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Abstract – The visualization of support vector 
machines in realistic settings is a difficult problem due to 
the high dimensionality of the typical datasets involved.  
However, such visualizations usually aid the 
understanding of the model and the underlying processes, 
especially in the biosciences.  Here we propose a novel 
visualization technique of support vector machines based 
on unsupervised learning, specifically self-organizing 
maps.  Conceptually, self-organizing maps can be thought 
of as neural networks that investigate a high-dimensional 
data space for clusters of data points and then project the 
clusters onto a two-dimensional map preserving the 
topologies of the original clusters as much as possible.   
This allows for the visualization of high-dimensional 
datasets together with their support vector models.  With 
this technique we investigate a number of support vector 
machine visualization scenarios based on real world 
biomedical datasets. 

I. INTRODUCTION 
Support vector machines represent a powerful new 

machine learning paradigm introduced in the early 1990’s by 
Vapnik [1] based on kernel functions.  Although these 
algorithms exhibit excellent machine learning performance it 
is often difficult to obtain an intuitive understanding of the 
induced model1, since support vector machines do not share 
the same transparency that decision trees [2] or inductive logic 
programming models [3] possess.  However, an intuitive 
understanding of the obtained classifier is important, 
particularly in the biosciences, not only for the validation of 
the model but also to deepen the insight into the underlying 
biological processes.  

Support vector machine models consist of points in data 
space (the “support vectors”) that identify a separating 
hyperplane between classes.  The task of the support vector 
machine algorithm is to identify such a set of support vectors 
in a given dataset.  Understanding where the support vectors 
are located with respect to the overall dataset and the kind of 
decision surface they induce provides substantial insight into 
the model. 

Visualization of support vector models is a difficult 
problem due to the high-dimensionality of the typical dataset.  

                                                 
1 Here we only consider support vector machine classification. 

Here we propose a visualization technique of support vector 
machines that makes use of unsupervised learning in order to 
compute an appropriate visualization of the given dataset 
together with the support vector machine model.  More 
specifically, we use self-organizing maps [4] to visualize the 
data and the support vector model.   

Conceptually, self-organizing maps can be thought of as 
neural networks that investigate a high-dimensional data space 
for clusters of data points and then project the clusters onto a 
two-dimensional map preserving the topologies of the original 
clusters as much as possible.  In the simplest case, where we 
have two linearly separable clusters in high-dimensional 
space, each representing a different class, we would expect the 
self-organizing map to project the clusters onto the map with 
the support vectors and the discriminating hyperplane 
appropriately placed between them.  Section IV A. describes 
this baseline experiment with a three-dimensional dataset. 

It is interesting to observe that our visualization naturally 
guides further analysis of a given support vector model.  For 
instance, when we observe simple clusters with smooth 
decision boundaries between them on the projected map for 
high-dimensional data, we can infer that a lower dimensional 
subspace exists that allows for the near perfect discrimination 
between the classes.   In this case, a dimension reduction or 
feature selection on the original dataset would seem 
appropriate to simplify the support vector model.  We show 
that the support vector model of the original, high-dimensional 
data can be used to suggest how to approach this dimension 
reduction [5].  The converse is true as well; if we observe an 
intricate cluster structure with complicated decision 
boundaries we can assume that a high-dimensional subspace is 
necessary in order to be able to discriminate between the 
various classes.  This in turn implies that we need a complex 
support vector model to describe the induced decision surface. 

The approach to the visualization of support vector 
machines proposed here exhibits two major advantages over 
existing techniques: (1) No preprocessing of the data is 
necessary for the visualization, that is, neither do we need to 
perform feature selection nor do we have to guess which 
features to choose for the display. (2) It seems that the 
projection of high dimensional data onto a two-dimensional 
map can provide a “big picture” overview of the support 
vector decision surface not possible with other visualization 
approaches.  In some sense we can say that our approach is 
decision boundary oriented where as existing techniques are 
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feature oriented.  We have implemented a prototype that 
produces PDF maps of the dataset projections and the 
visualization of the support vector models.2   

The remainder of the paper is structured as follows: 
Section II introduces some basic notions on support vector 
machines.  Section III briefly introduces self-organizing maps.  
Section IV describes various visualization experiments; most 
notably we describe three experiments with bio-medical data.  
Section V discusses related work in more detail. We conclude 
the paper with final remarks and notes on further research in 
Section VI. 

II. SUPPORT VECTOR MACHINES 

Support vector machines were introduced in the early 
1990’s as a new breed of classification algorithms based on 
optimal margins [1, 6, 7].   Conceptually, especially in the 
case of two linearly separable classes, support vector machines 
are fairly straight forward: find a hyperplane that separates the 
two classes in such a way that the hyperplane is equidistant 
from both clusters.  In technical jargon: we aim to compute a 
hyperplane that maximizes the margin between the two 
classes.   

 
Fig. 1: Optimal margin hyperplane separating two classes. 

Fig. 1 shows an optimal margin hyperplane separating 
two classes. We can construct a classifier f based on this 
hyperplane that can classify any unknown point x, 

! 

f (x) = label(w• x + b),                         (1) 
where   
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label(n) =
ball       if n " 0,

triangle if n < 0,

# 
$ 
% 

                    (2) 

w is the normal vector of the given hyperplane, w•x 
represents  the dot product between the normal w and some 
point x, and b is the intercept.  Instead of assigning symbolic 
labels to the classes it is usual to assign the numeric labels +1 
and -1 in such a way that the +1 label is assigned to the class 
being pointed to by w, 
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                            (3) 

                                                 
2 Available at http://homepage.cs.uri.edu/faculty/hamel/cibcb2006 

simplifying the underlying mathematics. 
Notice that in Figure 1 the margin is limited by three data 

points.  These three points fully define the margin and with it 
the orientation of the decision surface.  These three points are 
called the support vectors.  The goal of training a support 
vector machine with a given dataset is to identify such support 
vectors and with them the optimal decision surface.  The 
training algorithm can be stated as a quadratic programming 
problem, 

! 

min
"

  
1

2
y iy j" i" jk(x i,x j )

j=1

m

# $ " i

i=1

m

# ,
i=1

m

#

s.t.     yi" i = 0
i=1

m

# ,

          " i % 0, i =1,...,m,

       (4) 

where yl represents the numeric class label for data point xl,  
and αl is the support vector coefficient for data point xl.  The 
indices i and j are indices over all the points m of a dataset.  In 
general, the value of αl is 0 for any point xl not considered a 
support vector.  A number of well established algorithms exist 
to optimize (4), e.g. [8, 9]. 

Perhaps the most interesting feature of (4) is the use of the 
kernel function (or just kernel) k.  When applying support 
vector machines to particular datasets the user typically has a 
choice of which kernel to use. Choices for kernel functions  
include the linear kernel which is just the dot product in data 
space, 

! 

k(x,z) = x • z,                                 (5) 
the polynomial kernel of degree d, 

! 

k(x,z) = (x • z +1)
d
,                     (6) 

and the gaussian kernel, 

! 

k(x,z) = exp  "
x " z

2

2#
,              (7) 

where σ is a free parameter. Here, the construction ||x - z|| 
typically represents the Euclidean distance between vectors x 
and z.  The polynomial and gaussian kernels allow for the 
construction of non-linear hypersurfaces for the separation of 
the classes in data space. 

In the case that none of the induced models can separate 
the classes perfectly, support vector machines allow for 
models to admit certain modeling exceptions.  At the 
theoretical level this is accomplished via slack variables.  At 
the algorithmic level the only thing that changes is that the 
support vector coefficients are further constrained compared to 
(4), 
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to reflect the fact that some data points have to be modeled by 
making them explicit support vectors that do not necessarily 
support the decision surface directly.  Without this further 
constraint value C the support vector coefficients for these 
modeling exceptions would grow to infinity.  The value of C 
is a user defined constant at model construction time and is 
called the “cost” value. 

We can construct a binary classifier f in this general 
setting given the support vector coefficients and the kernel 
function, 

! 

f (x) = label( yi" ik(x,x i) # b),
i=1

m

$             (9) 

the offset b can also be computed from the support vector 
coefficients.  This is easily extended to the multi-class setting 
by using schemes such as one-against-the-rest [7]. 

A. Feature Selection with Linear Kernels 
In general, it is difficult to ascertain how a particular 

support vector machine uses dataset attributes or features.  
That is especially true for the non-linear models produces by 
the polynomial and gaussian kernels. Here we outline an 
approach developed in [5] based on linear models. If we have 
a linear support vector model, then we can construct the 
normal w to the decision surface using the support vectors αl, 
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w = yi" ix i
i=1

m

# .                                 (10) 

Now, the orientation of the normal vector holds 
substantial information on the relative importance of the 
features in the dataset, that is, the larger the projected 
component of the normal onto a particular dimension, the 
higher the importance of that particular feature. 

If we are dealing with a non-linear model we can 
approximate the non-linear model with a linear model making 
use of slack variables and the associated modeling exceptions 
in order to obtain an approximate importance ranking on the 
features.   

III. SELF-ORGANIZING MAPS 
Self-organizing maps [4] were introduced by Kohonen in 

1982 and can be viewed as tools to visualize structure in high-
dimensional data.  Self-organizing maps are considered 
members of the class of unsupervised machine learning 
algorithms, since they do not require a predefined concept but 
will learn the structure of a target domain without supervision. 

Typically, a self-organizing map consists of a rectangular 
grid of processing units.  Multidimensional observations are 
represented as feature vectors.  Each processing unit in the 
self-organizing map also consists of a feature vector called a 
reference vector or reference model.  The goal of the map is to 
assign values to the reference models on the map in such a 
way that all observations can be represented on the map with 
the smallest possible error. However, the map is constructed 
under constraints similar to regression surfaces in multiple-

regression analysis in the sense that the reference models 
cannot take on arbitrary values but are subject to a smoothing 
function called the neighborhood function.  During training 
the values of the reference models on the map become ordered 
so that similar reference models are close to each other on the 
map and dissimilar ones are further apart from each other.  

The training of the map is carried out by a sequential 
regression process, where t = 1, 2,... is the step index.  For 
each observation x(t), we first identify the index c of some 
reference model which represents the best match in terms of 
Euclidean distance by the condition, 

! 

c = argmin 
i

x(t) "m
i
(t) ,  #i .                (11) 

Here, the index i ranges over all reference models on the map. 
Next, all reference models on the map are updated with the 
following regression rule where model index c is the reference 
model index as computed in (11), 
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Here hci is the neighborhood function that is defined as follows, 
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                       (13) 

|c – i| represents the distance between the best matching 
reference model c and some other reference model i on the 
map, β is the neighborhood distance and η is the learning rate. 
It is customary to express η and β also as functions of time.  
This regression is usually repeated over the available 
observations many times during the training phase of the map. 

An advantage of self-organizing maps is that they have an 
appealing visual representation.  Fig. 2 shows animals mapped 
onto a self-organizing map. Each animal is described by a set 
of 13 features [4] such as how many legs, does it possess 
feathers, does it hunt, etc.  In effect, each animal can be 
considered a point in thirteen-dimensional space and the map 
in Fig. 2 is a two-dimensional projection of this thirteen-
dimensional space.  

 
Fig. 2: Mapping animals on to a self-organizing map. 

Each square in the map represents a reference model.  The 
shading of the map represents the level of quantization or 
mapping error for the map: light shading represents a small 
quantization error; dark shading represents a large 
quantization error.  Contiguous areas of low quantization error 



represent clusters of similar entities. Besides low quantization 
error, proximity is also a clustering indicator: the further apart, 
the more dissimilar two objects on the map. For example, in 
Fig. 2 we find two major clusters: mammals and birds.  Within 
these major clusters we can find sub-clusters such as large 
hooved mammals in the top right corner of the map and 
predatory birds in the bottom left corner.  

In this paper we make use of this ability of self-organizing 
maps to visualize high-dimensional spaces in order to 
visualize high-dimensional biomedical datasets together with 
their support vector models. 

IV. VISUALIZATION EXPERIMENTS  
We discuss four experiments.  The first experiment is a 

baseline experiment with a synthetic dataset illustrating the 
basic functionality of our visual approach.  The remaining 
three datasets are biomedical datasets. 

A. Baseline Visualization 
The first visualization is intended to provide an overview 

of the functionality of our technique and can also be thought 
of as a baseline – we test whether the support vectors are 
mapped to reasonable locations on the self-organizing map.  
The actual dataset is given in Table 1. 

TABLE 1 
A LINEARLY SEPARABLE SYNTHETIC DATASET. 

ID X Y Z Class alpha

1 0 0 0 A 0.00

2 1 0 0 A 0.81

3 0 1 0 A 1.00

4 0 0 1 A 1.00

5 4 0 0 B 0.90

6 0 4 0 B 0.95

7 0 0 4 B 0.95

8 5 5 5 B 0.00  

It is a three-dimensional dataset and a quick inspection 
reveals that the classes A and B are linearly separable in an 
optimal way by a plane that intersects the axes at (2.5, 0, 0), 
(0, 2.5, 0), and (0, 0, 2.5) (see Fig. 3, the balls represent class 
A and the squares class B).  The columns of the table should 
be self-explanatory with the exception of the right most one.  
This column lists the α-values for each data point computed 
by a linear support vector machine separating the two classes 
A and B.  Given the position of the separating hyperplane, it 
should be no surprise that all six data points close to the 
decision surface are chosen as support vector, i.e., have an α-
value > 0.  In Fig. 3 the support vectors are indicated with the 
asterisks.   Conversely, the points at (0, 0, 0) and (5, 5, 5) are 
not chosen as support vectors; their α-values are 0. 

Fig. 4 shows the projection of the dataset in Table 1 onto 
a two-dimensional self-organizing map.  The classes are 
indicated with their corresponding letters.  The numbers in 
parentheses are the ID numbers of the individual points given 

in Table 1.  Finally, support vectors are again indicated via 
asterisks. 

 
Fig. 3: Two classes with their separating hyperplane 
and the corresponding support vectors (asterisks). 

 
Fig. 4: Visualization of data points, support vectors, and 
decision surface on a self-organizing map. 

A number of interesting observations can be made on the 
projected data.  First, as one would expect, the linear decision 
surface in three-dimensional space is projected as higher-order 
polynomial surface in two-dimensional space.  The projected 
decision surface is indicated on the map with a dashed white 
line.  Second, we can observe that the support vectors are 
mapped along the decision surface.  Third, the data points 
classified by the decision surface but which themselves are not 
support vectors lie in appropriate regions of the map suitably 
demarked by support vectors.  Finally, class A forms a much 
tighter cluster than class B, that is, the map displays a much 
smaller quantization error for class A than class B.  This 
seems self-evident given the data structure shown in Fig. 3. 
Here, class A forms a tight cluster around the origin and class 
B forms a loose cluster around the point (5, 5, 5). 



As the last thing we investigate how the support vector 
machine uses the features X, Y, and Z.  Using (10) from above 
allows us to compute the normal w of the induced decision 
surface given the α-values of the support vectors.  The normal 
here computes to w = (-2.81, -2.81, -2.81), that is, all three 
features are of equal importance and class A is assigned the 
numeric label +1. 

B. The Wisconsin Breast Cancer Dataset 
Our next experiment is the visualization of a support 

vector model of the Wisconsin breast cancer dataset [10] 
publicly available from the UCI dataset repository [11].  The 
dataset contains 569 instances of fine needle cell aspirates of 
which 212 are malignant and 357 are benign.  Each instance is 
described by thirty features such as cell radius, smoothness of 
the cell surface, concavity among others. It is known that in 
thirty-dimensional space the two classes are linearly separable 
and a number of techniques have been used to construct linear 
classifiers, e.g. [12].  Here we construct a linear support vector 
machine in thirty-dimensional space and then visualize this 
model with a self-organizing map.  Fig. 5 shows this map.  
Unfortunately, due to space constraints we cannot show the 

map in its original size and therefore the labels are not very 
readable, but the map is divided into two regions: a malignant 
region (right side) and a benign region (left side).3  With the 
exception of minor irregularities right at the boundary between 
the two classes the decision surface is smooth considering that 
we are projecting a thirty-dimensional space onto two 
dimensions.  Also, note that the support vectors (long labels) 
are placed along the decision surface.  There are a few 
exceptions and we could consider “drilling through” to the 
instances representing these support vectors to find out why 
these instances are considered outliers by the self-organizing 
map and if there is any biological significance to that (to be 
studied in a follow-on paper).   

In order to provide a more concrete sense of the kind of 
information shown on the map in Fig. 5, Fig. 6 displays a 
detailed view of a section of the map right at the border 
between the two classes.  The decision surface is indicated 
with the dashed line.  The labels B and M indicate that benign 
and malignant instances were mapped to these locations, 
respectively.  Support vectors are indicated with asterisks.  
The number in parentheses is the instance identifier of the 
support vector data points. 

Given that the two classes can be projected so smoothly 
from a thirty-dimensional space onto a two-dimensional 
surface begs the question whether a much lower dimensional 
subspace exists that allows for the near perfect classification 
of the dataset.  Plotting the features using the feature selection 
as outlined above we obtain the graph given in Fig. 7.  From 
this graph it seems that a four-dimensional feature space might 
be sufficient for the classification of the dataset.  Additional 
experiments confirm this; reducing the number of features 
does not significantly alter the map. 

                                                 
3 Maps available at http://homepage.cs.uri.edu/faculty/hamel/cibcb2006 

 
Fig. 5: Visualization of the Wisconsin breast cancer data with the support vector model and the decision surface. 

 

 
Fig. 6: Detailed view of a section of Wisconsin breast 
cancer data self-organizing map.  
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C. The AML-ALL Leukemia Dataset 
Our third visualization experiment uses the AML- 

ALL leukemia dataset published by the Broad Institute at MIT 
[13]. The goal is to distinguish between acute myeloid 
leukemia (AML) and acute lymphoblastic leukemia (ALL). 
The dataset consists of 38 bone marrow samples (27 ALL and 
11 AML; we are using only the training set, a test set is also 
available from the website), over 7129 probes from 6817 
human genes.  The two classes can be separated perfectly with 
a linear support vector machine with cost C=1.  Fig. 8 depicts 
the dataset together with the support vector model and the 
decision surface.  The AML class is at the bottom right of the 
map and the remainder of the map is dedicated to the ALL 
class.  Due to space limitations the map is not very readable, 
an excerpt of the map is given in Fig. 9.  

Considering that we are projecting a 7000-dimensional 
space onto a two-dimensional map the decision surface is 
remarkably smooth suggesting that there exists a much lower 
dimensional space that allows for the classification of the 
instances.  On the other hand, due to the fact that the 

separating hyperplane is induced in 7000-dimensional space 
we have support vectors that support the hyperplane in 7000-
dimensional space but are projected onto locations very far 
away from the decision surface on the map. 

A glance at the feature ranking (Fig. 10) confirms our 
suspicion, only a handful of features are ranked highly, the 
majority of the features has less than half the support than the 
highly ranked features.  Performing feature selection on the 
original dataset with the top five features given in Fig. 10 
(gene accession numbers: M96326_rna1_at, M25079_s_at, 
Z19554_s_at, M27891_at, and Y00433_at) and recomputing 
the support vector model and the self-organizing map gives us 
Fig. 11.  Here the top right of the map contains the AML class 
and the remainder of the map is dedicated to the ALL class.  
Notice that less support vectors are necessary for this model 
and also notice that the majority of the support vectors are 
now close to the decision surface. 

D. The Pap Smear Dataset 
Our final experiment is the visualization of a Pap smear 

dataset [14].  The dataset consists of 52 instances where each 

 
Fig. 8: The AML-ALL dataset visualization with model and decision surface. 

 
Fig. 7: Feature ranking of the Wisconsin breast cancer data. 

 

 
Fig. 9: Detail of the AML-ALL dataset visualization. 
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instance consist of 251 wavenumbers and is classified as either 
precancerous (Y) or not (N).  The wavenumbers represent 
near-infrared spectroscopy measurements ranging from 4,000 
to 10,000 cm-1 of cervical cells.  Of the 52 instances there 
were 32 normal, 9 precancerous, and 11 cancerous cells.  The 
precancerous instances are particularly difficult to classify as 
they possess traits of both the cancerous as well as the normal 
cells.  Here we use a polynomial model with degree seven and 
cost equal to 1 in order to classify the instances.  Fig. 12 
depicts the visualization of this dataset together with its 
support vector model and decision surface.  Note that the 
decision surface is much more complicated than in any of the 
other experiments; in fact, it is broken into two regions.  It is 
important to realize that the self-organizing map algorithm 
uses only data point information to compute the two-
dimensional projection; no classification or model information 
flows into that computation.  Given this, it is remarkable how 
well the independently computed support vector model 
follows the SOM projection.  This also illustrates that our 
visualization technique works for non-linear models.  Perhaps 
another interesting observation is that the bottom left region 
contains no generalizations.  All data points in this region are 
support vectors.  It would be interesting to investigate this 
further and determine a biomedical reason why this particular 
region is difficult to classify.  Finally, in the top left corner we 
have two support vectors of opposite classes mapped to the 
same map element.  This might indicate another region of the 
decision surface. 

Given our hypothesis that complicated projections are due 
to non-trivial subspaces that contain the classification 
information, we should be able to observe this in the feature 
ranking for this dataset.  In order to use our feature selection 
approach we approximate the polynomial model with a linear 
model and then rank the components of the hyperplane normal 
as above.  Fig. 13 shows this feature ranking.  Note that the 
curve in the ranking declines only gradually indicating that 
substantial information is contained within the lesser ranked 
features.  Experiments indicate that one needs at least a 

twenty-dimensional subspace in order to achieve reasonable 
classification accuracy.  Further experimentation is necessary 
to see if the dimension reduction aligns the support vectors, 
especially from the  N class, better with the decision surface. 

V. RELATED WORK  
There has been relatively little work on visualizing 

support vector machine classifiers in realistic settings with the 
notable exceptions [15, 16, 17].  These approaches distinguish 
themselves from our approach in that they require 
considerable insight and preprocessing by the user with 
respect to the data features (which can be daunting in the case 
of the AML-ALL data set).  In the typical setting with these 
approaches the user needs to pick a feature or a collection of 
features to be displayed.  An advantage here is that many 
details on how a particular feature relates to the induced 
decision surface are visible. In particular, Poulet [15] allows 
the user to accept or reject support vectors thus in effect hand 
tuning the classifier.  This is in contrast to our approach where 
we aim to provide an overall impression on how the decision 
surface relates to all data points and support vectors.  

VI. CONCLUSIONS AND FURTHER RESEARCH  
It seems that the approach to visualizing support vector 

machines in realistic settings put forth here is promising.  It 
does convey a sense of the “big picture” of what the classifier 
looks like in high-dimensional spaces.  

In our experiments we have touched upon ways that the 
visualization guides further analysis of the induced decision 
surfaces but we have not yet explored these possibilities in any 
depth.  One interesting extension would be the ability to “drill 
through” from the map to the underlying data instances 
enabling an immediate inspection of outliers or support 
vectors much in the sense as advocated by [15].  We also need 
to further investigate the biological ramifications of these 
visualizations.  

Fig. 10: Feature ranking of the AML-ALL dataset. 

 
Fig. 11: Visualization of the low-dimensional AML-ALL dataset.  
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Another interesting research direction to pursue is to use 
manifold learning, such as locally linear embedding (e.g. 
[18]), instead of self-organizing maps.  It would be interesting 
to see if in this setting the decision surfaces will be detected as 
distinguished structures perhaps reducing support vector 
outliers we have observed in the visualizations above. 

Finally, in all of the maps above the decision surfaces are 
interpolated manually given the locations of the support 
vectors.  It would greatly enhance the visualization if these 
interpolations could be done by machine on the projection 
maps.   
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Fig. 12: The Pap smear dataset visualization with model and decision surface. 

 

 
Fig. 13: Feature ranking of the Pap smear dataset. 

 


