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Spectral features from specific regions in infrared spectra
of organic molecules can consistently be attributed to
certain functional groups. Artificial neural networks were
employed as a pattern recognition tool to elucidate the
relationships between functional groups and spectral
features. The ability of these network models to predict
the presence and absence of a variety of functional groups
was evaluated. The sensitivity of the artificial neural
network over the entire infrared spectral region was used
to generate a spectral factor representation of the major
information associated with each functional group. The
resulting sensitivity factors were utilized in a much
simpler model for functional group prediction. Ultimately,
the presence of a functional group was predicted based
on the dot product of an unknown spectrum with the
corresponding sensitivity factor. A probability based on
Bayes’ theorem was assigned to each of the predictions.
The prediction accuracies were greater than 90% for all
13 functional groups considered in the investigation.

Vibrational spectroscopy is a fast and reproducible technique
for obtaining information relevant to chemical structures.1 Many
chemical functional groups regularly absorb in certain spectral
regions, allowing for their identification.2–6 Early methods for
searching and processing infrared spectral libraries relied on
manual sorting based on strong absorptions and on correlation
charts.3 With the advent of personal computers in ∼1980, library
processing and spectral interpretation focused on pattern recogni-
tion methodologies7–10 and expert systems.11–13 Pattern recogni-
tion was initially based on peak positions,7,8 but later peak widths
were used, and eventually principal component analysis (PCA)
was added to the processing.9,10 Initially, expert systems were
based on a set of rules for correlating peak positions with the

presence of functional groups.11 Later, Griffiths’ group12,13 im-
proved the expert system methodology by including PCA in the
processing. Developing neural networks to interpret infrared
spectra has been the goal of numerous investigations since the
late 1980s.14–20 Initial investigations were limited by computer
memory and speed, but this rapidly changed with increasing
computer power.

In the present study, artificial neural networks were created
to analyze spectra for the detection of different functional groups.
A related goal was to develop a model to describe the criteria for
the determination of the absence or presence of a specific
substructure. Lastly, a level of confidence or probability was
assigned to the model’s results.

Artificial neural networks (ANN) are powerful tools for pattern
recognition that have the ability to expose and model nonlinear
relationships. Two major drawbacks to using ANNs are their
susceptibility to overfitting and a “black box” quality.21 Overfitting
occurs when the network essentially memorizes the training data,
losing its ability to generalize. Monitoring the performance of a
network using a separate validation set can prevent overfitting.
The best model is found when the error in the validation set, not
the training set, is at a minimum.

The “black box” characteristic, sometimes referred to as
nontransparency, is a result of the complexity of ANNs. As will
be discussed in more detail, ANNs contain multiple nodes
distributed among several layers, each performing a separate
calculation. The network learns by adjusting the weights that
connect the nodes of different layers. It is unclear from the weights
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alone what the ANN has learned and how it makes a decision.
Through a process known as sensitivity analysis,21 the most
relevant features that the network associates with each decision
can be determined. Once these sensitivity factors are obtained,
they can be used to construct much simpler models. In these
simplified models, each decision is assigned a probability using
Bayes’ theorem.

The goal of finding a model to relate infrared spectral patterns
to specific functional groups dates back to the early investigations
on using ANN to interpret spectra. Donahue14 generated repre-
sentative patterns and their sensitivity to various functional groups
using score plots from PCA on a limited library in the late 1980s.
Later, Daniel and Griffiths15 proposed sensitivity analysis as a
means to obtain feature spectra for functional groups, and this
method was eventually applied to the identification of nitro
explosives.16 Jegla,20 working in Griffiths’ laboratory, extensively
investigated sensitivity analysis on a library of gas-phase spectra.
Preprocessing methods including PCA and auto scaling were
explored prior to determine feature spectra from sensitivity
analysis. The present study takes advantage of the sensitivity
analysis method developed by Harrington, et al.22

Artificial Neural Networks. Artificial neural networks are
models that mimic biological neurons in the brain. In this
particular study, a multiple layered perceptron (MLP) network
was utilized. The standard MLP network includes three layers,
known as the input layer, hidden layer, and output layer.23–25 The
input layer contains a neuron, or node, for each input variable of
a sample. The input values, x, are weighted, w, and passed to the
hidden layer, which can contain any number of nodes. Each
hidden neuron sums these weighted inputs and adds a bias, bj,

netj ) [∑wij xi]- bj (1)

A transfer function, f(netj), is utilized to calculate a final output. A
typical choice for this function is the nonlinear sigmoid function,

f(netj)) 1 ⁄ [1+ e-netj] (2)

which forces the final neuron output to a value between 0 and
1.15 Training is achieved by modifying the weights to minimize
the error between the predicted outputs and the target values
using error back-propagation.16 The transfer functions employed
during the analysis were the sigmoid function at the hidden layer
and the linear function for the output layer.

The application of two constraints to the network served several
purposes.26 An unconstrained network can reduce its output error
by either increasing the length of the weight vector, wj, or
orienting the weight vector, wj, and bias, bj, to a more optimal
solution. By dividing the weighted sum of inputs by the length of
the weight vector

netj ) [(1 ⁄ |wj|)∑wij xi]- bj (3)

the weight vector is normalized and kept at a constant length.
This constraint causes the rotation of the weight vector to be the
driving force in minimizing the network’s error. This was the
critical modification, and its importance in realizing spectral
relationships will be illustrated later. The sigmoidal, nonlinear
transfer function, f(netj), was also altered with the introduction of
a constraint, tj,

f(netj) ) 1 ⁄ [1+ e-( netj ⁄ tj)] (4)

The addition of tj controlled the steepness of the sigmoid curve.
It has been reported that adjusting the steepness of the sigmoid
curve does not have much of an impact on the network’s
performance.27 However, a very large value of tj would result in a
fairly flat transfer function, making it difficult and time-consuming
for the network to grasp the most obvious trends in the data. On
the other hand, using a value that is less than 1.0, the transfer
function becomes steeper and forces the network to make faster
decisions, which reduces the training time and further prevents
overfitting.

Sensitivity Analysis. Sensitivity analysis is a method used to
extract the features most responsible for the decision of an ANN.21

It is a measure of the change in the network’s response with a
change in each input variable, or the gradient of the network
output. Considering that ANNs are nonlinear functions, the
gradient is dependent upon the point at which it is evaluated. In
this study, the mean spectrum, xmean, of the input samples in the
training set containing the functional group of interest was used.
The sensitivity, Sk, of the kth variable was calculated by examining
the network output, F(x), when that variable (wavenumber) was
perturbed and the others were kept constant. A row vector, Bk,
was generated and consisted of all zero values except for the
perturbation, p, in the kth position. This vector was added to and
subtracted from the mean spectrum for the functional group after
the network was trained. This resulted in the following equation
for the sensitivity at the kth wavenumber

Sk ) [F(xmean +Bk)-F(xmean -Bk)] ⁄ 2p (5)

where p, the perturbation, was equal to a percentage of the largest
input variable of xmean. Empirically, we found that the optimum
value for p was 1% of the maximum absorbance (peak) value in
the average spectrum, xmean.

Probability and Bayes’ Theorem. Probabilities for the
predictions based on the sensitivity factors were obtained employ-
ing Bayes theorem,24 which allows for the determination of the
posterior probability of an event h, given data D, based on prior
knowledge of the probabilities P(h), P(D), and P(D|h):

P(h|D)) P[(D|h)P(h)]/P(D) (6)

The initial probability that an event will occur, P(h), is calculated
from the number of samples in which h is true, such as the
number of spectra in which a functional group is present, divided
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by the total population, the number of samples in the library. The
probability of getting a result D, a dot product in this study, given
an event h, P(D|h), was found from the distributions of the dot
products between the sensitivity factor and each library spectrum.
Both the dot product distributions, one for samples containing a
certain functional group and another for samples in which the
structure was absent, were normalized to an area of 1.0. Because
the normalizing constant, P(D), is in the equations for P(h|D) in
both the presence and absence of a functional group, it cancels
out when the probabilities are scaled to total probability of 1.0.
The final normalized probability for the presence of the functional
group of interest becomes

P(hpres|D) ) P(D|hpres) · P(hpres) ⁄ [P(D|hpres) · P(hpres)+

P(D|habs) · P(habs)] (7)

where P(hpres) and P(habs) are found using the initial population
information and P(D|hpres) and P(D|habs) are conditional prob-
abilities of obtaining a certain dot product given the presence and
absence of the substructure, respectively. The final probability
that the structure is absent given the dot product can be found in
a similar fashion, or by just subtracting P(hpres|D) from 1. This is
acceptable because there are only two possible events, the
functional group is either present or absent from the sample’s
molecular structure.

EXPERIMENTAL SECTION
Library Construction. The infrared spectral library was

assembled and labeled by the presence or absence of 13 functional
groups. The library contained 2752 infrared spectra from the
Aldrich-SensIR ATR-IR library (Sigma-Aldrich, Inc., Milwaukee,
WI and SensIR Technologies now Smiths Detection, Danbury,
CT). Each spectrum consisted of 1738 spectral intensities repre-
senting the absorbance over the region from 4000 to 650 cm-1.
The distributions for each functional group are listed in Table 1.

Data Analysis. Data analysis was executed using MatLab
version 7.2 (Mathworks, Natick, MA), which included the Neural
Network toolbox. All spectra were normalized to a total area of
1.0. The sensitivity spectra are susceptible to spectral noise
especially in regions of lower signals (e.g., at high wavenumbers);
thus, the spectra were smoothed with a 15 point, fifth-order

polynomial using the Savitzky-Golay algorithm.28 Several different
window sizes and polynomials were tested to determine the
optimum point spread and polynomial order for smoothing. The
target vectors for the functional group assignments consisted of
1’s and 0’s indicating the presence and absence of a functional
group, respectively.

RESULTS AND DISCUSSION
All of the ANNs relied on one neuron in the output layer, with

an output greater than 0.5 signifying the presence of a certain
functional group; an output of less than 0.5 indicated the absence
of this structure. Cross-validation was achieved by creating 10
different ANNs and dividing the total library into 10 subsets, each
containing 275 IR spectra. Each network used a different subset
as the validation set and trained with the remaining 90% of the
library. Training ceased when the prediction error in the validation
set was at a minimum. Because the weights of each ANN are
initially random, some networks lead to better prediction results.
In an attempt to compensate for this variation, 10 networks were
created and tested for each of the validation sets, resulting in a
total of 100 ANNs (10 networks with 10 subsets each). For each
validation set, however, only the model that produced the lowest
prediction error was retained for sensitivity analysis. The mean
sensitivity was calculated from these 10 best networks.

Artificial Neural Networks Parameters. The first objective
was to establish the importance of the constraints. A preliminary
test was setup to predict the presence of the carbonyl group. Two
kinds of ANNs were created, both with 10 nodes in the hidden
layer. The first set of networks were unconstrained, whereas the
second series employed the constraints of t ) 0.1 and forced the
weight vector to length of 1.0. The mean sensitivity for each of
the ANNs is shown in Figure 1. Although the (Figure 1a)
unconstrained network might have been more accurate with a
prediction error of 0.58% as opposed to 1.02%, the unconstrained
factor appears to be mostly noise. It is clear from the sensitivity

(28) Savitzky, A.; Golay, M. Anal. Chem. 1964, 36 (8), 1627–1639.

Table 1. Distributions of the 13 Functional Groups for
the IR Spectral Library

no. of spectra

aromatic 1413
amine 597
carbonyl 1109
C-O 1553
O-H 881
ketone 251
ester 380
aldehyde 136
acid 256
CdC 346
nitro 78
C≡N 135
alcohol 651
total 2752

Figure 1. Sensitivity of carbonyl groups from (a) an unconstrained
and (b) constrained ANN.
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factors that the (Figure 1b) constrained network’s decision is
based on the more relevant data, i.e., the carbonyl bands from
1830 to 1650 cm-1. The negative band between ∼1830 and 2000
cm-1 is due to summation bands in spectra of aromatic com-
pounds. In spectra of aromatic compounds, a pattern of weak
bands extends from about 1650 to 2000 cm-1; thus, they overlap
the carbonyl region. The negative contribution reduces the
possibility that the weak bands in spectra of aromatics in the
carbonyl region will be wrongly identified as carbonyls.

After determining the necessity of the constraints, the next
goal was to vary the number of nodes in the hidden layer to find
the model that produces the lowest prediction error. It follows
that the most accurate constrained network should result in the
most informative sensitivity factor. Again, a test was setup to
predict the carbonyl functional group. The hidden layers contained
1, 5, 10, 15, 20, or 25 neurons. The errors (false positives plus
false negatives) for each validation set using the different number
of hidden neurons as well as the best results are listed in Table
2. The network with 20 hidden neurons was found to be most
accurate with only 26 incorrect predictions, an error of 0.94%. As
shown in Figure 2, the sensitivity factors with 10 or more nodes
were quite similar, suggesting that the different networks are still
learning the major trends associated with the carbonyl group.

The prediction accuracy for each functional group using the
ANN analysis is shown in the second column of Table 3. The
percent accuracy ranged from a minimum of 91.24 for CdC to
over 99%. These prediction accuracies are higher than previously
reported.27

Sensitivity Analysis. The ultimate goal of this research was
to produce a spectral representation for each of the functional

groups that could be used in a metric to predict the presence or
absence of a functional group in future determinations. To facilitate
this goal, a sensitivity factor as discussed in the theory section
was produced for each of the functional groups in this study.

The sensitivity factor for the CdC group, as in alkenes, is
shown in Figure 3. Although the highest prediction error was
observed for alkenes, the sensitivity factor portrays its character-
istic strong absorption bands as shown in Figure 3. The strong
peaks of interest were due to the double-bond stretching at 1650
cm-1 and the four bands between 1000 and 850 cm-1 due to out-
of-plane dC-H wagging motion.29

The sensitivity factors for the nitro and carbon triple bond
nitrogen groups are shown in Figure 4. The prediction accuracy
of the nitro group was over 99%. Although the nitro group was
the least represented group in the entire study, the ANNs were
able to emphasize the strong NO2 stretching vibrations at 1550
cm-1 and from 1320 to 1380 cm-1. The structure with the second
fewest samples was the C triple bond N group. Figure 4b displays
the sensitivity factor for this group and it is almost solely based
on the nitrile C triple bond N stretch at ∼2240 cm-1 and the
isocyanide N triple bond C stretch at ∼2140 cm-1.

The sensitivity factors for (Figure 5a) ketones and (Figure 5b)
aldehydes shown in Figure 5 are quite interesting, The sensitivity
factors for both chemical groups have positive bands in the 1700
cm-1 region. However, aldehydes have a strong, positive band at
2725 cm-1, and a weaker positive band at ∼2810 cm-1, whereas
the ketone has similar negative bands at the same wavenumbers.
The appearance of a doublet in spectra of aldehydes in the region
of 2675-2850 cm-1 is due to Fermi resonance between the
stretching vibration of the lone CH in aldehydes and overtone of
the in-plane rocking vibration of the same CH bond, which appears

Table 2. Prediction Errors Versus Number of Nodes in
Hidden Layer for Carbonyls

no. of nodes % error

1 1.71
5 1.34
10 1.02
15 1.26
20 0.94
25 0.98

Figure 2. Carbonyl sensitivity using different numbers of hidden
neurons.

Table 3. Prediction Errors and Accuracy Testing
Spectral Library for Each Functional Group

functional groups ANN % accuracy sensitivity % accuracy

aromatic 92.62 91.61
amine 93.13 92.66
carbonyl 99.24 98.80
C-O 92.70 90.19
O-H 96.44 95.20
ketone 94.59 94.37
ester 97.38 96.73
aldehyde 97.82 97.13
acid 98.33 98.36
CdC 91.24 90.12
nitro 99.06 98.84
C≡N 97.06 96.40
alcohol 97.17 96.22

Figure 3. Sensitivity factor for alkenes.
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at ∼1400 cm-1. Jegla22 observed a doublet of about equal intensity
in the sensitivity spectrum of aldehydes when processing gas-
phase spectra. However, the present study is on condensed phase
spectra., and the broadness of other C-H stretching vibrations
such as the CH2 will overlap the CH stretch band in condensed
phase spectra reducing the intensity of the C-H stretching band
in the sensitivity spectrum. The negative intensity in the ketone
factor suggests that it uses this region to exclude aldehydes from
being misclassified as ketones and visa versa. The aldehyde has
a sharp, negative band at 1320 cm-1, and ketones have a strong
positive band at the same wavenumber, again supporting the
presence or absence of each group.

The sensitivity factors for OH, alcohols, acids, esters, and
-C-O- are shown in Figure 6. The -OH sensitivity has the
expected strong correlation between 2800 and 3800 cm-1, but
there is also a very sensitive band centered at 2525 cm-1. The
latter band was unexpected, but we find similar high sensitivities
in the factor for acids and CO, which would suggest that it is due
to an overtone of the fundamental C-O vibration in the 1200-1300
cm-1 region for acids. Upon closer examination of individual
spectra, we find that organic acids generally have a weak
absorption at ∼2525 cm-1. Esters (Figure 5d) have an intense
negative band at 2690 cm-1, whereas acids and -C-O- have a
weaker negative band at about the same wavenumber. Acids,
esters, and C-O have positive bands at ∼1250 cm-1, whereas
esters and CO have a rather pronounced, positive band at 1000

(29) Lambert, J. B.; Shuvell, H. F.; Lightner, D. A. Organic Structural Spectroscopy;
Prentice Hall, Inc.: Upper Saddle River, NJ, 1998.

Figure 4. Sensitivity factors for (a) nitro and (b) C triple bond N
functional groups.

Figure 5. Sensitivity factor for (a) ketone and (b) aldehyde.

Figure 6. Sensitivity factors for (a) OH, (b) alcohol, (c) acid, (d) ester,
and (e) -C-O-.
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cm-1. The presence of the -C-O- group in many different
substructures might have been a reason for the relatively high
prediction error in Table 3.

The aromatic factor shown in Figure 7a can be characterized
by the C-H stretching bands just above 3000 cm-1 and the ring-
stretching band between 1450 and 1630 cm-1. The amine factor
(Figure 7b) exhibits a strong band at ∼2800 cm-1 and an NH2

deformation band around 1650 cm-1. The very strong sensitivity
band for amines at ∼2800 cm-1 is undoubtedly due to the so-
called Bohlmann band. The existence of this band was first
observed by Bohlmann30 for cyclic immines. The band appears
when R-CH bonds in heterocyclics have a dihedral angle of about
180° with the lone pair of electrons on the nitrogen atom.31,32 The
lower frequency and intensity of this band have been assigned to
both lengthening of the C-H bond and to Fermi resonance with
the overtone of the CH deformation.33,34 The sensitivity spectra
of both aromatics and amines exhibit sharp negative bands, which
probably distinguish them from similar compounds. For example,
the negative band in the sensitivity factor for amines at ∼3600
cm-1 distinguishes amines from alcohols. The negative bands in
sensitivity factors can be extremely important for classifying
different functional groups that have similar absorption features.

Decisions and Probabilities Using Sensitivity Factors. The
final segment of this study was to use the sensitivity factors to
predict the presence or absence of functional groups without the
large, complex ANN. Two frequency of occurrence distributions
were created by calculating the dot product between each library
spectrum and the appropriate sensitivity factor. There will be one

distribution for samples containing the functional group and
another for those that do not contain the functional group. The
resulting distributions for the carbonyl group are shown in Figure
8; there is a distribution of samples for each event, and either a
carbonyl group is present or absent. The probability density
functions usually have a Gaussian distribution;37 thus, they were
fitted with a Gaussian equation and normalized to an area of 1.0.
These distributions represent the probabilities of obtaining a
specific dot product given one of the instances, P(D|h). Knowing
the initial relative quantities of each functional group in the total
library, P(h), the conditional probability P(h|D) can be determined
using eq 6 and the final probability with eq 7.

Considering a normalized probability P(hpres|D) greater than
0.5 to indicate the presence of a functional group, the prediction
accuracies from using the sensitivity factors are given in Table 3.
As expected, using the sensitivity factors alone resulted in lower
accuracy. In comparison to ANN, the difference is not that
significant, with the greatest loss in accuracy found when testing
the IR library for the C-O group, 92.70-90.19%. A confusion
matrix consisting of the average results for the library is given in
Table 4. The rows of this matrix represent the percentage of
samples in which the functional group was present or absent; the
columns represent the model’s predicted results. For example,
the average presence of a functional group in the library spectra
was 22.1% (19.5% + 2.6%); the sensitivity/probability algorithm
got 19.5/22.1 correctly identified as present and 2.6/22.1 wrongly
identified as absent. The average absences of a functional group
in the library spectra was 77.9% (2.3% + 75.6%); the sensitivity/

(30) Bohlmann, F. Angew. Chem. 1957, 69, 641; Chem. Ber. 1958, 19, 2157-
2167.

(31) Mayo, D. W.; Miller, F. A.; Hannah, R. W. Course Notes on the Interpretation
of Infrared and Raman Spectra; Wiley-VCH: New York, 2004.

(32) Krueger, J.; Jan, J. Can. J. Chem. 1970, 48, 3236–3248.
(33) Bertrand, B.; Nisole, C.; Drancourt, J.-M.; Dubuffet, T.; Bouchet, J.-P.;

Volland, J.-P. Spectrochim. Acta, Part A 1996, 52, 1921–1923.
(34) Billes, F.; Geidel, E. Spectrochim. Acta, Part A 1997, 53, 2537–2551.
(35) McKean, D. C.; Duncan, J. L.; Batt, L. Spectrochim. Acta, Part A 1973, 29,

1037.
(36) McKean, D. C.; Ellis, I. A. J. Mol. Struct. 1975, 29, 81.

(37) Principe, J. C.; Euliano, N. R.; Lefebvre, W. C. Neural and Adaptive System:
Fundamentals Through Simulations; John Wiley & Sons: New York, 2000;
p 71.

Figure 7. Sensitivity factors for (a) aromatic and (b) amine groups.

Figure 8. (a) Distributions for the (black) presence and (gray)
absence of carbonyls in the IR library study and (b) the corresponding
Gaussian fits.

Table 4. Average Confusion Matrix in Percentages for
the IR Library

IR

known F(pres) F(abs)

present 19.5 2.6
absent 2.3 75.6
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probability algorithm got 75.6/77.9 correctly identified as absent
and 2.3/77.9 wrongly identified as present. The false negatives
are located in the top right, whereas the false positives are located
in the bottom left. The errors were fairly evenly split between
false negatives and false positives.

The average probability calculated for correct and incorrect
classifications, both false positives and false negatives, are listed
in Table 5. As evident in all cases, the average of the probabilities
for misclassified samples was <0.85 (right column), whereas the
average probability of correct predictions was >0.92 (left column).
The significance of this is that in the event the model is correct
it is confident in its decision, where in the event that the model
is wrong it is less confident in its decision.

CONCLUSIONS
In this study, the fact that many functional groups consistently

have bands in specific regions in infrared spectra was exploited.
Artificial neural networks were employed to predict whether or
not a chemical contained a certain molecular structure. We used
sensitivity analysis on ANNs in order to extract relevant features.
Here the partial derivative of the network’s output with respect
to each input variable was evaluated. The sensitivity factors
illustrated regions of the spectrum that the network associated
with each functional group, often correlating to real spectral
features.

A simpler model for predicting functional groups was as-
sembled using these sensitivity factors. The predictions of whether
or not a sample contained a certain functional group were based
on the dot products of each library spectrum with these sensitivity
factors. The application of Bayes theorem added a probability to
the model’s decision. Instances in which the model made an
incorrect prediction often correlated to a lower probability than
when it was correct. This signifies the importance of providing a
probability, a measure of confidence in the model’s decision.

ACKNOWLEDGMENT
The authors are grateful to Peter R. Griffiths and John D. Jegla

for making the latter’s dissertation available prior to preparing
the revised version of this manuscript.

Received for review January 8, 2008. Accepted March 25,
2008.

AC8000429

Table 5. Average Probability for Correct and Wrong
Predictions

IR

functional group P(correct) P(wrong)

aromatic 0.92 0.79
amine 0.93 0.80
carbonyl 0.99 0.85
CsO 0.93 0.78
OsH 0.97 0.82
ketone 0.94 0.76
ester 0.98 0.82
aldehyde 0.98 0.81
acid 0.99 0.82
CdC 0.92 0.75
nitro 0.99 0.81
C≡N 0.98 0.76
alcohol 0.97 0.77
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