
Detecting Overlapping Patterns in

Asteroid, a programming language

which supports both first-class and

conditional pattern matching.

Timothy Colaneri, A.S.

Dept. of Computer Science and Statistics

University of Rhode Island

Kingston, Rhode Island, USA

tcolaneri@uri.edu

What is a Pattern?
 A pattern is a configuration of the elements of something, whether it

be a human design or an abstract idea, that repeat in a predictable
manner.

 In the context of programming language design, we have two main
classes of patten matchings

 Regular Expressions are patterns found in text consisting of characters.

 Structural Patterns are patterns found in the structure or data, or how the
data is formed.

What is Pattern Matching?
 Pattern Matching is the act of inspecting a series of given elements, or tokens,

of something for the presence of a pattern.

 Pattern Matching, or Pattern Recognition, is one of the fundamental ways in

which human beings make sense of the universe around them.

 In the context of programming languages, pattern matching is when we

inspect input or processing data and make decisions based on the data’s

pattern.

The Useless Clause Problem
 A Useless, or Redundant, clause is one which can never logically be reached as its logic is

inferred by a previous clause.

Take for example the following logic clause:

if x <= 0 OR if x > 0 OR if x > 10

When we evaluate this CNF formula, or multi-clause statement, we will never make it to the third

clause, if x > 10.

 Useless Clauses are almost always the result of programmer error.

 While we can catch the example above by eye, it is not so intuitive when dealing

with structural patterns and regular expressions.

 Many programming languages which support pattern-matching offer a built-in

method of detecting this easy-to-make mistake.

 My project seeks to add this functionality to Asteroid, a programming language

which supports two novel methods of pattern-matching, first-class and conditional

pattern-matching.

Useless Clause’s and Pattern Matching

Detecting Useless Clause’s in the context of

First-Class and Conditional Patterns

First-Class Patterns

Asteroid elevates patterns to first-class citizens

by viewing patterns as a value which can be

assigned to a variable, passed to and returned

from functions, etc.

Detecting redundant First-Class Patterns brings

one significant problem to the table. They may

not be defined until runtime!

Conditional Patterns

Conditional Patterns add an additional layer

of decision structure to pattern matching. This

functionality allows us to ask, or evaluate, a

Boolean expression at the same time as the

pattern matching expression.

Evaluation of redundancies in conditional

patterns require us to check two different

situations by which a clause may become

redundant.

Thank You!

Special Thanks:

Professor Lutz Hamel

Links:

Asteroid Repository:

https://github.com/lutzhamel/asteroid

The Asteroid Programming Language.

First-Class Patterns

In the design of programming languages,
a first-class citizen is an entity in a given
programming language which has full
support and access to all of the standard
operations and features of the language.

Asteroid elevates patterns to first-class
citizens by viewing patterns as a value
which can be assigned to a variable,
passed to and returned from functions,
etc.

Asteroid is a dynamically typed, multi-paradigm programming language that seeks to add

more expressiveness to one of the core traits of functional programming languages, pattern

matching.

Pattern matching is a simple yet powerful conditional programming construct in which we

can make decisions based on the structure of data.

Asteroid adds two new methods of expression to pattern matching, first-class patterns and

conditional patterns.

Conditional Patterns

Conditional Patterns add an additional

layer of decision structure to pattern

matching. This functionality allows us to ask,

or evaluate, a Boolean expression at the

same time as the pattern matching

expression.

This allows us to de-structure our input or

processing data and then evaluate a

Boolean expression before determining a

match.

Below is an example of a function in Asteroid which utilizes

first-class conditional pattern expressions.

This code shows two type-match conditional patterns that

are declared on lines 4 and 5. These patterns are stored

into variables to be later dereferenced and used in the

fact() function definition.

This is a definition of a factorial function.

Below is an example of a function in Asteroid which utilizes

conditional pattern expressions.

This example shows that data can be de-structed and then

have an expression evaluate the data's contents before

recognizing a match.

This code shows the definition of the whichQuadrant() function.

It determines the quadrant in which an (x,y) node exists.

Examples: First-class and conditional patterns.

The Useless Clause Problem and First-Class

Patterns

 When we evaluate a decision structure with First-Class patterns, we have to

dereference the variable that the pattern is stored in before we can

evaluate the pattern expression. This presents a complication; we may

have no way of knowing what that variable is until the program is

executing.

 All of the previous examples of redundant/useless pattern detectors ran

during the syntactic, or parsing, phase. This is the most efficient as we would

only execute the redundancy evaluation a single time.

 Evaluating redundancies during the semantic phase means we will

evaluate each time the decision is made. This is expensive.

Standard ML

Error #69

Haskell

A warning

OCaml

A warning, #11

To the right we have an artificial example meant to demonstrate

that a clause’s redundancy cannot be determined until runtime.

The function selectUserPattern() takes in a numerical value and then returns a

pattern based on if the input was positive or negative. In this context we can

observe that the actual patterns are either a head-tail pattern with a single

head or four heads.

The function f() takes in a list. Its clauses determine which body of code should

be executed depending on the size or structure of the list. The second clause

attempts to extract the six leading nodes from a list and separate them from

the remaining contents of the list. The final clause attempts to extract two

leading node from a list and separate them.

The third clause is a first-class pattern. The actual pattern the we will receive

when we deference this variable will depend on the input this program

received from its user:

• If we received a positive value, the pattern will be a head-tail pattern

where we try to pull out a single leading node. The presence of this pattern

in this position will render the following clause redundant as any pattern

that could have two leading nodes pulled out could have a single leading

node pulled out. No list passed into this function will ever reach the final

clause in this case.

• If we received a negative value, the pattern will be head-tail pattern that

pulls out the first four leading nodes. All clauses are still reachable.

The Useless Clause Problem and Conditional

Pattern Matching

 Conditional patterns add another layer

to the pattern matching decision

structure.

 As the new layer is itself another clause,

this means we now have a new

avenue by which a clause may be

made redundant.

 To check for the presence of

redundant patterns with conditional

pattern matching, we will essentially

have to evaluate the useless clause

problem twice.

• There also exist situations in which redundancy
cannot be evaluated as a complication of
conditional pattern matching.

• Consider the case of a function call as the
expression in a relational pattern clause. We
have no method of determining what the
function code is rendering redundant, as it is a
collection of statements as opposed to patterns
and relational expressions.

• Additionally, the conditional clause function
code may alter values used by the function
whose clauses we are currently evaluating. This
would make evaluating a function while
evaluating redundancy an unsafe operation.

• It may also be that case that a pattern may be
made redundant by an enumeration or
limitation defined outside the program.

When we evaluate for redundancies in patterns, we only need to worry about

a single clause rendering other clauses useless.

However, in the case of conditional pattern matching, it may be the case that

several preceding conditional relational statements, when combined, render a

pattern useless. In order to keep track of when this situation occurs, we will

need to keep track of subsumed intervals for a conditional pattern’s (pattern,

evaluated-variable(s)) identity,

Our method of detecting patterns made redundant through conditional

pattern clauses inspects a number-line each time we are evaluating

redundancy between two clauses to determine if the current clause will be

reachable or not. Let’s see what this might look like for the function to our right,

g().

Conditional Pattern Matching Cont.

Step 1: We visit with (x) %if x < 100 do and add
its range for its pattern/compared variables
identity.

Step 2: We visit with orwith (x) %if x > 10 do
and add its range for its pattern/compared
variables identity.

Step 3: We visit orwith (x:%integer) do , as this is a type-match, a function is called that will evaluate
the range associated with the pattern/variable key to determine if it has been completely
covered/subsumed. This function will observe the number line shown above and then determine that
both a ‘to infinity’ interval, and a ‘to negative infinity’ interval exists. The function then checks to see if
the two values from these intervals overlap, which they do, and a redundant pattern is detected.

Conclusion

 There is no way to evaluate redundant

first-class patterns at parse time. We can

only evaluate the useless clause problem

within the context of first-class patterns in

the semantic phase.

• Evaluation of redundancies in
conditional patterns require us to
check two different situations by
which a clause may become
redundant.

• If the pattern of a clause can
subsume a following clause’s
pattern(first situation), and the
former or both are conditional
patterns, then we have to
evaluate relational subsumption
between them(second situation).
This can often be expressed on a
number-line, although not all
values may be numerical.

