distance
matrix with connected components. In Proceedings of the International Conference
on Data Mining (DMIN), page 1. The Steering Committee of The World Congress
in Computer Science, Computer . . . , 2011.

13. Lutz Hamel, Benjamin Ott, Gregory Breard, Robert Tatoian, and Vishakh Gopu.
popsom: Functions for Constructing and Evaluating Self-Organizing Maps, June
2019.

14. G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science, 313(5786):504–507, July 2006.

15. Woncheol Jang and Martin Hendry. Cluster analysis of massive datasets in astron-
omy. Statistics and Computing, 17(3):253–262, September 2007.

16. Teuvo Kohonen. Self-Organizing Maps. Springer Series in Information Sciences.
Springer-Verlag, Berlin Heidelberg, 3 edition, 2001.

17. Agustinus Kristiadi. Deriving Contractive Autoencoder and Implementing it in
Keras - Agustinus Kristiadi’s Blog.

18. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

19. Y. LeCun and C. Cortes. MNIST handwritten digit database, 2010.
20. Mehran Pesteie, Purang Abolmaesumi, and Robert Rohling. Deep Neural Maps.

arXiv:1810.07291 [cs, stat], October 2018. arXiv: 1810.07291.
21. K. S. Pollard and M. J. van der Laan. Cluster Analysis of Genomic Data. In Wing

Wong, M. Gail, K. Krickeberg, A. Tsiatis, J. Samet, Robert Gentleman, Vincent J.
Carey, Wolfgang Huber, Rafael A. Irizarry, and Sandrine Dudoit, editors, Bioin-
formatics and Computational Biology Solutions Using R and Bioconductor, pages
209–228. Springer New York, New York, NY, 2005.

22. Deepthi Rajashekar. One-class learning with an Autoencoder Based Self Organiz-
ing Map. March 2017.

23. Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive Auto-Encoders: Explicit Invariance During Feature Extraction. In
ICML, 2011.

24. Compton J Tucker, Denelle M Grant, and Jon D Dykstra. Nasa’s global orthorecti-
fied landsat data set. Photogrammetric Engineering & Remote Sensing, 70(3):313–
322, 2004.

25. Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked Denoising Autoencoders: Learning Useful Representa-
tions in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res.,
11:3371–3408, December 2010.

26. Lei Xu, Adam Krzyzak, and Ching Y Suen. Methods of combining multiple clas-
sifiers and their applications to handwriting recognition. IEEE transactions on
systems, man, and cybernetics, 22(3):418–435, 1992.

