
Protein Structure-Function Analysis with Self-Organizing Maps

Seonjoo Lim Stephen Jaegle Lutz Hamel
Department of Computer Science and Statistics

University of Rhode Island
Kingston, Rhode Island, USA

hamel@cs.uri.edu

Abstract

Here we describe an approach for protein structure-function
analysis using self-organizing maps based on the structure
of a protein’s functional site. Our current approach differs
from other approaches in that we directly unfold the 3D
structure of the functional center of a protein into a suitable
high-dimensional feature vector and then use self-organizing
maps to discover similarities/dissimilarities between the cor-
responding feature vectors. We successfully applied our tech-
niques to two large protein families: the protein kinases and
the Ras superfamily. Even though a number of different ap-
proaches using self-organizing maps for the conformational
analysis of molecules have been proposed, our approach is
novel in that we apply it to protein families, use an efficient
feature vector construction, and use a recently developed self-
organizing map package that provides statistical support for
evaluating the resulting map quality.

1 Introduction

The function of a protein is mainly determined by struc-
tural features, especially the functional site of the protein
[1]. Therefore, common functionalities among proteins can
be inferred from their structural similarities. Furthermore,
in large protein families we can observe that small differ-
ences in the structure of the well preserved functional sites
denote differences in functionality between the proteins. Here
we describe an approach for protein structure-function anal-
ysis using self-organizing maps (SOMs) [2]. Our approach
is based on the structure of a protein’s functional site. The
approach we employ here differs from other approaches, e.g.
[3, 4, 5], in that we unfold the 3D structure of the functional
center of a protein into a suitable high-dimensional feature
vector and then use self-organizing maps to discover similari-
ties/dissimilarities between the corresponding feature vectors.
This approach to constructing feature vectors is substantially
more efficient than the approach first outlined in [6]. Per-
haps the work most closely related to ours is [7] where the
authors classify protein motifs using SOMs. However, their

work differs substantially from ours in that instead of directly
encoding 3D spatial information of the motifs in question the
authors compute a feature vector for a motif by looking at the
angles at the α-carbon atoms along the backbone of a protein.

We successfully applied our technique to two large pro-
tein families: the protein kinases [8] and the Ras superfamily
[9]. Our proposed approach seems to be novel in that we ap-
ply it to protein families, use an efficient feature vector con-
struction, and use a recently developed self-organizing map
package that provides statistical support for evaluating self-
organizing map quality [10].

The remainder of this paper is structured as follows. In
Section 2 we describe our methodology for aligning func-
tional sites, extracting feature vectors, and computing SOM
based models. We look at details of model building and clus-
ter analysis in Section 3. In particular, we discuss the appli-
cation of our technique to the two different protein families.
Finally, we discuss our conclusions and further work in Sec-
tion 4.

2 Preprocessing the Protein Structure
Information

The major steps for preprocessing protein data are summa-
rized in Figure 1. First, the protein structures for proteins
under investigation are pulled from the Protein Data Bank
(PDB) [11]. The proteins are then aligned using FATCAT
[12]. From the aligned proteins we then extract only the func-
tional site structures for our functional site based analysis. In
order to filter out the functional sites, key structural informa-
tion is used, like the consensus of a motif or the positional
information (e.g., residue number) of a binding site for each
protein. Next, the structures are simplified by extracting only
the α-carbons from these functional sites. This provides in-
formation on the backbone structure of the functional sites
by excluding the side chains. Finally, each functional site is
represented by the 3D-coordinates of its α-carbons, and the
coordinate data of all the α-carbons is unfolded into a linear
vector – the feature vector of the functional site.

Figure 2 shows a set of feature vectors as rows. Each row



Figure 1: Steps in the protein structure-function analysis.

Figure 2: Feature vector construction, unfolded 3D-coordinates.

represents the residues of a functional site of a protein from
the Ras family. For demonstration purposes the functional
sites have been truncated to three amino acids. In our actual
setting we consider eight residues. Here each feature vector
is denoted by two labels (a family name and a PDB ID), and
three sets of attributes representing the 3D coordinates of the
α-carbon of the three residues (GXX). The three residues are
the first three of the eight residues making up the phosphate
binding loop (p-loop) motif GXXXXGK[S/T]. The p-loop is
the active site in the Ras family. In other words, a feature vec-
tor for a protein is the sequential listing of the 3D coordinates
of the α-carbons appearing in its functional site.

3 Model Building and Evaluation
For our experiments we used proteins from two large protein
families: the Ras family and the protein kinase family. We
preprocessed the proteins as described in Section 2 and then
constructed self-organizing maps for each protein family. The

maps shown are fully converged, i.e., the clusters, their size,
and their relative position to each other are statistically mean-
ingful [13]. We commence this section by briefly reviewing
self-organizing maps.

3.1 Self-Organizing Maps
A self-organizing map [2] is a kind of artificial neural network
that implements competitive learning, which can be consid-
ered a form of unsupervised learning. On the map itself, neu-
rons are arranged along a rectangular grid with dimensions
xdim and ydim. Learning proceeds in two steps for each train-
ing instance ~xk , k = 1, 2, 3, . . . ,M , with M the number of
training instances:

1. The competitive step where the best matching neuron
for a particular training instance is found on the rectan-
gular grid,

c = argmin
i

(||~mi − ~xk||)



where i = 1, 2, . . . , N is an index over the neurons of
the map with N = xdim × ydim the number of neurons
on the grid, and ~mi is a neuron indexed by i. Finally, c
is the index of the best matching neuron ~mc on the map.

2. The update step where the training instance ~xk influ-
ences the best matching neuron ~mc and its neighbor-
hood. The update step can be represented by the fol-
lowing update rule for the neurons on the map,

~mi ← ~mi − η~δih(c, i)

for i = 1, 2, . . . , N . Here ~δi = ~mi−~xk, η is the learning
rate, and h(c, i) is a loss function with,

h(c, i) =
{

1 if i ∈ Γ(c),
0 otherwise,

where Γ(c) is the neighborhood of the best matching
neuron ~mc with c ∈ Γ(c). Typically the neighborhood
is a function of time and its size decays during train-
ing. Initially the neighborhood for neuron ~mc includes
all other neurons on the map,

Γ(c)|t=0 = {1, 2, . . . , N}.

As training proceeds the neighborhood for ~mc shrinks
down to just the neuron itself,

Γ(c)|t�0 = {c}.

Here, as before, N = xdim × ydim is the number of
neurons on the map. This means that initially the update
rule for each best matching neuron has a very large field
of influence which gradually shrinks to the point that the
field of influence just includes the best matching neuron
itself.

The two training steps above are repeated for each training
instance until the given map converges.

Here we use our popsom package [10] which supports sta-
tistical convergence criteria [13] and detailed cluster visual-
izations in terms of our starburst plots [14]. Figure 3 shows
a scatter plot of the hepta problem in Ultsch’s fundamental
clustering problem suite [15]. The data set consists of seven
distinct clusters embedded in three dimensional space. No-
tice that there is a single, very tight cluster at (0,0) and then
we have six clusters surrounding this center cluster. Figure 4
shows a SOM starburst plot of this data set. The seven clusters
can easily be identified on the map by their starbursts. Also
easily visible is the fact that clusters themselves are identi-
fied by their light color and cluster boundaries are identified
by darker colors. The easily identified borders mean that the
clusters are indeed distinct clusters. Their relative position is
also meaningful to a point, given that this is a 2D rendering
of a higher dimensional space. Here we see the cluster with

Figure 3: The FCPS Hepta data set.

Table 1: Hierarchy of the STE Kinase Family and correspond-
ing Binding Sites.

Family Subfamily PDB ID Binding Site

STE 7 MAP2K4 3ALO 108-116

STE 11 MAP3K5 4BF2 686-694
3VW6

STE 20 PAK6 4KS7 413-421
PAK4 2J0I, 4JDI

class label 1 towards the center of the map. This is a repre-
sentation of the tight center cluster in the original plot. We
can also see that it consumes somewhat less map real estate
than the other clusters meaning that the cluster is very tight.
All these observations are justified due to the fact that the map
has converged and therefore positioning and distance amongst
clusters is statistically meaningful.

3.2 The Protein Kinase Family

Protein kinases catalyze proteins by attaching phosphate
groups to them. For example, protein kinase helps bind ATP
to proteins so that they can be phosphorylated and produce
ADP. Here we consider the sterile (STE) group which is one
of ten human kinase families [8]. Three main families in the
STE group operate on each other sequentially: STE 20 acti-
vates STE11 and STE11 activates STE 7. Table 1 shows the
STE families with their subfamilies and their corresponding
members. Also shown is the binding site for each member.
Note that the length of the respective binding sites is eight
residues. As mentioned above, that means the corresponding
feature vectors have a length of twenty four.

Figure 5 shows that the SOM algorithm was able to recover
the subfamilies given in Table 1 as separate clusters. Here
we make use of the fact that cluster relative positioning and
the coloring of the map is statistically meaningful because
the map has converged. We can observe that the clusters for



Figure 4: A SOM starburst plot of the Hepta data set.

Figure 5: A SOM depicting the protein kinase STE Group.



Figure 6: The STE branch of the evolutionary tree of the human kinase complement [8].

PAK4 and MAP3K5 are distinct but close together. We can
therefore infer that the active site structures for those proteins
are very similar. The same holds for the clusters PAK4 and
PAK6. It is perhaps remarkable that the active site structure
for MAP2K4 seems to share more similarity with PAK6 than
with MAP3K5. It is tempting to see if an analysis solely based
on the functional site of these proteins can recover the evolu-
tionary relationships between the protein families shown in
Figure 6 which is the STE branch of the evolutionary tree
of the human kinase complement published as a supplement
to [8]. Now, if we consider Figure 6 we can find MAP2K4,
PAK4, and PAK6 on the lower branches of the tree. We can
find MAP3K5 on an upper branch near the STE label. Trac-
ing the evolutionary lines in Figure 6 it is clear that SOM’s
cluster structure captures the the evolutionary relationships
with the exception of perhaps the MAP3K5/PAK4 relation-
ship which on the SOM appears to be much closer than the
tree indicates. One interpretation is that the structure of the
active site of these two protein families has been highly pre-
served and that evolutionary differences manifest themselves
in different protein domains.

3.3 The Ras Superfamily

The Ras superfamily of small GTPases is a large and diverse
group of proteins that act as molecular switches for regulat-
ing cellular functions [9]. This superfamily is divided into
five major families based on their structural and functional
similarities: Rho, Ras, Rab, Ran, and Arf [16]. The protein
members of the Ras superfamily have 40% - 85% of high pri-
mary sequence identity, while each subfamily has individual
functions and different targets [17]. All members of the Ras
superfamily have highly conserved common structural cores
and function as GDP/GTP-regulated molecular switches. For

Table 2: Hierarchy of the Ras superfamily and the list of pro-
teins used in the analysis.

Family Subfamily PDB ID

Ras HRas 121P, 1QRA, 1CTQ, 1P2S, 1AGP
KRas 4DSN

Rho RhoA 1A2B, 1CC0, 1CXZ, 1DPF, 1FTN

Rab Rab1A 2FOL, 2WWX, 3SFV, 3TKL
Rab1B 3JZA

Arf

Arf1 1HUR
Arf2 1U81
Arf3 1RE0
Arf4 1Z6X

Ran 1I2M, 1IBR, 1RRP, 3CH5, 3EA5, 3GJ3

example, a GTP-binding protein binds to either guanosine
diphosphate (GDP) or guanosine triphosphate (GTP) so the
protein becomes either inactive or active, respectively [18].

There is a particular motif in the proteins of the Ras super-
family that determines the features of each subfamily. Each
subfamily acts as a molecular switch for a unique target or in-
tervenes in a cell process, such as cell proliferation. Members
of this superfamily conserve five G domains which are funda-
mental subunits: G1-G5 [9]. G domains are highly conserved
regions related to nucleotide binding, a process that is in-
volved with the GDP/GTP cycle. The G1 domain contains the
phosphate binding loop (p-loop), which is a common motif in
GTP binding proteins with a consensus of GXXXXGK[S/T],
where X denotes any amino acid and S/T means S or T. In-
terestingly enough, the length of the active site of the protein
family measure also eight residues. Table 2 shows the hierar-
chical relationship of the Ras superfamily and the list of PDB
IDs chosen for analysis in this paper.

Figure 7 shows a SOM constructed for the Ras superfamily.



Figure 7: A SOM depicting the Ras Superfamily.

The major clusters for Rho (top-right), Rab and Ran (center-
right), and Arf and Ras (bottom-center-left), are easily iden-
tified. What is curious is that there is a separate Rab cluster
on the top-left of the map separated from the remaining clus-
ters by a fairly dark border. This means that structurally these
Rab proteins look substantially different from the remaining
proteins. We intend to follow up and investigate.

We can now investigate whether an structure-function anal-
ysis solely based on the active site of the proteins preserves
the evolutionary relationship of the proteins. Figure 8 shows a
consensus tree of the Ras superfamily published in [19]. From
the tree it is easily identified that the families Rab, Ran, and
Rho are closely related to each other and that the families Arf
and Ras form another cluster. Going back to our map in Fig-
ure 7 we can see that the relative positioning of the clusters
on the map preserves these evolutionary relationships. We
can observe one outlier - a sole Arf protein shows up in the
Ran cluster at the bottom right of the corner.

4 Conclusions and Further Work

Here we described our approach for protein structure-function
analysis using self-organizing maps based on the structure
of a protein’s functional site. Our current approach differs
from other approaches in that we directly encode the 3D
structure of the functional center of a protein into a suitable
high-dimensional feature vector and then use self-organizing
maps to discover similarities/dissimilarities between the cor-
responding feature vectors. We used our popsom package

which supports statistical convergence and quality measures
and advanced visualization techniques for self-organizing
map construction and evaluation. We successfully applied our
techniques to two large protein families: the protein kinases
and the Ras superfamily. We have shown that SOM preserves
protein intra-family relationships as clusters and inter-family
relationships with the relative positioning of family cluster
to each other on a map. We have shown that evolutionary
relationships between protein families are to a large degree
preserved within the active site of the proteins.

Future research will focus on applying this technique to
other protein families and structures. We also intend to in-
vestigate the outliers we found on the map for the Ras super
family.
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