
Unsupervised Learning in Spectral Genome Analysis 
 

Lutz Hamel1, Neha Nahar1, Maria S. Poptsova2, Olga Zhaxybayeva3, J. Peter Gogarten2 
1 Department of Computer Sciences and Statistics, University of Rhode Island, USA 

2 Department of Molecular and Cell Biology, University of Connecticut, USA 
3 Department of Biochemistry and Molecular Biology, Dalhousie University, Canada 

hamel@cs.uri.edu, nnahar@cs.uri.edu, maria.poptsova@uconn.edu, olgazh@dal.ca, gogarten@uconn.edu 
 

 
Abstract 

 
The tree representation as a model for organismal 

evolution has been in use since before Darwin.  
However, with the recent unprecedented access to 
biomolecular data it has been discovered that, 
especially in the microbial world, individual genes 
making up the genome of an organism give rise to 
different and sometimes conflicting evolutionary tree 
topologies.  This discovery calls into question the 
notion of a single evolutionary tree for an organism 
and gives rise to the notion of an evolutionary 
consensus tree based on the evolutionary patterns of 
the majority of genes in a genome embedded in a 
network of gene histories.  Here we discuss an 
approach to the analysis of genomic data of multiple 
genomes using bipartition spectral analysis and 
unsupervised learning.  An interesting observation is 
that genes within genomes that have evolutionary tree 
topologies that are in significant conflict with the 
evolutionary consensus tree of an organism point to 
possible horizontal gene transfer events which often 
delineate significant evolutionary events. 

 
 
1. Introduction 
 

The tree representation as a model for organismal 
evolution has been in use since before Darwin.  
However, with the recent unprecedented access to 
biomolecular data it has been discovered that, 
especially in the microbial world, individual genes 
making up the genome of an organism give rise to 
different and sometimes conflicting evolutionary tree 
topologies [1].  This discovery calls into question the 
notion of a single evolutionary tree describing 
organismal evolution and gives rise to the notion of an 
evolutionary consensus tree that is based on the 
evolutionary patterns of the majority of genes in a 
genome. This consensus tree is embedded in a network 
represented by the histories of the different genes.   
Evolutionary tree topologies of genes that conflict with 
the consensus tree are strong indicators of horizontal 

gene transfer events.  Given this, it is clear that 
organismal evolution cannot be inferred from studying 
the evolution of just a few genes but must be inferred 
from studying as many (orthologous) genes as 
possible.   

To construct and evaluate an evolutionary 
consensus tree based on multiple genes for a set of 
genomes it is advisable to construct all possible 
evolutionary tree topologies for these genomes and 
measure the support of each topology by the 
(orthologous) genes within the genomes. 
Unfortunately, evaluating all possible tree topologies is 
computationally intractable for anything but a very 
small set of genomes, since the number of possible tree 
topologies grows factorially with the number of 
participating genomes. An approach based on the 
spectral analysis of genomic data using bipartitions [2] 
allows the inference of consensus trees from smaller 
quanta of phylogenetic information, side stepping 
some of the difficult computational issues. We refer to 
this approach as spectral genome analysis.   

It is worth noting that when a single tree is 
calculated from the combination of all genes, including 
genes that were horizontally transferred, the topology 
of the resulting tree might not represent the plurality of 
gene histories.  Therefore a detailed analysis of the 
evolutionary histories of the participating genes is of 
interest.  The techniques outlined here support this 
kind of analysis. 

In spectral genome analysis each set of orthologous 
genes (a gene family) is associated with a particular set 
of bipartitions (its spectrum) that define its 
evolutionary tree.  Thus, we can envision a gene family 
as a point in the space spanned by all possible 
bipartitions of a set of genomes.  Here we apply 
unsupervised learning in the form of self-organizing 
maps [3] to this space and obtain a visual 
representation of clusters of gene families with similar 
spectra.  The spectra of the gene families within a 
particular cluster allow us to infer the consensus tree 
for that cluster.  It is now possible to investigate 
whether the consensus tree topologies of the clusters 
are compatible or conflicting with the overall 
consensus tree.  If a cluster of gene families is 



discovered that conflicts with the consensus tree 
topology, then this is a strong indication of a horizontal 
gene transfer event. The advantage of this approach is 
that we not only see a distinction between consensus 
and conflicting trees, but that we can detect trends of 
agreement between the conflicting genes.  This 
additional insight might provide biological clues as to 
the nature of the origin of these genes.   

Unsupervised learning has been used in genomic 
analyses (e.g. [4]).  However, our approach seems to be 
novel in that we do not apply unsupervised learning 
directly to DNA data but instead analyze the much 
more abstract representation of the genomic data in the 
form of bipartitions.  We have constructed a 
webservice called GPX (Genome Phylogenetic 
explorer)1 that supports this kind of analysis [5]. 
 
2. Spectral analysis of evolutionary trees 
 

Given n entities, there are 2n-1 different ways to 
assign the entities to two different sets.  That is, there 
are 2n-1 different bipartitions of n entities.  A 
(unrooted) tree can be viewed as a model of the 
evolutionary relationships between n entities or taxa 
such as species, genes, molecules, etc.   Each edge in a 
tree can be seen as dividing the tree into a bipartition:  
The leaf nodes that can be reached from one end of the 
edge form one set of taxa and the leaf nodes that can be 
reached from the other end of the edge form the other 
set of taxa.  A binary tree with n leaf nodes has exactly 
2n-3 edges.  Thus, an evolutionary tree relating n taxa 
gives rise to 2n-3 bipartitions.  It is easy to see that 2n-
3 < 2n-1, that is, the number of bipartitions defined by 
an evolutionary tree of n taxa is much smaller than the 
number of possible bipartitions of n entities.   

Let tn be an evolutionary tree over n taxa, we define 
the bipartitions defined by tn as the spectrum of tn, 
denoted as S(tn).  It is convenient to adopt a vector 
notation for the spectrum S(tn) = (b1,…, b2

n
-1) = 

(0,1,1,0,…,0,0), where bk denotes bipartion k with 1 < 
k < 2n-1.  Here, bk = 1 if the spectrum of the tree 
includes bipartition bk, otherwise bk = 0.  Given this, 
we can now refer to a bipartition space and we can 
readily see that a spectrum of a particular evolutionary 
tree tn represents the coordinates of a point in that 
space.  In our case, where the tree represents the 
evolutionary relationship between orthologous genes in 
n genomes, we often refer to the tree spectrum as the 
gene family spectrum and therefore a gene family is 
denoted by a point in bipartition space. 

It is customary to compute confidence values for the 
edges in an evolutionary tree via bootstrapping [6].  

                                                             
1 http://bioinformatics.cs.uri.edu/gpx 

The computed tree represents a consensus tree over the 
bootstrap samples. The confidence values are typically 
chosen between 0 and 100.  With this, a bipartition 
derived from a particular edge in the bootstrap 
consensus tree inherits the confidence value of that 
edge.  This allows us to refine our spectrum vector 
notation, S(tn) = (0,67,85,0,…,15,0), where tn is now a 
bootstrapped consensus tree and the values in the 
vector represent the confidence values for the 
individual bipartitions. 

Figure 1a shows a bootstrapped consensus tree with 
five taxa.  The values on the edges represent the 
bootstrapped confidence values.  Figures 1b and 1c 
show two possible bipartitions of the tree.  Notice that 
the bipartitions inherit the confidence value of the edge 
that corresponds to the bipartition.  Also note that the 
subtrees on either end of the bipartition edge do not 
preserve the topologies of the original subtrees in the 
evolutionary tree. 

 
Fig. 1: a) Bootstrapped consensus tree with 5 taxa. 

b) A bipartition with a 95% bootstrapped 
confidence value.  c) A bipartition with an 85% 

bootstrapped confidence value. 

An interesting consequence of our notion of 
bipartition space is that we can now measure the 
difference between spectra as the Euclidean distance 
between the two corresponding spectrum points in 
bipartition space.  Let t1, t2, and t3 be three different 
evolutionary trees of n taxa and let S(t1), S(t2), and S(t3) 
be the respective spectra, then we say that S(t2) is more 
similar to S(t1) than S(t3) if ||S(t1)-S(t2)|| < ||S(t1)-S(t3)||, 
here the operator || ⋅ || denotes the Euclidean distance 
between two points in bipartition space.   

 
3. Bipartitions and consensus trees 
 

To handle bipartitions computationally in an 
efficient way we can represent them effectively as 
binary masks. Figure 2a shows a binary vector indexed 



by the taxa names of the tree in Figure 1a.  Figure 2b 
shows the binary representation of the bipartition in 
Figure 1b and Figure 2c shows the binary 
representation of the bipartition in Figure 1c.   

We say that two bipartitions are compatible is there 
exists a tree whose spectrum includes both bipartitions. 
We say that two bipartitions are conflicting if they 
cannot appear in the same spectrum.   Given our binary 
representation of bipartitions, there is a simple 
computation to test for compatibility between 
bipartitions.  We say that two bipartitions are 
compatible if the following returns true: 

((b1 | b2) == b1) || 
((b1 | b2) == b2) || 
((b1 | ~ b2) == b1) || 
((b1 | ~ b2) == ~ b2), 

where b1 and b2 denote bipartitions.  Here the ‘|’ 
operator represents the bitwise OR operation, the ‘~’ 
operator represents the bitwise negation, the ‘||’ 
operator represents the logical OR operation, and ‘==’ 
the bitwise equality operator.  Given the two masks 
from Figures 1b and 1c, it is easy to see that they are 
compatible: 

10001 | 11001 == 11001 

On the other hand, the bipartitions 11001 and 10011 
are conflicting. 

 
Fig. 2: a) A binary vector indexed by taxa names. 

b) A binary representation of the bipartition in 
Figure 1b. c) A binary representation of the 
bipartition in Figure 1c. 

An interesting application of this is the construction 
of a consensus tree of multiple spectra in a bipartition 
space.   Before we can describe this construction we 
need to define what we mean by an average spectrum.  
Given m spectra, S1…Sm, in a bipartition space of n 
taxa, we define the average spectrum Sa as, 
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The summation of spectra is well defined as vector 
additions in bipartition space and the multiplication of 
a scalar and a vector simply scales the components of 
the vector.  If we interpret the spectra S1…Sm as a 

cluster in bipartition space, then the average spectrum 
can be viewed as the centroid of that cluster. 

The following algorithm constructs a consensus tree 
given m spectra, S1…Sm: 

1. Compute Sa for S1…Sm 
2. Sort the bipartitions in Sa according to their 

bootstrap support values. 
3. Delete all bipartitions in Sa that conflict with 

more strongly supported bipartitions in Sa. 
4. Incrementally construct a consensus tree from 

the remaining bipartitions in Sa, starting with 
the bipartition with the strongest support to the 
bipartition with the weakest support. 

Note that our definition of average spectrum implies 
that it can contain conflicting bipartitions making step 
3 necessary in order to construct a tree.  
 
4. Unsupervised learning in bipartition 
space 
 

Self-organizing maps [3] were introduced by 
Kohonen in 1982 and can be viewed as tools to 
visualize structure in high-dimensional data.  Self-
organizing maps are considered members of the class 
of unsupervised machine learning algorithms, since 
they do not require a predefined concept but will learn 
the structure of a target domain without supervision. 

Typically, a self-organizing map consists of a 
rectangular grid of processing units.  Multidimensional 
observations are represented as vectors.  Each 
processing unit in the self-organizing map also consists 
of a vector called a reference vector or reference 
model.  In our case the multidimensional observations 
are spectra, where the number of possible bipartitions 
given n taxa governs the dimensions of the spectra.  
The dimensions of processing elements of the map 
match the dimensionality of the observations. 

The goal of the map is to assign values to the 
reference models on the map in such a way that all 
observations can be represented on the map with the 
smallest possible error. However, the map is 
constructed under constraints in the sense that the 
reference models cannot take on arbitrary values but 
are subject to a smoothing function called the 
neighborhood function.  During training the values of 
the reference models on the map become ordered so 
that similar reference models are close to each other on 
the map and dissimilar ones are further apart from each 
other.  This implies that similar observations will be 
mapped to similar regions on the map.  Often reference 
models are referred to as centroids, since they typically 
describe regions of observations with large similarities. 

The training of the map is carried out by a 
sequential regression process, where t = 1, 2,... is the 



step index.  For each observation x(t) at time t, we first 
identify the index c of some reference model which 
represents the best match in terms of Euclidean 
distance by the condition, 

! 
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x(t) "m
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Here, the index i ranges over all reference models 

on the map. The quantity mi(t) refers to the reference 
model at position i on the map at time step t.  Next, all 
reference models on the map are updated with the 
following regression rule where model index c is the 
reference model index as computed above, 
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Here hci is the neighborhood function that is defined 
as follows, 
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where |c – i| represents the distance between the 
best matching reference model at position c and some 
other reference model at position i on the map, β is the 
neighborhood distance and η is the learning rate.  It is 
customary to express η and β also as functions of time.  
This computation is usually repeated over the available 
observations many times during the training phase of 
the map.  Each iteration is called a training epoch. 

An advantage of self-organizing maps is that they 
have an appealing visual representation.  That is the 
structure of the input domain is graphically represented 
as a 2-dimensional map.  Figure 3 shows a typical map 
computed in GPX. 

Each square in the map represents a reference 
model.  The shading of the map represents the level of 
quantization or mapping error for the map: Light 
shading represents a small quantization error; that is, 
the reference models in those areas match the 
observations very closely. Dark shading represents a 
large quantization error; that is, there is a poor match 
between reference models and observations.  
Contiguous areas of low quantization error represent 
clusters of similar entities.  

In this paper we make use of this ability of self-
organizing maps to visualize high-dimensional spaces 
in order to visualize similarities and dissimilarities of 
high-dimensional tree spectra.  We would expect 
points in bipartition space that represent similar spectra 
to map close together on the visualization and vice 
versa.  Once we have identified clusters of spectra we 
can proceed to compute consensus trees for those 
clusters.  Furthermore, we can now compare the trees 
calculated from individual clusters to the overall 
consensus tree, and we can investigate whether there 

exists substantial conflict between the bipartitions of 
various clusters. Furthermore, the clusters that result 
from this unsupervised learning allow the biologist to 
detect trends in the evolutionary histories of the 
participating genes which might provide insight into 
events such as horizontal transfers of individual genes 
or whole metabolic pathways. 

 
Fig. 3: A typical visualization computed by GPX. 

 
5. The construction of gene families 
 

One of the insights of recent molecular biology is 
that it is not enough to use one or a few genes to infer 
phylogenetic relationships among species.  Therefore, 
we propose to use as many genes as possible in our 
analysis based on the notion of a gene family. A gene 
family is a collection of genes from different genomes 
that are related to each other and share a common 
ancestor. In general, a gene family may include both 
orthologs and paralogs  [7].  Here we consider only 
sets of putatively orthologous genes where each 
species contributes only one gene into a family. The 
evolutionary history of an individual gene family is a 
phylogenetic tree. 

We select common gene families based on 
reciprocal best BLAST [8] hit criteria [9] with 
relaxation (see below). The reciprocal best BLAST hit 
method requires strong conservative relationships 
among the orthologs so that if a gene from species 1 
selects a gene from species 2 as a best hit when 
performing a BLAST search with genome 1 against 
genome 2, then the gene 2 must in turn select gene 1 as 
the best hit when genome 2 is searched against genome 
1.  The requirement of reciprocity is very strict and 
often fails in the presence of paralogs. To select more 
orthologous sets we relax the criteria of strict 
reciprocity by allowing a fixed number of broken 
connections.  

The gene families are aligned with Clustalw version 
1.83 using default parameters [10]. For each family a 



maximum likelihood tree is calculated by Phyml [11] 
using the JTT model, four relative substitution rate 
categories, and an estimated shape parameter for the 
gamma distribution describing among site rate 
variation. 

For each gene family tree, 100 bootstrapped 
replicates are generated and evaluated with the Phyml 
program. All 100 generated trees are split into their 
corresponding bipartition spectra and corresponding 
bootstrap support values are assigned to each 
bipartition by calculating how many times each 
bipartition is present in a family.  The result of these 
calculations is a spectrum for each gene family. 
Observe that trees calculated from individual bootstrap 
samples contain edges that are not part of a majority 
consensus tree, that is, the spectrum for a gene family 
can contain bipartitions that conflict with other 
bipartitions in the spectrum.  For our purposes this is 
important since that prevents information loss and 
avoids bias during our analyses.  

We can now use the machinery developed above to 
investigate the consensus tree of the collection of gene 
families and whether there exist spectra that have a 
significant conflict with the overall consensus tree. 
 
6. GPX 
 

We have developed a tool based on the techniques 
developed above.  Furthermore, the tool supports an 
active, investigation style analysis where the user can 
interact with the visualization.  The user is able to 
select centroids on the map and investigate consensus 
trees and conflicting bipartitions in the respective 
spectra.  A detailed description of an experiment using 
GPX appears in [5].  In this experiment we analyzed 
123 gene families of 14 archaea species. We found that 
sets of gene families exhibited substantial conflict with 
the overall organismal consensus tree corroborating 
findings of frequent gene transfers between organisms 
sharing the same or similar ecological niches [12, 13]. 

 
7. Conclusions 
 

Here we described a comparative genomic analysis 
technique based on bipartition spectra and 
unsupervised learning.  We have incorporated the 
techniques developed here into a web-based tool and 
have used this tool successfully in a set of analyses.  A 
big drawback of the techniques given here is the 
reciprocity requirement in the gene families severely 
limiting the number of gene families we can use for 
our analyses.  A new approach based on embedded 
quartet spectra [14] promises to lift this restriction. 
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