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The significance of a spectral feature is defined as the probability that the

feature captures the structure of the data set at hand. In particular, the

significance is equal to a value proportional to the variance of a feature

within a particular data set. The larger the variance, the higher the

probability that the feature will capture the underlying structure. This

approach is particularly useful when significance is used to select features

differentiating clusters of samples and for the construction of self-

organizing maps (SOMs) of clusters. A significance spectrum is obtained

by plotting significance as a function of wavenumber. After developing the

approach for feature significance, the significance framework was applied

to the construction of SOMs for clustering infrared spectra of bacteria.

The significance framework consistently chooses features that make it

possible to construct maps with reduced feature sets that are at least as

good as the maps constructed on full feature sets. In addition, significance

reliably picks features that are consistent with biological interpretations

of the spectra.

Index Headings: Infrared spectra; Spectroscopy; Feature selection; Self-

organizing maps; Significance spectrum; Bacteria spectra.

INTRODUCTION

We have been exploring various methods for differentiating
bacteria from their mid-infrared spectra. These spectra contain
a large amount of information, allowing us to make inferences
on chemical composition and structure of bacteria in addition
to identification. For example, through spectroscopic analysis it
is possible to differentiate the same class of bacteria based on
the kind of agar substrate on which the culture was grown.
Another example is the differentiation of the vegetative versus
spore state of bacteria. Each state has a specific spectroscopic
‘‘signature’’ due to chemical differences.1 For example, spores
contain a peptidoglycan that is less cross-linked than in the
vegetative cell. They also contain dipicolinic acid that is not
found in the vegetative cells.2

The threat of bio-terrorism has intensified the development
of rapid detection methods to monitor the purity of air, food,
and water supplies. For the last two decades, Naumann and
colleagues3–16 have promoted mid-infrared spectroscopy as a
rapid method of identifying microbes. In addition to their work,
a number of other extensive investigations have been reported
in the literature.17–44 It is well known that the major features in
the IR spectra of any biological system are primarily those of
proteins. Thus, the spectral patterns of different genius-species
of bacteria are very similar and we must rely on minor
differences to identify a sample. As a consequence, in addition
to measuring spectra of different genius-species, extensive
efforts have been devoted to developing statistical methods for

processing the spectra.45–50 The statistical methods have
included but are not limited to multivariate analysis (MVA),
principal component analysis (PCA), artificial neural networks
(ANN), partial least squares (PLS), discriminate analysis,
derivatives, and peak heights.50 Herein, we take a different
approach to understanding the contributions that the spectral
features make to the various statistical methods and apply this
understanding to forming self-organizing maps for clustering
different bacteria.

The Kohonen51 neural network method was used to generate
self-organizing maps (SOMs), which are a form of unsuper-
vised learning.52 Lavine et al.53 have previously explored the
use of SOMs for pattern recognition of infrared spectra.
However, the feature selection discussed there is radically
different from the probabilistic feature selection discussed here.
Two recent papers have applied self-organizing maps to the
problem of bacterial identification;17,54 however, their ap-
proach to feature selection is also quite different from ours. For
the most part, these methods consist of principal component
analysis, in which it is difficult to obtain feature significance
results over the whole spectrum of a particular data set.

From a data analysis point of view, spectra are not easy to
work with due to their high dimensionality. A typical spectrum
can have several thousand features, where each feature
represents absorption at a particular wavelength. Herein, we
propose a Bayesian approach to computing the significance of
features in the absorption spectra. The advantage of this
approach is that it is straightforward to compute and that it
provides a probabilistic framework for feature selection over
the whole spectrum. We are particularly interested in feature
significance for two reasons: (1) as an aid in the interpretation
of spectroscopic data, and (2) as a way to perform feature
selection.

The ability to eliminate insignificant features from data sets
with several thousand features can speed up training tremen-
dously. Furthermore, insignificant features typically are noisy
and can distort results if not eliminated. Herein, the
methodologies for the Bayesian significance framework and
self-organizing maps are discussed, validated, and then applied
to sets of bacteria spectra.

THEORY

Feature Significance. The key insight of the present
approach to feature significance is that the larger the variance
of a feature in a data set the more likely it is to contribute to the
clustering or grouping of the data set (an insight that also lays
the foundation for principal component analysis). That is, the
larger the variance of a feature, the more likely it is to capture
the available structure in a data set. Consider Fig. 1; this is a
scatter plot of a hypothetical, two-dimensional data set. Feature
x1 has a large variance and captures the structure of the clusters
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within the data. On the other hand, feature y1 has a small
variance and does not capture any discernable structure within
the data. Now, this case is somewhat idealized. Usually, having
a feature with large variance does not necessarily mean that it
encodes the available structure, but it means that the
probability that it encodes the available structure is higher
than that of features with small variance. Thus, in this case
feature x1 is significant, since it has a higher probability of
capturing the structure of the data than feature y1.

Bayesian Definition of Significance. The Bayesian defini-
tion of feature significance is based on the notion that a feature
with large variance has a higher probability of capturing the
available structure in a data set than a feature with small
variance. We use Bayes’ theorem to turn observed variances,
also called observed significances, into the probability that a
feature is significant. In order to do that we define the following
quantities:

PðAij þÞ[ observed significance of feature Ai

Pðþj AiÞ
[ probability that feature Ai is significant ðsignificanceÞ

PðAiÞ[ prior probability of feature Ai

Inserting these definitions into Bayes’ theorem gives the
following relation:

PðþjAkÞ ¼
PðAkjþÞPðAkÞX

i

PðAijþÞPðAiÞ
ð1Þ

By assuming constant prior probabilities for all features, the
equation can be simplified:

PðþjAkÞ ¼
PðAkjþÞX

i

PðAijþÞ
ð2Þ

The probability that feature Ak is significant is computed by
dividing its observed variance by the sum of the observed
variances of all features in the data set.

As an example, we apply the Bayesian probability to the data
set shown in Fig. 1. The observed variance of x1 is P(x1jþ) =
7.55 and the observed variance of y1 is P(y1jþ) = 0.26.
Therefore, the sum of the observed variances is 7.81. Assuming
constant prior probabilities for x1 and y1, we compute the
significances as P(þjx1) = 7.55/7.81 = 0.97 and P(þjy1) =
0.26/7.81 = 0.03. This means that x1 has a 0.97 probability of
capturing the available structure in the data compared to a
probability of 0.03 that feature y1 captures the available
structure.

The notion of feature significance defined as the probability
that a feature encodes available structure in a data set gives a
probabilistic framework for feature selection that is particularly
well suited for self-organizing maps. The key to this
probabilistic feature selection framework is the realization that
the area under the significance curve is a probability mass, i.e.,
summing over the area under the curve for all features will give
us a probability of 1. Rephrasing this slightly, the probability
that the features encoded the available structure in the data set
is equal to 1 if we use the entire feature set.

Self-Organizing Maps. SOMs are an unsupervised method
for clustering or categorizing data.52 Outliers have very little
effect on the results of this method and it is not necessary to
know the relationship between spectra and their categories. The
method uses the Kohonen51 neural network to produce SOMs
of spectral data. This is a competitive learning algorithm in
which a two-dimensional map is generated by neurons
competing for each input spectrum. Given an input spectrum,
the most similar neuron on the map is considered the winner,
and it and its neighboring neurons are adjusted to have features
similar to the input spectrum. Now, given another input
spectrum the map location is found in the same way, i.e., the
closest neuron to the spectrum is the winner, and it along with
its neighbors is adjusted to match the inputted spectrum. This
processing is continued for each of the input spectra and
repeated until the map is converged. The effect of this
processing is to produce a map of clusters in which each
neuron at a specific location on the grid looks like a real
spectrum. In some sense we could envision that the self-
organizing map algorithm samples the underlying spectrum
space. The neurons that represent clusters in the data will look
very similar to actual spectra in its vicinity. Neurons that
represent clusters in the data are often referred to as centroids.

The process of forming a SOM for infrared spectra is
initiated by deciding upon the size of the map grid. The grid is
two dimensional and can be either square or rectangular in
shape. An example 838 square grid of neurons is shown in Fig.
2a; each of the neurons is represented by a random number
spectrum, which has the same length as the spectra to be
classified. The size of the map can be fine-tuned using specific
convergence criteria. The random number spectra are generated
using values between 0 and 1 at each of the wavenumbers in
the spectrum. A different random number spectrum is placed at
each centroid.

To demonstrate the development of a SOM, we use five
library spectra of simple organic liquids shown in Fig. 2b. The
processing starts by inputting the first library spectrum on the
right. Its Euclidean distance from each of the 64 random
number spectra is calculated and the winner is the neuron

FIG. 1. Scatter plot of a hypothetical two-dimensional data set.
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having the shortest distance, i.e., the random number spectrum
most similar to the library spectrum. The random number
spectrum at the winning neuron is adjusted to be closer to the
input spectrum. In addition, all neighboring neurons are
adjusted to be similar to the winner using a bubble
neighborhood function,51 which is a constant function in the
defined neighborhood of the winner neuron. On the first pass
through all of the spectra, the entire map of neurons is
considered as neighbors and all are adjusted; the size of the
neighborhood of the winner neuron decreases with each
iteration through the input data set by decreasing the width
of the bubble neighbor.

A second spectrum from the five-spectrum library is inputted
to the network, its Euclidean distance from each of the neurons
is calculated, and the winning neuron is found. The map is
adjusted so that the winning neuron is similar to the input
spectrum and all of the other neurons on the map are modified
to appear closer to the winner as described above. This process
is repeated for each spectrum in the library; the winning neuron
and its neighbors are adjusted to be closer to the inputted
spectrum. Obviously, the entire map is constantly changing
with the addition of each input spectrum since, during the first
pass, all of the map neurons are adjusted with each inputted
spectrum. After the first pass, the map has been adjusted n
times, where n is the number of input spectra.

After processing all of the library spectra during the first
pass, the entire procedure discussed above is repeated again on
each of the input spectra one at a time with a smaller
neighborhood. This processing is applied iteratively until some
convergence criterion is reached. In our case, the convergence
of the map is computed by considering both the neurons of the
map and the input spectra as two distinct samples from the
same underlying spectrum distribution. If the two samples
appear to be drawn from the sample distribution under a two-
sample test such as the F-test, then we say that the map is
converged.55 The neurons or centroid spectra in the final grid
appear like real spectra. An example for the first row in the grid
is shown in Fig. 2c. In this example, from the left, the first three
centroid spectra are from the alkane region, the next two are
from the alkyl aromatic region, and the last three are from the
general aromatic region with halogen or nitro substitutions.
More exact details of these various regions will be given for
bacteria sets in the Results and Discussion section.

EXPERIMENTAL

Growth of Bacteria. The original bacteria samples were
from the American Tissue Culture Collection (ATCC) and
were cultured from in-house stocks. Cells of the vegetative
form of Bacillus cereus were cultured on agar plates of
chocolate blood, blood, nutrient, and mannitol to determine the
effects of agars on the spectra. Vegetative cells of all genus-
species were cultured on nutrient agar plates. With the
exception of Psuedomonas fluorescens, which was grown at
30 8C, the cells were cultured at 37 8C for 48 hours. The spores
were grown on nutrient agar plates at 30 8C for 3 to 5 days. The
vegetative bacteria and spores were harvested from the plates in
distilled water and pelleted by centrifugation (10 000 rpm in an
SS34 rotor for 10 minutes). The pellets were re-suspended in
distilled water and centrifuged two additional times. To collect
the spores and to eliminate the vegetative bacteria, the samples
were treated with lysozyme overnight and washed with
distilled water and centrifuged two more times to remove
vegetative bacterial cells while leaving the spores intact.

Instrumental. All spectra were measured using a TravelIR
(Smiths Detection, formerly SensIR, Danbury, CT) Fourier
transform infrared (FT-IR) spectrometer with a single-bounce
ZnSe/diamond crystal attenuated total reflection (ATR) acces-
sory. The spectra were obtained at a resolution of 4 cm�1 with
64 co-added scans over the spectral range of 4000–650 cm�1.
These scans were averaged to provide the final spectrum for
each sample. ATR reference spectra were measured using the
blank diamond crystal.

Data Pretreatment. Data pretreatment was executed using
Matlab 7.1 (Mathworks, Natick, MA), including the Neural
Network Toolbox. To remove baseline effects, the spectra were
converted to first derivatives using a Savitzky–Golay 13-point
cubic smoothing conversion. All spectra were normalized to a
total area of 1.0.

Software for Data Analysis. All subsequent data analysis
and self-organizing map construction was done in R (www.
r-project.org) using custom extensions to the ‘som’ package.
The custom extensions include an enhanced annotation of the
unified distance matrix to make clusters more visible.56 Briefly,
this consists of tracing the gradient on the unified distance
matrix to the ‘‘low points’’ where the gradient is zero. This
tracing gives rise to star graphs with the ‘‘low points’’ at their
centers and these star graphs correspond precisely to the
underlying clusters. The custom extensions also include an

FIG. 2. (a) Grid of neurons as random number spectra. (b) Library spectra for training neurons. (c) Grid of neurons trained with library spectra.
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implementation of the two sample convergence criteria
explained briefly above.57

RESULTS AND DISCUSSION

The average spectra of a set of twenty B. cereus samples
with each set grown on four different agars are shown in Fig. 3.
The first-derivative spectra are compared in the middle of the
figure and the resulting significance spectrum obtained from
the first-derivatives is shown at the bottom. Contributions to
the significance spectrum are more apparent from the first-
derivative spectra than from the original spectra. The
contributions to the significance at ;1700 cm�1 are apparent
in the original absorption spectrum; however, the other
contributions are more apparent in the derivative spectra,
although some of these are difficult to visualize.

Sorting features (wavenumbers) in decreasing order of
significance provides a probability distribution for the feature
set. This gives rise to a graph as shown in Fig. 4. Using this
probability distribution, we can now determine the features that
should be included in order to have confidence (e.g., 90%) that

the available structure in the data set has been captured. This
means that the area under the curve to the left of the line
marked ‘‘p = 0.9’’ in Fig. 4 has a probability mass of 0.9. The
features that contribute to this probability mass are the features
that we would use for model building. Given this probabilistic
feature selection framework, we can also ask questions such as
the probability that the ten most significant features capture the
structure of the data set. In order to answer this question, we
simply add the significances of the ten most significant
features.

Observe that here we make no attempt to remove highly
correlated features: first, because we are interested in the
significance of all features when evaluating the bacteria
spectra, and second, we found during our experiments that
highly correlated features did not pose a particular problem for
constructing self-organizing maps.

Validation. A set of statistical experiments designed to
validate our notion of a significance spectrum was performed.
Inspired by the map stability as presented by Cottrell et al.,57

the present experiments are also based on that stability.
However, in this case, map stability is based on intra-cluster
geometry with the idea that significant features will preserve
intra-cluster geometry in repeated map building exercises and
features that are not significant will not. Specifically, stability is
defined as the inverse of the variance of the pairwise distances
between the members of clusters. A Monte-Carlo estimate of
the map stability is used to construct M randomly initialized
maps and to compute the variability of the intra-cluster
distances based on these Monte-Carlo samples. Each Monte-
Carlo sample consists of a randomly initialized map with the
dimensions xdim and ydim. Once initialized, the map is trained
with the training data. We then measure the distances between
the intra-cluster pairs on the map. With the M samples we
compute variance in the distance between each pair. Finally,
we compute the average variance over all the pairs and then
return the inverse of the average variance as the stability.

In the first experiment, we investigated how effective the
feature selection is with respect to separating significant
features from features that are not significant. The underlying
assumption is that significant features will maintain the overall
geometry of the clusters across all the Monte-Carlo samples
implying low variability and therefore high stability. On the
other hand, features that are not significant typically do not

FIG. 3. Original spectra, first derivatives, and significance spectrum for
Bacillus cereus grown on different agars.

FIG. 4. Feature probability distribution. The area to the left of the 0.9 vertical
line represents 90% of the total area.
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encode enough structure in order to maintain stable cluster
geometries across the Monte-Carlo samples. In this experiment,
we used a bacterial spectra data set with 300 features
(absorbances at 300 wavenumbers). Two subsets were selected
from the data set: one subset consisted of the 15 most
significant features and the other subset consisted of the 15
least significant features. The stability test was applied to these
data sets and the results are shown in Fig. 5. The x-axis is the
number of training iterations we applied to the maps and the y-
axis is the stability. The curve with the circles is the stability
curve due to the 15 significant features and the curve with the
triangles is the stability curve due to the 15 least significant
features. As expected, the maps due to the significant features
are much more stable with increasing number of training
iterations than the maps due to the least significant features.
This clearly shows that our feature selection separates
significant features from features that are not significant.

Currently, we do not have an explanation for the bump in
stability of the significant features at about 50 training
iterations. We have observed this phenomenon in other
bacterial spectra data sets and intend to investigate. Herein,
we are only concerned with the difference in stability between
significant and non-significant features.

Significant Features versus Full Feature Set. In this next
experiment, the stability of maps built using a data set that
consists only of the 15 most significant features were
investigated. The map stability of this reduced data set was
compared to the stability of maps constructed with the full
feature set. Our expectation was that the maps constructed with
the significant features should be as stable as the maps
constructed with the full feature set. The stabilities of both

kinds of maps are shown in Fig. 6. As before, the x-axis
describes the number of training iterations applied to the maps
and the y-axis describes the stability. The curve with the circles
is due to the stability of the maps constructed using the reduced
data set. The curve with the triangles is due to the stability of
the maps constructed with the full data set. As can be seen, the
curves are very similar to each other, validating our
expectation. Furthermore, it seems that the maps due to the
reduced data set are slightly more stable than the maps
constructed with the full data set. We suspect that the slight
instability in the maps constructed using the full feature set is
due to non-significant features introducing noise.

Statistical Significance of our Feature Selection. Here we
investigate the performance of our feature selection based on
selecting 15 of the most significant features from the available
feature set and comparing this to a feature selection based on
randomly choosing 15 features from the available feature set.
We use a Monte-Carlo estimate of the 90% confidence
intervals. Training each of the maps with 200 iterations on
the respective data sets gives us the results in Table I. Notice
that the feature selection based on feature significance gives
rise to maps that on average are more stable than maps based
on random feature selection. However, the 90% confidence
intervals touch (and will probably overlap if we were to
consider 95% confidence intervals) meaning that statistically
there is a chance that random feature selection will perform as
well as our feature selection based on feature significance. This
is perhaps not surprising, since as soon as the random feature
selection picks out one of the more significant features from the
feature set then it will perform well. However, also notice that
the confidence band for the random feature selection is much

FIG. 5. Stability of the 15 most significant features (circles) versus stability of 15 non-significant features (triangles).
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wider than the confidence band for the significance-based
feature selection, implying that there is a lot of variability in the
performance of the random feature selection compared to the
significance-based feature selection. This means that some-
times we can ‘‘get lucky’’ with random feature selection and
sometimes not. The performance of the significance-based
feature selection is much more consistent. We also compared
our feature selection with PCA and found that both agree on
the top 25 features and agree mostly on the top 100 features.
The difference in the remaining features is the way each of the
algorithms is biased; our feature selection interprets variance
directly as a way to capture structure whereas PCA is biased by
its linearity assumptions.

Bacteria Spectra. Three bacterial data sets are considered in
this section. The spectra cover the range from 670 to 1870
cm�1. The experiments were designed to highlight our
significance framework in both feature selection and as an
aid in the interpretation of the spectra.

Spores vs. Vegetative Cells. The first data set consists of 53
spectra of the spores and vegetative cells of two species of
bacteria: Bacillus thuringiensis and Bacillus subtilis. A
starburst unified distance matrix56 for a self-organizing map
constructed on the full feature set is shown in Fig. 7. In

addition to the color-coding of the unified distances on the
map, the starbursts highlight the clusters. The labels St and Vt
label the spores and vegetative cells of Bacillus thuringiensis
on the map, respectively, whereas the labels Ss and Vs label the
spores and vegetative cells of Bacillus subtilis on the map,
respectively. It is easy to see that spores and vegetative cells are
fully separated; the spores appear on the left of the map and the
vegetative cells appear on the right. Dark colors on the unified
distance matrix indicate a strong separation. Here this means
that there is a substantial spectral difference between spores
and vegetative cells. Furthermore, we see that each species of
bacteria forms it own cluster within the spores as well as within
the vegetative cells. This leads us to believe that there are not
only spectral differences between spores and vegetative cells
but also spectral differences between the bacteria species in
general.

The unified distance matrix for a map constructed with a
reduced feature set is shown in Fig. 8. The feature selection
picked 128 features out of 300 to construct the self-organizing
map with a 90% probability of significance. A close
examination of the map reveals that all the essentials are
preserved in this map. Moreover, there is clear distinction
between spores and vegetative cells and a clear demarcation
between the individual species of bacteria. There is actually
clearer clustering for the two species of the vegetative cells into
two groups with this more limited data set compared to using
all of the spectral features.

One of the main differentiating factors between spores and
vegetative cells is the conformation of the peptidoglycan
molecule. In spores it is less cross-linked compared to
vegetative cells. Naumann et al.3 have shown that these

FIG. 6. Stability of the reduced set of 15 features (circles) versus the full feature (300) set (triangles).

TABLE I. Statistical significance of feature selection.

Mean stability 90% Confidence interval

Significance selection 0.20 0.22–0.18
Random selection 0.12 0.18–0.08
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conformational differences of peptidoglycan produce drastic
variations in absorbance near 1730 cm�1. In our significance
plot for this data set (shown in Fig. 9), two dominant bands are
observed at ;1730 cm�1. Postulating that these bands in the
significance spectrum are due to the variation of absorbance
stemming from the different conformations of the peptidogly-
can molecule, we constructed a data set that just consisted of
the two features highlighted by these two bands. The resulting
self-organizing map can be seen in Fig. 10. It is remarkable that
with just these two features we obtain a near perfect separation
between spores and vegetative cells. Another interesting
observation is that the identity of the individual species of
bacteria is also preserved. We postulate that the conformations
of the peptidoglycan are species specific. From the perspective
of the Bayesian feature selection framework, we see that it
assigned the band around 1730 cm�1 a high significance and
this coincides with findings obtained independently (viz.
Naumann et al.3).

Gram-Positive versus Gram-Negative Bacteria. The next
data set was concerned with the differentiation between Gram-
positive (G(þ)) and Gram-negative (G(-)) bacteria. A bacterium
is G(þ) if it retains the dark blue/purple color of the absorbed
dyes due to Gram staining.8 Bacteria that do not retain the dyes

and therefore do not assume the typical bluish color are G(-).
The data set used to investigate G(þ) and G(-) bacteria consists
of 340 observations, approximately half of which are G(þ) and
the other half are G(-). The G(þ) bacteria include Bacillus
cereus and Bacillus subtilis among others. The G(-) bacteria
include Escherichia coli and Salmonella typhimurium among
others. Overall the data set incorporates 17 different species of
bacteria.

A self-organizing map constructed for the G(þ) and G(-) data
set is shown in Fig. 11. It is clear that there are spectral
differences between G(þ) and G(-) bacteria because they are
clearly separated on the map. G(þ) bacteria are labeled P and
appear on the top left of the map and G(-) bacteria are labeled
N and appear at the bottom right of the map. This map was
constructed with a reduced feature set wherein the features
were selected according to significance. The overall probability
of significance adds up to 0.9. In this case, we used 153 of 300
available features to construct the map.

We investigated the difference between G(þ) and G(-)
bacteria further. In particular we were interested in whether our
significant features had any biological relevance. Looking at
the significance plot, Fig. 12, we see three prominent bands:
two centered around 1730 cm�1 and one at 1200 cm�1. It is no

FIG. 7. SOM for spores (S) versus vegetative (V) cells, full feature set of 300 data points. Axes are relative x and y distances showing the map location of samples.

FIG. 8. SOM for spores (S) versus vegetative (V) cells, reduced feature set of 128 data points. Axes are relative x and y distances showing the map location of
samples.
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surprise that we see the bands at 1730 cm�1 again.
Peptidoglycan plays a central role in the differentiation
between G(þ) and G(-) bacteria. G(þ) bacteria possess a thick
outer layer of peptidoglycan, enabling them to absorb and
retain the Gram-stain crystals. G(-) bacteria, on the other hand,
only possess a thin, internal layer of peptidoglycan that does
not allow them to retain the staining crystals. This structural
variation is expressed in the spectra and we see the two
characteristic significance peaks around 1730 cm�1. According
to Naumann et al.,3 the significance band at 1200 cm�1 is due
to complex sugar ring modes. Unfortunately, there are no
simple and generally accepted correlations between the three-
dimensional arrangement of the sugar residues and the
magnitudes of the absorptions in this region of the spectrum.
However, we can use the infrared characteristics in this region
as ‘‘fingerprints.’’ A SOM constructed only from the three
features indicated by the significance features is shown in Fig.

13. The G(-) bacteria occupy the top left part of the map and
the remainder of the map is dedicated to the G(þ) bacteria.

Effects of Culture Agars. In this experiment, the vegetative
form of Bacillus cereus was grown on different agars: nutrient
(N), mannitol (M), blood (B), and blood-chocolate (C). The
letters in parentheses are the labels used on the map. The data
set contains 88 spectra fairly evenly distributed over the four
different agars with the exception of mannitol, for which there
are only five spectra. A self-organizing map constructed using
a reduced feature set at the 90% significance level is shown in
Fig. 14. The bacteria grown on the four different agars are
clearly separated, with mannitol at the top left, nutrient at the
bottom right, blood in the middle, and blood-chocolate at the
bottom left. This means that there are noticeable spectral
differences between the bacteria grown on these four different
agars as we mentioned earlier with respect to the spectra shown
in Fig. 3.

FIG. 10. SOM for spores (S) versus vegetative (V) cells, two features. Axes are relative x and y distances showing the map location of samples.

FIG. 9. Spores versus vegetative cells, significance plot. Features are in cm�1 units.
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The significance spectrum for the four agars is shown in Fig.
15. The significance bands appear at ;1750, 1636, 1401, 1196,
and 1064 cm�1. The bands between 1200 and 1000 cm�1 are
due to complex sugar ring modes7 and we postulate that a large
variation in these bands from one agar to another most likely
indicates that the sugars from the different agars are
metabolized in different ways. What was surprising in this
analysis was the fact that large variations in bands typically
associated with conformational differences in peptidoglycan
(bands 1750, 1636, and 1401 cm�1). These five bands were
extremely predictive in terms of the underlying agars. Figure
16 shows a SOM constructed using only the five features due

to the largest bands in the significance plot. As can be seen
from the map, the bacteria grown on the four different agars
were completely separated.

Comparisons with Other Statistical Methods. The present
method was designed to highlight the most significant spectral
features and use these to cluster samples from different
categories on SOMs. Analysis of variance (ANOVA) has been
used previously for feature selection by determining features
that correlate with the classification of samples.58,59 ANOVA
has also been used in conjunction with principal component
analysis (PCA) to determine biomarkers for premature births
from MALDI-MS of amniotic fluids.60 The ANOVA-PCA

FIG. 12. Significance plot of Gram-positive versus Gram-negative. Features are in cm�1 units.

FIG. 11. SOM for Gram-positive (P) vesrus Gram-negative (N), reduced feature set, 90% significance. Axes are relative x and y distances showing the map location
of samples.
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combination has also been used to determine the effects of
concentration and temperature on adhesion of carrageenan
gels.61 All of these investigations require training with samples
from known classes to provide prediction models; the training
is accomplished with labeled samples. The method demon-
strated herein does not require that the class or type of samples
be known prior to producing the significance spectra and the
SOMs.

Other methods such as K-means62 and hierarchical cluster
analysis63 (HCA) can be used to cluster samples from
spectroscopic data. These approaches assign observations to
clusters exclusively, i.e., an element can only belong to a single

cluster. The advantage of SOM is that it can portray trends,

such that in cases where cluster membership is somewhat

ambiguous the algorithm will place that observation on the

intersection between the clusters in question. Also, K-means

has no visualization and the visualization for HCA is easily

overwhelmed by just tens of points, never mind hundreds or

thousands of points.

CONCLUSIONS

Significance of features in infrared spectra of bacteria has

been defined as the probability that a feature captures structure

FIG. 14. SOM for Bacillus cereus grown on different agars, reduced feature set, 90%. M = Manitol, B = blood, C = chocolate blood, and N = nutrient. Axes are
relative x and y distances showing the map location of samples.

FIG. 13. SOM for Gram-positive (P) versus Gram-negative (N) with a reduced feature set of three features. Axes are relative x and y distances showing the map
location of samples.
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available in the data set. As such, significance of a feature is

defined as a value proportional to the variance of this feature

within a given library of such spectra. It was shown that this

notion of significance seems to be appropriate for the analysis

of bacterial spectra using self-organizing maps. Significant

features lead to more stable maps than non-significant features.

Using collections of real-world bacterial spectra, we have

shown that our feature selection consistently chooses features

that allow us to construct maps on reduced feature sets that are

at least as good as the maps constructed on the full feature sets.

In addition, our notion of significance reliably picks features

that are consistent with the biological interpretation of the
spectra.

We are interested in further exploring our notion of
significance as an aid to the interpretation of bacterial spectra.
One particular area we are interested in is the further
understanding of the role of peptidoglycan in the differentiation
of bacterial cells. The surprising effect of agars on the bacterial
chemistry is also a worthwhile topic for investigation.
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