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Abstract—Self-organizing maps are a type of artificial neural
network extensively used as a data mining and analysis tool
in a broad variety of fields including bioinformatics, financial
analysis, signal processing, and experimental physics. They are
attractive because they provide a simple yet effective algorithm
for data clustering and visualization via unsupervised learning.
A fundamental question regarding self-organizing maps is the
question of convergence or how well the map models the data
after training. Here we introduce a population based convergence
criterion: the neurons of the map represent one population and
the training data represents another population. The map is said
to be converged if the neuron and the training data populations
appear to be drawn from the same probability distribution.
This can easily be tested with standard two-sample tests. This
paper develops the underpinnings of this approach and then
applies this new convergence criterion to real-world data sets. We
demonstrate that our convergence criterion can be considered an
appropriate model selection criterion.

I. INTRODUCTION

Self-organizing maps (SOMs) are a type of artificial neural
network extensively used as a data mining and analysis tool
in a broad variety of fields including bioinformatics, financial
analysis, signal processing, and experimental physics [9]. The
straight forward nature of the SOM training algorithm and
the way in which the visualization of a SOM can be easily
and intuitively interpreted make it appealing as an analysis
tool. However, as with any analysis tool, and especially with
competitive learning-based tools, questions pertaining to the
reliability and the convergence of the tool naturally emerge.
Here we view convergence as a measure of how well a
model represents the underlying data space. In SOMs, conver-
gence, and therefore the quality of the produced visualization,
critically depends on the number of neurons selected and
the number of training iterations applied to those neurons.
If we view SOMs as models of the training data then any
convergence criterion essentially becomes a model selection
criterion allowing us to distinguish “good models” from “poor
models.”

Several measures have been developed in order to analyze
the convergence of a given SOM. One such measure, the
quantization error, is the error function proposed by Kohonen
and is the de facto standard measure of the convergence of a
given SOM [9]. The quantization error of a given training
observation is the smallest distance between that training
observation and any neuron in the SOM. The quantization

error of a training set is typically the mean sum squared
quantization error of all training instances. The goal of the
SOM algorithm then, is to minimize this value during training.
Attempting to minimize the quantization error in a radical
fashion (minimize it to zero, for example) can lead to overfitted
models which may be ineffective at representing the data at
hand because they may end up modelling noise in the training
data which is not characteristic of the general population from
which the training data sample was drawn. Since one can
make the quantization error arbitrarily small by increasing
the complexity of the model by adding neurons to the map
and by increasing the training iterations, it is clear that the
quantization error does not lend itself as a model selection
criterion, since it cannot answer the question “When is the
quantization error good enough?”

Another approach to obtaining measurable convergence
criteria is to modify the SOM training algorithm itself so that
statistical measures or other objective analysis techniques can
be imposed. Bishop’s generative topographic mapping (GTM)
[3] and Verbeek’s generative self-organizing map (GSOM)
[11] seem to fall into this category. The GTM and GSOM
attempt to model the probability density of a data set using
a smaller number of latent variables (i.e. the dimensionality
of the latent space is less than or equal to that of the data
space). A non-linear mapping is then generated which maps
the latent space into the data space. The parameters of this
mapping are learned using using an expectation-maximization
(EM) algorithm. Algorithms such as the GTM and the GSOM
should be viewed as alternates to the SOM as opposed to
modifications of it, even though they share properties similar
to the SOM. Other scholars have taken an energy function
approach, imposing energy functions on the SOM and then
attempting to minimize these energy functions [8, 6]. Both of
these approaches, namely altering the algorithm or imposing
energy functions on the SOM, seem to take away from the
SOM’s appeal as a simple, fast algorithm for visualizing high
dimensional data, especially since the alterations tend to be
much more complex than the SOM learning algorithm itself.

Yet another approach is to calculate the significance of
neighborhood stabilities in order to analyze whether or not
data points close together in the input space remain close when
projected onto the SOM. By analyzing many maps which were
trained with bootstrap samples drawn from the training data,



this approach by Cottrell et al [4] provides a sound set of
statistical tools to analyze SOMs while leaving the original
SOM algorithm unchanged. However, this stability based
approach is computationally unwieldy drastically increasing
the amount of time associated with the analysis of a given
data set. The increased time cost is due to the creation of
many maps using bootstrapped samples of the training data
(typically 100-200 maps; Efron recommends using at least 200
samples when bootstrapping statistics [5]) and the analysis of
each pair of training data over each map after all of the maps
have been created.

In this paper, we propose a population based approach for
analyzing SOM convergence. Under some minor simplifying
assumptions, Yin and Allison [12] showed that, in the limit, the
neurons of a SOM will converge on the probability distribution
of the training data. This seems to validate Kohonen’s claim
that a SOM will in effect model the probability distribution of
the training data [9]. Hence, a simple two-sample test can be
performed in order to see if the SOM has effectively modelled
the probability distribution formed by the training data or not.
This population based approach lends to a fast convergence
criterion, based on standard statistical methods, which does
not modify the original algorithm, hence preserving its appeal
as a simple and fast analysis tool.

The remainder of this paper is structured as follows. Sec-
tion II describes the basic SOM training algorithm. In Sec-
tion III we investigate convergence properties of this algorithm
in the limit following [12]. We look at model selection
and quantization error in Section IV and we introduce our
population based convergence criterion in Section V. We illus-
trate our convergence criterion with examples in Sections VI
and VII. Finally, we state our conclusions and further work in
Section VIII.

II. THE BASIC ALGORITHM

Here we describe the training algorithm for SOM as in-
troduced by Kohonon [9] following the notation used by Yin
and Allison [12]. The canonical training algorithm for SOM
uses a set of neurons, Y, usually arranged in a rectangular
grid formation to form topology preserving discrete mappings
of an N -dimensional input space X ⊂ RN . Each element
x ∈ X is considered a training instance and is a vector
x = [x1, x2, . . . , xN ]T and each neuron indexed by c ∈ Y
is a vector wc(t) ∈ RN with

wc(t) = [wc,1(t), wc,2(t), . . . , wc,N (t)]T , (1)

where t is a time step index. Each neuron is a weight vector
of the same dimensionality as the input space and the weights
are adjusted at each discrete time step t during training with
t ≥ 0. At each time step t a randomly selected input vector
x(t) ∈ X is chosen and is used to compute a winning neuron
ω(t),

ω(t) = arg min
c∈Y

‖ x(t)−wc(t) ‖ . (2)

Here the winning neuron ω(t) has the smallest Euclidean
distance ‖ x(t)−ω(t) ‖ from the training instance x(t). Once

the winning neuron has been found the weights of the neurons
on the map are updated according to the following rule,

wc(t+ 1) = wc(t) + α(t)hc,ω(t)(t) [x(t)−wc(t)], (3)

for all c ∈ Y. Here α(t) is the learning rate at time step
t (typically a small constant with 0 < α(t) < 1 for all t
decaying as t grows large) and hc,ω(t)(t) is the neighborhood
function at time step t indexed by c and the winning neuron
ω(t). The neighborhood of a winning neuron, Nω(t)(t), is
defined as a set of neurons in proximity of and centered around
the winning neuron according to the grid formation of the map.
The neighborhood is time step sensitive and usually starts out
as a large set,

Nω(t)(t) ≈ Y, (4)

at t = 0 and shrinks over time,

Nω(t)(t) = {ω(t)}, (5)

with t� 0. With this we define the neighborhood function as
the step function,

hc,ω(t)(t) =
{

1 if c ∈ Nω(t)(t)
0 otherwise (6)

This implies that the neighborhood function controls which
neurons on the map are updated according to the rule in (3)
and which are not. This “focussing” of neuron updating is
crucial in the successful training of SOMs. Training usually
continues for a fixed number of time steps.

III. PROBABILISTIC CONVERGENCE

Some observations on the training of a SOM. Training
instances are drawn from the input space X randomly and
independently and are presented to the map; at time step t we
can view the randomly chosen training instances as the set,

X(t) = {x(i) ∈ X | i = 0, . . . , t}, (7)

with X(t) t→∞−→ X. At time step t, each neuron c ∈ Y is
trained with a subset of instances Xc(t) ⊆ X(t) where,⋃

c∈Y

Xc(t) = X(t). (8)

At the beginning of the training process, when the neigh-
borhoods are still large, i.e., Nω(t)(t) ≈ Y, these subsets
are maximally overlapped with each other. As training pro-
gresses and the neighborhoods shrink to a single element, i.e.,
Nω(t)(t) = {ω(t)}, these subsets eventually become mutually
separated with,

Xc(t)
⋂

Xc′(t) t→∞−→ ∅, (9)

for all c, c′ ∈ Y and c 6= c′. Furthermore, as time tends to
infinity we have,

Xc(t) t→∞−→ Xc, (10)

the final subsets.



Now, let p(x) be the probability density function over the
input space X, then the probability of a training instance x(t)
belonging to a subset Xc(t) is,

P (Xc(t)) =
∫
x∈Xc(t)

p(x)dx, (11)

for all c ∈ Y. As t→∞ this becomes,

P (Xc) =
∫
x∈Xc

p(x)dx. (12)

Yin and Allison [12] have shown under some mild assumptions
that for a given map, Y, the neurons will converge in the limit
on the centroids mc of the final subsets Xc,

wc(t) t→∞−→ mc =
1

P (Xc)

∫
x∈Xc

x p(x)dx, (13)

for all c ∈ Y.

IV. MODEL SELECTION AND QUANTIZATION ERROR

We define the quantization error for a map Y at time step
t as,

EY(t) =
∑
c∈Y

∑
x∈Xc(t)

‖ wc(t)− x ‖2, (14)

and it is easy to see given (13) that the learning algorithm
converges on the minimal quantization error as time tends to
infinity,

EY(t) t→∞−→ EY =
∑
c∈Y

∑
x∈Xc

‖mc − x ‖2 . (15)

If we view map construction as a model building process and
if we view the quantization error as a model selection criterion
(as suggested in [9]) we run into problems in that optimality
is defined only in the limit. There is no statistical measure on
the quantization error that suggests when a quantization error
is “good enough.” To complicate things even further, adding
neurons to the map and rerunning the training algorithm will
likely reduce the quantization error because now the algorithm
will split the training set into a larger number of final subsets
(one per neuron) with fewer training instances in them which
will give rise to a lowered quantization error. Again, no
statistical measure based on the quantization error exists that
would suggest an optimal number of nodes.

Given what we have developed so far and assuming that
the topology of the input space X can be projected onto
two dimensions with minimal distortion, then it is possible to
reduce the quantization error to zero by constructing a large
enough map. To see this, let nx be the number of elements
in the input space X and let ny be the number of neurons
in the map Y. First assume that the map only consists of
a single neuron, ny = 1. That means in the limit we have
P (Xc) = P (X) = 1 and therefore the single neuron will
converge on the mean mx of the input space,

wc(t) t→∞−→ mx =
∫
x∈X

x p(x)dx, (16)

for the only element c ∈ Y. This implies of course a large
quantization error,

EY(t) t→∞−→ EY =
∑
x∈X

‖mx − x ‖2 . (17)

Now assuming that we have as many neurons in our map
as there are training instances, ny = nx, and making use of
our assumption that the topology of the input space can be
projected onto two dimensions with minimal distortion, then
our final subsets could be singleton sets Xc = {xc} for all
c ∈ Ywhere, ⋃

c∈Y

Xc = X, (18)

and ⋂
c∈Y

Xc = ∅. (19)

In the limit, each neuron of the map will then converge on the
training instance xc in its final subset,

wc(t) t→∞−→ xc =
1

P ({xc})

∫
{xc}

x p(x)dx, (20)

for all c ∈ Y. It is easy to see that the quantization error in the
limit will be zero in this case. This means that quantization
error as a model selection criterion dictates that the neurons
of the SOM have to model the training data precisely. But
statistical theory tells us that models that fit their training data
precisely are usually overfitted since by modeling training data
precisely these models also model any inherent noise.

V. POPULATION BASED CONVERGENCE

As we have seen in the previous section, the quantization
error is not an adequate model selection criterion because we
can make the errors as small as desired by increasing the
complexity of the model. It is required of a model selection
criterion that it allows us to determine when a model is “good
enough” which the quantization error does not allow us to
determine.

However, by slightly shifting perspective, another look
at equation (20) reveals something interesting about SOMs:
given enough neurons the SOM training algorithm attempts
to recreate the training samples. This insight allows us to
formulate a new convergence criterion:

A SOM is converged if its neurons appear to be
drawn from the same distribution as the training
instances.

This formulation naturally leads to a two-sample test [10]
as a convergence criterion. We can view the training data as
one sample from the probability space X having probability
density function p(x) and we can treat the neurons of the SOM
as another sample. We can then test to see whether or not the
two samples appear to be drawn from the same probability
space. If we operate under the simplifying assumption that
each of the N coordinates (or features) of the input space X ⊂
RN are normally distributed and independent of the others,
we can test each of the features separately. This assumption



lends to a fast algorithm for identifying SOM convergence
which is based on statistically analyzing similarites between
the features as expressed by the training data and as expressed
by the neurons in the SOM. We define a feature as converged
if the variance and the mean of that feature appear to be drawn
from the same distribution for both the training data and the
neurons. If all the features are converged then we say that the
map is converged.

The following is the formula for the (1 − α) ∗ 100%
confidence interval for the ratio of the variances from two
random samples [10],

s21
s22
· 1
fα

2 ,n1−1,n2−1
<
σ2

1

σ2
2

<
s21
s22
· fα

2 ,n1−1,n2−1, (21)

where s21 and s22 are the values of the variance from two
random samples of sizes n1 and n2 respectively, and where
fα

2 ,n1−1,n2−1 is an F distribution with n1 − 1 and n2 − 1
degrees of freedom. To test for SOM convergence, we let s21
be the variance of a feature in the training data and we let
s22 be the variance of that feature in the neurons of the map.
Furthermore, n1 is the number of training samples (i.e. the
cardinality of the training data set) and n2 is the number of
neurons in the SOM. We say that the variance of a particular
feature has converged (or appears to be drawn from the same
probability space) if 1 lies in the confidence interval denoted
by equation (21), that is, the ratio of the underlying variance as
modeled by input space and the neuron space, respectively, is
approximately equal to one, σ2

1/σ
2
2 ≈ 1, up to the confidence

interval.
In the case where x̄1 and x̄2 are the values of the means

from two random samples of size n1 and n2, and the known
variances of these samples are σ2

1 and σ2
2 respectively, the

following formula provides (1−α)∗100% confidence interval
for the difference between the means [10],

µ1 − µ2 > (x̄1 − x̄2)− zα
2
·

√
σ2

1

n1
+
σ2

2

n2
, (22)

µ1 − µ2 < (x̄1 − x̄2) + zα
2
·

√
σ2

1

n1
+
σ2

2

n2
. (23)

We will say that the mean of a particular feature has con-
verged if 0 lies in the confidence interval denoted by equations
(22) and (23). That is, we say the mean of a particular feature
has converged if the difference of the means as modeled
by the input space and the neuron space, respectively, is
approximately equal to zero, µ1−µ2 ≈ 0, up to the confidence
interval.

We will say that a SOM has converged on a feature, or that a
feature has converged, if both the mean and variance converged
in accordance with the above criteria. We can then form a
measure for SOM convergence as follows for N features,

convergence =
∑N

i=1 ρi

N
, (24)

where

ρi =

{
1 if feature i has converged,
0 otherwise.

The convergence score (24) proposed here is essentially a
fraction of the number of features which actually converged
(i.e. whose mean and variance were adequately modelled by
the neurons in the SOM).

VI. EXAMPLE USING IRIS DATA

The convergence measure proposed in the previous section
was applied to the Fisher / Anderson iris data set [1] using
95% confidence intervals for both the mean and the variance
tests. In the following plots fConv represents the convergence
measure as defined in the previous sections, ssMean is the
quantization error as defined in (14), and iterations represents
the number of iterations that the SOM training algorithm was
run. Each data point represents the data associated with a
unique randomly initialized SOM which was trained for the
number of iterations indicated on the plot. For instance, when
fConv is plotted against iterations (Figure 1), the data points on
the map, which are connected via lines for visualization pur-
poses, represent the convergence score for unique, randomly
initialized SOMs which were trained for the indicated number
of iterations.

Fig. 1: Convergence measure, fConv, plotted as a function of
iterations.

In Figure 1, we can see that the our convergence measure
increases as the amount of training increases. This is expected
for any valid convergence criterion. We can also see that SOM
has fully converged after about 20,000 iterations. Figure 2
shows the convergence measure related to the quantization
error. We can see that as the convergence score increases,
the quantization error decreases. Most interesting is the fact
that fully converged maps (points at the bottom right) do
not necessarily have a quantization error of zero making
our convergence score a suitable model selection criterion as
the neurons in these converged maps adequately model the
input data without overfitting. This also implies that if the
convergence score falls substantially short of the value 1, then



Fig. 2: ssMean plotted as a linear function of fConv.

we can improve the models by either training longer, adding
neurons, increasing the learning rate, or all of the above. Each
of these steps enables the SOM to more easily capture the
variance of the training data, thereby increasing the possibility
of convergence.

VII. EXAMPLE USING WINE DATA

In this section, our convergence measure was applied to
Stefan Aeberhard’s wine data set [2] using 95% confidence
intervals for both the mean and the variance tests. The data was
normalized before training the SOM. This data has thirteen
dimensions and consists of chemical characteristics for three
types of wine and we would expect three clusters to be shown
on converged maps. Again as above, in the following plots
fConv represents the convergence measure as defined in the
previous sections, ssMean is the quantization error as defined
in (14), and iterations represents the number of iterations that
the SOM algorithm was run. Each data point represents the
data associated with a unique randomly initialized SOM which
was trained for the number of iterations indicated by the data
point.

Fig. 3: Convergence measure, fConv, plotted as a function of
iterations.

Fig. 4: ssMean plotted as a linear function of fConv.

In Figure 3, we can see that, as expected, our convergence
score trends upwards as the amount of training increases.
Note also that this occurs even though each of the maps are
randomly initialized. We can also see that maps fully converge
after about 325,000 iterations. Figure 4 shows us that the con-
vergence measure is inversely related to the quantization error.
We can see that as convergence increases, the quantization
error decreases. As before, fully converged maps (points at
the bottom right) do not necessarily have a quantization error
of zero. The neurons in these maps adequately model the input
data without overfitting.

In Figures 5 and 6 we present two SOMs constructed using
the wine data set, one with a low convergence score and one
with a high convergence score, respectively.

Fig. 5: Map trained using the wine data set for 5,000 iterations
achieving a convergence score of 15.8%.

The map in Figure 5 has a convergence score of about 15%
after 5,000 training iterations and one can easily see from the



Fig. 6: Map trained using the wine data set for 500,000
iterations achieving a convergence score of 100%.

map that the cluster with elements ‘2’ was broken into two
parts: one part can be seen in the top left corner and the other
in the bottom right. This is contrary to our expectation of being
able to identify three contiguous clusters. In Figure 6 the map
achieved a 100% score with 500,000 training iterations and
produced the expected clusters. Here we can identify all three
contiguous clusters. The cluster representations were created
using a slightly modified version of the connected components
approach as given in [7]. As expected, these maps seem to
indicate that the quality of a map is directly correlated to
its convergence score: the higher the convergence score, the
better the map. That means that our convergence score is an
appropriate model selection criterion as desired.

VIII. CONCLUSION AND FURTHER WORK

Self-organizing maps are a popular data analysis and vi-
sualization tool. However, attempts to provide a convergence
criterion for SOMs either resulted in a modified training
algorithm or computationally complex constructions. In the
case of the quantization error we have shown that it is not
suited to be considered a convergence criterion. Here we
presented an efficient alternative that treats the neurons as
a data sample and convergence of the SOM is established
if the neuron sample appears to be drawn from the same
distribution as the training data. This two-sample test can be
efficiently computed based on the features of the training data.
Our examples demonstrated that our convergence criterion is
inversely related to the quantization error; convergence in-
creases as quantization error decreases. However, convergence
does not necessarily imply a zero quantization error which
means that our convergence criterion avoids the overfitting
tendencies of quantization error based modeling approaches.
Furthermore, our examples seem to indicate that the quality of

the maps produced is directly correlated to our convergence
score making it an appropriate model selection criterion.

Our next step is to compare our convergence criterion to es-
tablished convergence criteria such as Cottrell et al’s stability
measure [4]. Some preliminary studies are encouraging in that
our convergence criterion always implies Cottrell’s stability
criterion. Our goal is to incorporate this new convergence
criterion into a comprehensive SOM toolkit R package under
development at the University of Rhode Island to be made
available to the public.
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