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Abstract— Self-organizing maps have been adopted in many
fields as the data visualization method of choice. The unified
distance matrix is the de facto standard for evaluating and
interpreting self-organizing maps. In large, high-dimensional
problems clusters can be difficult to identify in the plain unified
distance matrix. Here we introduce an enhanced version of the
unified distance matrix in which clusters are easier to see and
interpret. In this enhanced version we view the self-organizing
map as a planar graph where the clusters are connected
components of this graph. Using the transitive properties of
connectedness and exploiting the fact that each component has a
minimal node where the gradient on the unified distance matrix
is equal to zero we can transform these connected components
into stars with the minimal node as the internal node. In
order to avoid unnecessary fragmentation of the components
we apply a kernel based smoothing algorithm to the unified
distance matrix. Our enhanced unified distance matrix is then
the smoothed original unified distance matrix with the star
components overlaid. The result is an easily interpretable self-
organizing map. We perform a number of experiments on
synthetic as well as real-world data that highlight the increased
visual power of this enhanced unified distance matrix.

Fig. 1. A unified distance matrix.
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Fig. 2. An enhanced unified distance matrix.

I. INTRODUCTION

Data visualization is a powerful method to get an intuitive
understanding of the data set at hand. Self-organizing maps
(SOM) have been adopted as the method of choice for data
visualization in many fields [1] [2]. The unified distance
matrix (UMAT) is the de facto standard for evaluating and
interpreting self-organizing maps. During the training phase
of a SOM the values of its neural elements are computed in
such a way that elements next two each other on the two-
dimensional map are also close to each other in the space
spanned by the attributes of the training data. In this way the
two-dimensional map represents a topology preserving image
of the high-dimensional training data. The UMAT visualizes
the relative distances between the neural elements in training
data space using a heat map: lighter colors represent neural
elements that are close together in training data space and
darker colors represents neural elements that are further
apart. See Figure 1 for an example of an UMAT. The example
is due to Kohonen [2] where each animal is described by
a 10-dimensional feature vector with attributes such as the
number of legs, if fur is present or not, and if the animal
can swim. In Figure 1 we can clearly identify two strong
clusters; one on the left side of the map clustering the birds
and one on the right side of the map clustering the mammals.
Howeyver, it turns out that there are more clusters that can



only be seen on the UMAT by a very careful inspection: the
bottom left corner represents birds of prey whereas the top
left corner represents birds that do not hunt. On the right side
of the map we have clusters of hunters with fur and in the
middle we have animals that are not hunters with hooves.

In this paper we introduce connected components as a
way to improve the visibility of such clusters. Figure 2
is the UMAT appearing in Figure 1 with the connected
components of the map overlaid. Notice that the clusters
become immediately visible as the eye is guided toward
seeing the clusters. These guides proved essential in our own
work dealing with high dimensional spectroscopic data where
data sets with hundreds of attributes are not uncommon [3],
[4]. In order to obtain reasonable interpretations of these
data via UMATs we had to construct large SOMs with
thousands of neural elements; an approach not unlike Ultschs
approach to constructing maps with emergent SOM [5].
The connected components proved extremely helpful when
interpreting these large maps.

The paper is structured as follows. Section II provides
a very brief overview of the standard SOM algorithm. In
section III we develop connected components and describe
how they are implemented in our current library. In section
IV we describe a number of experiments. The first set of
experiments is based on Ultsch’s FCPS library and the second
set of experiments is based on real world data sets we used in
some of our work. We discuss related work in section V and
we conclude with section VI providing some observations
and pointers to further research.

II. SELF-ORGANIZING MAPS

Self-organizing maps [2] were introduced by Kohonen in
1982 and can be viewed as tools to visualize structure in
high-dimensional data. Self-organizing maps are considered
members of the class of unsupervised machine learning
algorithms, since they do not require a predefined concept
but will learn the structure of a target domain without
supervision.

Typically, a self-organizing map consists of a rectangular
grid of neural elements. Multidimensional observations are
represented as vectors. Each neural element in the self-
organizing map also consists of a vector called a reference
vector. The dimensions of the reference vectors on the map
match the dimensionality of the observations. The goal of the
map is to assign values to the reference vectors on the map
in such a way that all observations can be represented on the
map with the smallest possible error. However, the map is
constructed under constraints in the sense that the reference
vectors cannot take on arbitrary values but are subject to a
smoothing function called the neighborhood function. During
training the values of the reference vectors on the map
become ordered so that similar reference vectors are close to
each other on the map and dissimilar ones are further apart
from each other. This implies that similar observations will
be mapped to similar regions on the map. Often reference
vectors are referred to as centroids, since they typically
describe regions of observations with similarities.

The training of the map is carried out by a sequential
regression process, where t = 1,2, ... is the step index. For
each observation x(¢) at time ¢, we first identify the index c
of some reference vector which represents the best match in
terms of Euclidean distance by the condition,

¢ = argmin||x(t) — m, (1)]. ()

Here, the index ¢ ranges over all reference vectors on the
map. The quantity m;(¢) refers to the reference vector at
position ¢ on the map at time step t. Next, all reference
vectors on the map are updated according to the following
rule where index c is the reference vector index as computed
above,

Here h; is the neighborhood function that is defined as
follows,
_J O iffc—i[>p
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where |c — i| represents the distance on the map between
the best matching reference vector at position ¢ and some
other reference vector at position ¢, § is the neighborhood
distance and 7 is the learning rate. It is customary to express
7 and (3 also as functions of time ¢. The above computation is
usually repeated over the available observations many times
during the training phase of the map. Each iteration is called
a training epoch.

One of the advantages of self-organizing maps is that they
have an appealing visual representation as the 2-dimensional
unified distance matrix as seen in Figure 1. Each square
in the map represents a reference vector. As before, the
colors on the map represent the relative distances between
reference vectors: light colors indicate short distances and
dark colors indicate long distances. Contiguous areas of light
colors represent strong clusters.
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Fig. 3. Connected components of a SOM.



III. CONNECTED COMPONENTS
A. Development

Connected components are a graph theoretical concept and
can be defined as follows,

Definition. A connected component of an undi-
rected graph is a subgraph in which any two
vertices are connected to each other by a path [6].

In our case, we view the SOM neural elements as the vertices
of an undirected planar graph. The edges in this graph are
defined as follows based on the UMAT: a node in the graph
is connected to a neighboring node along the maximum
gradient on the UMAT. We do not add edges for nodes where
the gradient is equal to zero. For the animal example given in
the introduction this construction gives rise to a graph with
five connected components shown in Figure 3.

It is easy to see that connectedness is a transitive relation.
That is, if node A is connected to node B and node B is
connected to node C, then node A is connected to node C
via the path from A to B and from B to C. Exploiting this
transitivity property and the fact that there exists a path from
every node in a connected component to the node where the
gradient is equal to zero, we can transform each component
into a star [7] with the node where the gradient is equal
to zero at the center. This transformation gives rise to the
components as we had shown in Figure 2.

The visual power of this representation derives from
the fact that clustering relationships between labeled neural
elements can be directly read from the connected components
by again exploiting the transitivity of connectedness. Con-
sider for example the cluster in the lower left corner in the
UMAT of Figure 1. It is visually difficult to see that owl and
eagle indeed belong to the same cluster. Now compare this to
the UMAT with the overlaid connected components shown
in Figure 2. Here it is immediately evident that owl and eagle
belong to the same cluster: owl and eagle are connected by
a path in the connected component via the internal node of
the star.

B. Implementation

We have implemented this enhanced version of the unified
distance matrix as a package in R [8] (the code is available
by request; we intend to release it as a publicly available
package as part of CRAN). At the core of the implementation
is the function find.internal.node which, given the
map coordinates of a neural element, will find the corre-
sponding internal node of the associated star. Table I shows
the pseudo code for this function. Given a position on the
map this function first searches the adjacent nodes for the
minimal UMAT value using the function find.min. If an
adjacent node with a smaller UMAT value than the value of
our current node exists and if this UMAT value is smaller
than the UMAT values of all other adjacent nodes, then that
node lies along the maximum gradient of the surface and we
make this node our new current position. If no such node
exists, then the gradient at our current position is zero and
we are at an internal node.

TABLE I
PSEUDO CODE TO FIND THE INTERNAL NODE OF A CONNECTED
COMPONENT.

function find.internal.node (int x,
int vy,
real umat [xdim,ydim])

returns (int cx, int cy)

// % and y are the map coordinates of our current node
// umat is the unified distance matrix

// xdim and ydim are the dimensions of the map

// cx and cy are the map coordinates of the internal
// node of the star

begin
// find the smallest value of umat in our immediate
// neighborhood, including our current position.

(minx,miny) = find.min (x,y,umat)

// if minx and miny are our current position then
// the gradient at our current position is zero
// otherwise move to the new position along the
// maximum gradient and call ourselves

// recursively.

if (minx == x and miny == y) then begin
cx = minx
cy = miny
return

end else begin
(cx,cy) = find.internal.node (minx,miny,umat)
return

end

end

The remainder of the implementation is straightforward;
we first draw the traditional UMAT, we then iterate over
all the neural elements of the map and compute their corre-
sponding internal nodes with the find.internal.node
function. Once this is complete we draw the paths from each
neural element to its corresponding internal node giving rise
to enhanced UMAT representations as shown in Figure 2.

We found that smoothing the unified distance matrix
before applying our algorithm to find the connected compo-
nents results in larger, homogeneous components making the
map easier to interpret. In our implementation we use a two-
dimensional Gaussian kernel smoothing function where the
bandwidth of the Gaussian controls the level of smoothing:
the larger the bandwidth the more aggressive the smoothing.
Picking the right level of smoothing then becomes a trade-
off between the size of the connected components and their
homogeneity.

IV. EXPERIMENTS

We discuss four different experiments using our enhanced
version of the UMAT. The first two experiments are based
on artificial data sets from Ultsch’s Fundamental Clustering
Problem Suite (FCPS) [9] and the last two experiments are
real world spectroscopy data sets we have analyzed using
self-organizing maps. The hallmark of the latter data sets is
that they are high-dimensional. Our petroleum data set has
257 attributes and our bacteria data set has 300 attributes.
This high dimensionality forces us to consider large maps,
in this case, maps with up to a thousand neural elements.



In each of these experiments we compare the original
UMAT with our enhanced version of the UMAT and we
point out that the enhanced version of the UMAT facilitates
the discovery and evaluation of clusters. Unfortunately, as
with many graphical artifacts, their comparative evaluation is
highly subjective. However, it is our hope that this empirical
study will convey some of the advantages of the enhanced
UMAT representation, as we perceive them.
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in the traditional UMAT display and Figure 5 shows the
clusters in our enhanced UMAT display. Since the seven
clusters are completely separable, the traditional UMAT and
our enhanced version show the clusters very nicely. The
differences in the cluster layouts between UMAT and our
enhanced version are due to the smoothing in our enhanced
version.
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Fig. 4. UMAT for the Hepta data set.
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Fig. 5. Enhanced UMAT for the Hepta data set.

A. Experiment 1: Hepta

Hepta is the first FCPS data set. It is a three dimen-
sional data set representing seven non-overlapping classes
with different variances. The data set has 212 observations.
Since the classes are non-overlapping we would expect that
any clustering procedure, including SOM, would display
seven individual clusters. Figure 4 shows the seven clusters
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Fig. 6. UMAT for Lsun data set.
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Fig. 7. Enhanced UMAT for the Lsun data set.

B. Experiment 2: Lsun

For our second experiment, we used the Lsun data set from
Ultsch’s problem suite. This is a two-dimensional data set
with 400 observations containing three clusters. The hallmark
of this data set is that the clusters have different variances and
different inter-cluster distances. Figure 6 shows the UMAT
for this data set. In this representation the border between



cluster 1 and cluster 2 in the bottom left corner of the map
is difficult to detect due to the fact that they lie very close
together in the data space. However, in our enhanced UMAT
the border is easily seen due to the component structure. This
can be seen in Figure 7 even though the clusters themselves
are composed of multiple connected components.
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Fig. 8. UMAT for petroleum data set.
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Fig. 9. Enhanced UMAT for the petroleum data set.

C. Experiment 3: Petroleum

Our petroleum data set consists of 235 observations of
different petroleum products from various regions of the
world. Each observation represents a spectrum in the infrared
range and is labeled by a two letter label rP where r is
a region identifier drawn from the set of region identifiers
{a,c,d,e.k,n,z} and P is a product identifier: 2 — #2 fuel, K —
kerosene, C — crude, and R — residue. Because of the large
number of dimensions in the training data (257) we chose a
map size with 1050 processing elements.

During our analysis we were interested to see if regions
and petroleum products clustered based on the spectral
information. Figure 8 shows the UMAT of our analysis.
It turns out that there is significant clustering in this data
set but it is difficult to see this here. Figure 9 shows the
enhanced UMAT of the same data set. The clusters are easily
visible. What this analysis shows is that both region of origin
and fuel type carry significant identifying signatures in their
corresponding spectra and this is easily seen in our enhanced
UMAT.
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Fig. 10. UMAT for bacteria data set.
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Fig. 11. Enhanced UMAT for the bacteria data set.

D. Experiment 4: Bacteria Spores vs. Vegetative States

Our final experiment concerns observations of three bac-
teria: Bacillus cereus, Bacillus thuringiensis, and Bacillus
subtilis. For each bacterium we have spectral observations
in its spore state as well in its vegetative state. Overall we
have 89 observations. Each spectrum is composed of 300



wavelengths. The goal of this investigation was to see if the
spectra of different bacteria are identifiable and if we can
also distinguish between their spore and vegetative states. We
labeled each observation with a two-letter label Qb where Q
denotes the state of the bacterium, S for spore and B for the
vegetative state, and b denotes the type of bacterium: ¢ —
cereus, t — thuringiensis, and s — subtilis. We analyzed the
data with a 600 element SOM.

Figure 10 shows the traditional UMAT. Just as in the case
of the petroleum data, the clusters are somewhat difficult to
see even though the data clusters extremely well. Figure 11 is
our enhanced UMAT and here the clusters are immediately
visible due to the connected components. We are able to
identify clusters of individual bacteria in the vegetative state
along the bottom of the map and we can identify clusters
of individual bacteria as spores in the top half of the map.
This means that the spectra of the individual bacteria are
characteristic with respect to whether they are spores or in
the vegetative state as well as to their genus identity.

V. RELATED WORK

The paper by Vesanto [10] provides a general overview of
visualization techniques for self-organizing maps. Recently,
a number of graph-based visualization techniques for self-
organizing maps have been developed. From a visual per-
spective the work that is most closely related to our own is
the work by Polzlbauer et. al [11]. In their visualization they
also plot gradient-based components on top of the SOM two-
dimensional map, however, their gradients are derived from
highly correlated groups of attributes in the training data.
Thus, the meaning of the components is different from ours
where a component simply connects all the neural elements
that lie close together in data space. In [12] Tasdemir and
Merenyi describe their graph-based visualization. In this
visualization the graph edges overlaid on the SOM grid
are color coded to convey more detailed information on
the topology of the training data. What distinguishes our
approach from these approaches is that we do not stray
from the de facto standard interpretation of self-organizing
maps via the unified distance matrix but instead enhance this
interpretation.

VI. CONCLUSIONS AND FURTHER WORK

We have shown that overlaying connected components
based on the gradient information in the unified distance ma-
trix improves the identification and interpretation of clusters
on the self-organizing map. This was especially true in the
case of our high-dimensional real world data.

We have found that smoothing the UMAT before applying
our connected component identification algorithm results in
less fragmented subgraphs. Given that the user can control
the level of smoothing that is applied to the UMAT, construct-
ing connected components then becomes a trade-off between
the size of the components and their homogeneity. The more
smoothing we apply, the larger the connected components,
but this implies an increased likelihood that clusters will
be merged that contain observations from different classes.

Given that the connected components provide us with a
tractable way to group observations into clusters, we envision
that we can perform the optimization of map components via
smoothing automatically. We can view this as a model fitting
step. Highly fragmented components represent an overfit
model responding to minor, perhaps random, nuances in the
UMAT. Large, non-homogeneous components represent an
underfit model; a model that is not refined enough to display
the true clustering of the data. The optimization then is a
model fitting step that attempts to find just the right trade-
off between size and homogeneity of the components.
Furthermore we like to investigate why certain clusters
consistently have multiple connected components regardless
of the smoothing. We would like to understand if this is
an artifact of the UMAT construction or if this in fact does
describe topological features in the underlying data space.
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