

EVOLUTIONARY CONCEPT LEARNING

IN EQUATIONAL LOGIC

BY

CHI SHEN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2006

MASTER OF SCIENCE THESIS

OF

CHI SHEN

APPROVED:

Thesis Committee:

Major Professor Lutz Hamel

 Lisa DiPippo

 James Kowalski

 James Baglama

Dean of the Graduate School Harold Bibb

UNIVERSITY OF RHODE ISLAND

2006

ABSTRACT

Concept learning is a branch of machine learning concerned with learning how to

discriminate and categorize things based on positive and negative examples. More

specifically, the learning algorithm induces a description of the concept (in some

representation language) from a set of positive and negative facts. Inductive logic

programming can be considered a subcategory of concept learning where the

representation language is first-order logic and the induced descriptions are a set of

statements in first-order logic. This problem can be viewed as a search over all

possible sentences in the representation language to find those that correctly predict

the given examples and generalizes well to unseen examples. Here we consider

equational logic as the representation language.

Previous work has been done using evolutionary algorithms for search in equational

logic with limited success. The purpose of this thesis is to implement a new and

better system to solve problems that were unsolvable in the previous implementation.

New heuristics have been developed to enhance the speed and success of the search

for solutions. This new system has solved a variety of problems, including those that

were solved by the previous implementation and many that were not. We have

shown that a genetic algorithm is an effective search mechanism for concept learning

in the domain of equational logic.

 iii

TABLE OF CONTENTS

Abstract ... ii
Table of Contents ... iii
List of Figures... iv
1 Introduction.. 1

2 Background .. 5
2.1 Machine Learning.. 5

2.2 Equational Logic.. 8
2.3 Inductive Logic Programming.. 9

2.4 Evolutionary Algorithms.. 12
2.5 Related Work... 18

3 Implementation .. 22
3.1 Maude.. 22

3.2 High-Level Walkthrough ... 23
3.3 Maude Representation.. 24

3.4 Induction: Extending Maude .. 27
3.5 Genetic Algorithm ... 28

3.6 Data Structures .. 39
4 Results... 43

4.1 Metrics... 43
4.2 Problems, Results, & Analysis ... 44

4.3 Conclusions and Future Work .. 60
References.. 62

Bibliography.. 65

iv

LIST OF FIGURES

Figure 1: Mathematical expression in tree representation... 13

Figure 2: Crossover in bit-string representations... 17

Figure 3: Crossover in tree representations ... 17

Figure 4: Candidate theory in tree representation... 29

Figure 5: Node-level mutation... 33

Figure 6: Equation-level mutation (delete equation) .. 34

Figure 7: Literal generalization.. 36

Figure 8: Node-level crossover.. 37

1

1 INTRODUCTION

The work of this thesis involves implementing a concept learning system in C++

using evolutionary programming as a search algorithm and equational logic as the

representation language. Given facts or observations and other background

information about a concept, the system will attempt to find a non-trivial hypothesis

that is complete and consistent with respect to the given facts and that can generalize

well to predict unseen facts.

The primary goal of this thesis is to show that evolutionary strategies are effective for

concept learning in equational logic. More specifically, this thesis builds upon and

extends the work of Hamel for the same problem [1,3]. Concept learning is a branch

of machine learning concerned with learning how to discriminate and categorize

things based on positive and negative examples. More specifically, the learning

algorithm induces a description of the concept (in some representation language)

from a set of positive and negative facts about the concept. A description must

minimally be complete and consistent with the given set of facts, and a good

description can predict other facts about the concept that were not given. Inductive

logic programming can be considered a subcategory of concept learning. Here, the

representation language is first-order logic and the induced descriptions are a set of

statements in first-order logic.

As defined, concept learning is essentially a search problem. Descriptions are

induced by searching the hypothesis space (all possible sets of sentences in the

2

representation language) for a set of sentences that satisfies the given facts and can

generalize well to other facts about the concept.

The traditional techniques used to search the hypothesis space can be classified into

two broad categories [2]. In one category, the general strategy is to begin with small

sets of short sentences and incrementally extend the set as long as it is too general.

Quinlan's FOIL [5] is essentially based on this general-to-specific approach. The

other approach is to start from overly specific set of sentences and reducing the set as

long as it is too specific. Muggleton and Feng's Golem system takes this approach [6].

Systems have also been developed to use a hybrid approach, such as Muggleton's

Progol system [7]. These techniques consist of highly-specialized heuristics for

traversing the search space to find a solution.

Evolutionary algorithms are essentially a massively parallel search mimicking the

idea of natural selection. An evolutionary approach is appropriate for concept

learning in equational logic for several reasons. The hypothesis space is certainly

immense and complex, and evolutionary strategies are known to perform well in such

a situation. Another advantage to using evolutionary strategies is that it is more

tolerant of imperfect data. Many existing algorithms/systems work well with perfect

data, such as the FLIP system [8, 9], but give no solution or poor solutions when

dealing with noisy data. Finally, evolutionary strategies have been successfully

applied to concept learning and inductive logic programming in other representations,

such as first-order logic [1].

3

The work for this thesis uses first-order equational logic as the representation

language where first-order equational theories represent the induced descriptions.

Equational logic will be used for two reasons. First, it has a type system. This fact is

significant because it allows us to constrain our hypothesis space. Sentences that are

syntactically correct, but with invalid types can be eliminated from consideration.

This restriction ultimately translates to an increased efficiency in our search. Second,

the evaluation of terms in equational logic is faster than other systems such as first-

order logic because the mechanism for doing simply involves term rewriting instead

of complicated backtracking in the usual unification algorithms.

The implementation of the evolutionary search will be implemented in C++ for

performance reasons. The previous prototype system was written in LISP and

successfully used evolutionary search strategies in equational logic to solve simple

problems [1, 3]. However, the system could not solve more complex problems

because of an unexpected memory limitation in LISP and efficiency issues. We show

that these problems can be remedied by implementing the system with C++.

From a broad perspective, the uniqueness of this thesis work is the implementation of

a system that uses evolutionary algorithms (search strategy) and equational logic as

the representation language (search space) for inducing concepts.

The main work of this thesis, with regard to the previous prototype system, is as

follows:

4

 Implementation of type system for enhancing search. This was expected to

yield a significant gain in performance due to its large reduction of the search

space.

 Development of new heuristics, also for enhancing search.

 The new system will be implemented from scratch in C++. This yields two

performance gains. The first is inherent to the nature of C++ and LISP.

Secondly, it allows for tighter integration with key software components.

This is not simply a translation of the code from the previous implementation

from LISP to C++.

The remainder of this thesis is composed of three chapters.

 First, we give background on machine learning, equational logic, evolutionary

algorithms, and related work. This material will give the context for

understanding the implementation and results.

 Next, the thesis will discuss the key parts of the implementation. This will

include details about the Maude system, the genetic algorithm, and the major

data structures used.

 Finally, we discuss the performance of our system. This will include metrics,

results, and analyses. The chapter ends with concluding remarks and thoughts

for future research.

5

2 BACKGROUND

This section provides basic background material in order to give the reader some

context for understanding the system and the analysis discussed later. By the end of

this section, the reader should have a broad understanding of concept learning,

equational logic, and evolutionary algorithms.

2.1 Machine Learning

Machine learning can be defined in many different ways. Herbert Simon defines

learning in general (human, machine, or otherwise) as "any change in a system that

allows it to perform better the second time on repetition of the same task or on

another task" [15]. While brief, this definition addresses two key issues involved in

machine learning.

First, Simon's definition describes learning as allowing the system to "perform better

the second time." This implies some kind of change to the system as it processes

information. In an environment of imperfect information, determining the right

change to make is difficult. Consequently, the performance of the system will

sometimes degrade; detecting and dealing with these "mistakes" is an important part

of machine learning.

Second, performance should improve not only on the repetition of the same task, but

also on similar tasks (or "on another task") in the domain. Memorizing a list of dates

that paychecks are issued is not the same as being able to infer from the dates that

paychecks are issued every other Friday. From a practical perspective, it would be

6

impossible or unfeasible for a system to memorize all possible facts. The concept of

even numbers cannot be "learned" by simply memorizing a list of numbers (infinitely

large!). In addition, it is rare in real-world situations to have perfect information.

This process of generalizing from limited experience is called induction.

2.1.1 Concept Learning

Concept learning is a sub discipline of machine learning. The task of concept

learning can be defined as to discover a set of rules with predictive power from a

given set of pre-classified examples. This set of rules ideally should be descriptive of

a concept or phenomenon. A simple example of learning the concept of an even

number in the domain of natural numbers follows. We begin with a set of examples,

or facts.

even(0)=true; even(2)=true; even(4)=true;
even(6)=true; even(1)=false; even(3)=false;

A set of rules that predicts these facts and describes the general concept of an even

number might be like:

even(0)=true; even(1)=false; even(X)=even(X-2);

Ideally, the set of rules describing the concept should 1) predict all of the facts given,

and 2) be simple and general enough to be applicable to unseen facts.

2.1.2 Approaches

From an implementation point of view, one must choose a way to model problems,

knowledge, and solutions in order to begin to apply some technique or algorithm to

the task of concept learning. From this perspective, there are three broad approaches

[21].

7

Symbolic learning methods begin with a set of symbols that represent the entities,

relationships, and background knowledge of a problem domain. Algorithms in this

category are primarily influenced by its base of explicitly represented domain

knowledge. Symbolic learning algorithms attempt to infer novel, valid, and useful

generalizations to add to its knowledge base [21].

Neural or connectionist networks, on the other hand, represent knowledge implicitly

as patterns of activity in networks of small, individual processing units. Inspired by

the architecture of animal brains, these networks of artificial neurons learn by

modifying their structure and weights in response to training data. Thus, a neural

network does not learn by adding in the way that symbolic approaches do. Instead,

they modify their overall structure to adapt to the input they are given [21].

Emergent or evolutionary algorithms begin with a population of candidate problem

solutions. These algorithms are also biologically inspired, drawing analogies to

genetics and natural selection. The algorithm simulates a population of candidate

solutions in a competition to solve problem instances. The best candidates (“fittest”)

survive and genetically combine with each other to produce a new generation of

candidate solutions. Weaker solutions are increasingly more likely to be discarded

from the population. Thus, increasingly powerful solutions emerge as in a Darwinian

universe [22].

This thesis takes a symbolic approach to concept learning where the representation

language is equational logic, thus it can be categorized as inductive logic

8

programming. The novelty is that the search over sentences in equational logic is

done with a genetic algorithm instead of the typical logic-based, heuristic strategies.

2.2 Equational Logic

Equational logic is a system of logic that emphasizes rewriting as its primary tool in

proofs. This style of proof, where one continually substitutes equals for equals, can

be seen as a formalization of the style of proof used in high school algebra. There are

four inference rules for equational logic, where P[x = E] denotes textual substitution

of expression E for variable x in expression P.

1. Substitution: If A is a theorem, then so is A[x = B].

Suppose there is a theorem A that states X + X = 2 * X.

By applying the substitution A[X = 6], we can conclude that 6 + 6 = 2 * 6 is

also a theorem.

2. Leibniz: If A = B is a theorem, then so is C[x = A] = C[x = B].

Suppose C is the expression X + Y, A is the expression 6, and B is the

expression Y + Z. Suppose that A = B, or 6 = Y + Z, is a theorem. Then by

applying the Leibniz rule, we can conclude that 6 + Y = (Y + Z) + Y is also a

theorem.

3. Transitivity: If A = B and B = C are theorems, then so is A = C.

4. Equanimity: If A and A = B are theorems, then so is B.

9

Let’s examine the steps in a simple proof. Let ~ be the Boolean negation symbol, and

assume that the following are known theorems, where p and q are Boolean values and

T and F represent true and false:

#1 ~(p = q) == (~p = q)
#2 ~T == F
#3 (p = p) == T

Remember, the focus is on establishing the equivalence of expressions. The double

equal sign in this notation indicates that its left and right expressions are equivalent,

and thus can be substituted for each other during deduction. The double-equal sign

can also be thought of as meaning “if and only if.”

Below is the proof in equational logic that “(~p = p) = = F” is a derivable theorem,

with the rules used in between each step:

(~p = p) == F

Leibniz, using theorem #1, substituting p for q, to yield ~(p = p)
== (~p = p)

Substitution using using theorem #1

~(p = p) == F

Substitution using theorem #3

~T == F

Using theorem #2, and by Equanimity, “(~p = p) == F” is also a
theorem

2.3 Inductive Logic Programming

Concept learning where the concepts are represented as logic programs is called

inductive logic programming. In the case of this thesis, the representation language is

equational logic. The traditional techniques used to search the hypothesis space can

be classified into two broad strategies [2]. One strategy is to begin with general

10

sentences and continually refine these sentences as long as they remain too general

for the given examples. Systems employing this strategy are called "top-down"

systems. The other strategy takes the opposite approach by beginning with a set of

specific sentences and generalizing. These systems are called "bottom-up" systems.

2.3.1 Top-Down Strategy

Top-down strategies begin with a general sentence and iteratively specializes it,

normally until all examples are covered. The essential idea of the approach can be

illustrated with an example. Suppose that we have a record of the past 60 days that

we have considered playing tennis. Depending on various weather conditions, we

may or may not have played tennis on each of these days. A concept learning task

would be to form a set of rules, using this record, for determining whether we will

play tennis or not, given a set of weather conditions. In machine learning

terminology, each of these records would be called an example.

Using a top-down approach, we might start with a single rule: “Always play tennis

(regardless of the conditions).” This rule would be correct for some number of the 30

days, but be incorrect for other days. Next, we attempt to refine (specialize) the rule

in order to be more correct. A refined rule might be: “Play tennis, unless it is

raining.” This rule would presumably be correct for more of the days in our record,

but for tennis, there are still other conditions to consider! We continuously make the

rule more and more specific until we arrive at a sentence that is “good enough” with

respect to our needs. This might be a rule that reads “If it’s raining, don’t play

11

tennis – or if it is sunny, but not hot and humid, play tennis, -- or if it is overcast, but

not windy, then play tennis.”

The specific mechanism for generating possible specializations is to introduce clauses

where some of the properties of the example are specified (“windy=true”).

2.3.2 Bottom-Up Strategy

Bottom-up strategies begin with a very detailed sentence (typically one that simply

states all of the examples) and works to reduce this complexity until some quality

criterion is met or until it can be determined that no simplification is possible.

We re-use our tennis example from the previous section to illustrate this approach.

We would begin by stating all of our examples, connecting them logically with “or”:

“If it’s hot, windy, and raining, don’t play tennis – or if it’s hot, windy, and overcast,

don’t play tennis – or if it’s hot, windy, and sunny, don’t play tennis, …etc.” Next,

we would try to find a general clause that could take the place of several of the

existing clauses, for example, “If it is raining, regardless of wind and humidity, don’t

play tennis.”

The specific mechanism for exploring possible generalizations is to un-specify some

properties of one of the existing clauses: “windy = don’t care”. After making that

alteration, we determine which of the clauses has become redundant and then remove

those clauses.

12

2.4 Evolutionary Algorithms

In this section, we will describe the nature of evolutionary algorithms, give a general

algorithm, and describe each of the major steps of the algorithm. The corresponding

steps actually used in the thesis will be covered in the Implementation Chapter.

2.4.1 Evolutionary Computation

Evolutionary computation is a field that merges biological inspiration with the goals

of computer science and in particular artificial intelligence. Algorithms in this spirit

are called evolutionary algorithms (EA). Often in difficult problems, when traditional

methods fare poorly due to properties of the search space, evolutionary algorithms

can at least do better. The surprising successes and the generality of evolutionary

algorithms are attractive to researchers when standard approaches have failed.

There are many different types of EAs, but most share a common set of basic

elements. Two features of EAs typically give them their power: randomness and

parallelism. They generally begin with a population of candidate solutions, make

small changes to this population, and prefer changes that make the solutions better.

The hope is that these solutions will evolve, in a sense, to become better and better.

Also, all evolutionary algorithms apply some variation on Darwin's idea of "natural

selection" at some level [16]. It is this idea that is being used to search for problem

solutions.

Before we can apply an evolutionary algorithm to a problem, we must choose a way

to represent the candidate solutions.

13

2.4.2 Representation

There are two typical approaches for representation. The first is analogous to how

genetics work in the real world. Inside our cells, we have DNA which can be

understood as a series of genes. These genes can be in an "on" state or "off" state,

and they control certain traits that we have. In evolutionary algorithms, solutions are

often represented with a linear series of virtual genes that are in one of two or more

states. Each of these virtual genes, individually or together with others, describes

some aspect of a candidate solution to the problem at hand. Another common way to

represent solutions is with a tree structure. Usually this method is used when the

solutions are naturally tree-like in nature. For example, the mathematical expression

(X + (Y * Z)) can very naturally be written in tree format based on the order of

computation.

Figure 1: Mathematical expression in tree representation

Whatever the representation, the collection of genetic information for an individual is

called its genome. Having chosen a way to represent the problems, we can proceed

with the algorithm.

2.4.3 General Algorithm

A generic form of a basic evolutionary algorithm is shown below:

+

X

Y Z

*

14

1. Initialize population of individuals
2. Evaluate population
2. generation := 0
4. do
 4.1 Select parents from population
 4.2 Generate offspring from parents
 4.3 Evaluate offspring
 4.4 Select survivors for new population
 4.5 generation := generation + 1
5. until Terminating criteria are met.

Even at this general level, there is certainly room for variation. For example, in the

main loop, some implementations first select which individuals are removed from the

population, and then generate offspring to replace them. But the main point here is to

illustrate the main steps and the iterative nature of an evolutionary algorithm.

2.4.4 Initialization

This step deals with where the starting population comes from. In terms of solving a

problem, this initialization step is analogous to selecting a number of places to start

looking for a solution. Typically, the starting candidate solutions are generated at

random (e.g. a series of random values for the virtual genes, or growing a random

expression tree). The rationale for choosing at random is to have a broad coverage of

the search space determined by the representation. If you look in a narrow area of the

search space and one might never find a good solution.

2.4.5 Evaluation

In order to carry out evolution, the candidate solutions must be evaluated and

assigned a "fitness score" based on how well they satisfy the criteria of the desired

solution. Evaluation is needed in order to apply Darwin's idea of "survival of the

fittest." In the case of these candidate solutions, the better solutions are given a

15

higher chance surviving and propagating their genetic material. Weaker solutions

have a higher chance of "dying" and being removed from the population.

To illustrate how solutions might be evaluated, consider the following example.

Suppose the problem is to fit a number of crates onto a cargo ship, with the goal of

optimizing the space available. In other words, we want the maximum volume of the

available space used. Candidate solutions in this problem would be given a score

based on these criteria, and in this case the score can simply be the volume occupied

by the configuration of crates specified by the solution.

Clearly, having good criteria has a large impact on the quality of solutions produced.

It is important to carefully consider what is understood about the problem area to

devise the proper criteria.

2.4.6 Selection

From the general algorithm above, we can see that there are essentially two different

kinds of selection that occur: survival selection and selecting parents for generating

offspring (covered in the next section). In both cases, selection is usually biased in

favor of individuals with higher fitness scores. This is done in hopes of steering the

population into evolving better solutions with each generation.

There are wide variations on the methods of selection. In some algorithms, the best X

solutions automatically survive into the generation regardless of their fitness scores.

Others assign survival probabilities proportional to fitness scores and select

probabilistically. It often is the case that some combination of these methods is used.

16

While this step can potentially have a large impact on the quality of solutions, often it

is unknown what relationship the selection method has with features of the problem

space.

2.4.7 Generating Offspring (Operators)

Evolution implies change in the population from one generation to the next, and the

purpose of genetic operators is to introduce change. The operators typically do this in

variations of two ways: directly altering some of the genes of an individual, or

forming a new individual from some combination of genes from others.

The direct alteration of genes is called mutation. In this process, all individuals

within a population are subject to a certain chance of mutating during each generation.

This chance is called the mutation rate, and is normally a fixed parameter of the

evolutionary algorithm. If an individual is chosen for mutation, then we apply the

mutation operator to the individual. The mutation operator typically randomly alters

a certain percentage of the genes of an individual. To mimic natural mutation, the

probability of mutation and the number of genes altered are both normally low.

The formation of a new individual from the genes of others is called recombination or

crossover. As with mutation, there is a global parameter that dictates what percentage

of the new population will have been produced by crossover. Examples of crossover

in the two common representations mentioned previously appear below:

17

Figure 2: Crossover in
bit-string representations

Figure 3: Crossover in
 tree representations

In Figure 2, the brown and yellow bit strings at the top are the two parents. During

crossover, a random place is chosen for them to be cut. Then the pieces are swapped,

or crossed, to form two new bit strings. The same idea is demonstrated in Figure 3

for tree representations.

There are certainly a wide variety of operators in each of these two categories for any

given representation. As with evaluation and selection, it is important to carefully

design these operators with consideration of the nature of the problem.

2.4.8 Termination

Finally, there are many criteria for stopping the algorithm. A simple method is to

simply stop after a previously chosen number of generations. Another

straightforward criteria is to only stop when a solution above a certain fitness score

has been found. Yet another approach is to run the algorithm until the general fitness

of the population stops improving (by tracking the average fitness of the last 10

generations, for example).

18

In contrast to the other components of the algorithm, the termination criteria mainly

affect the time needed to run the algorithm. In some situations, evolutionary

algorithms can be computationally intensive, so it is not practical to run them for a

long time. In the case where the population fitness stops improving, it is probably a

waste of time. Also, if the algorithm fails to find a good solution beyond a few

hundred generations, it is indicative that the other components of the algorithm

(evaluation, etc.) need to be redesigned.

2.5 Related Work

In this section, we introduce two “classic” systems in the area of inductive logic

programming as well as two systems with newer approaches.

2.5.1 FOIL

FOIL is a system written by J. R. Quinlan that essentially takes the top-down

approach to inductive logic programming in the domain of first-order logic. It

accepts as input a description of concepts or relationships, one of which will be the

“target” concept to be learned. In the tennis example, the target concept would be the

relation “PlayTennis?” In addition, positive and negative examples of the concept

must be provided.

It begins its search for a solution by generating a sentence that explains some of the

positives examples. It continuously generates more clauses until all of the positive

examples have been covered. Clauses are specialized during this process by

replacing variables with literals until no negative examples are covered. Finally,

19

redundant clauses are removed, and clauses are reordered so that any recursive

clauses appear after non-recursive clauses (base cases). [10]

2.5.2 GOLEM

GOLEM is a system written by Stephen Muggleton that takes the bottom-up approach

to inductive logic programming. It accepts basically the same input as FOIL,

described in the previous section, and also operates in the domain of first-order logic.

In contrast to how FOIL specializes clauses to increasingly cover the positive

examples, GOLEM selects groups of positive examples and generates clauses that

cover them. The strategy is based on the relative least general generalizations (rlgg)

first described by Plotkin [11, 12]. Essentially, rlgg finds a clause that is the least

general (e.g. one that has the fewest variables) and that covers all of a given set of

statements (examples or intermediate clauses).

For example, assume the tennis problem introduced in Section 2.3.1. Suppose that

the following examples are among the positive examples of the problem:

playtennis(hot, windy, sunny, not humid) = true
playtennis(hot, calm, sunny, humid) = true
playtennis(hot, calm, sunny, not humid) = true

The rlgg of these positive examples would be:

playtennis(hot, X, sunny, Y) = true

There is no other statement that is less general than this that would cover all of the

positive examples selected. GOLEM disqualifies any rlgg that is not consistent with

negative examples from further consideration.

20

At each step, GOLEM computes many rlggs for randomly selected sets of positive

examples together with the rlgg of the previous step, and selects the rlgg that covers

the most number of positive examples and is consistent with all of the negative

examples. The process stops when the coverage of the current best rlgg stops

increasing. Some post-processing occurs to further generalize the result and remove

irrelevant literals. [6]

2.5.3 FLIP

The system that is most closely related to the work of this thesis is the FLIP system.

Like the prototype system implemented for this thesis, FLIP induces logic programs

in the domain of first-order functional (or equational) logic. Functional logic

languages have demonstrated to have more expressive power and better operational

behavior in comparison to logic languages [13, 14].

FLIP uses a specific-to-general strategy for induction that is essentially the same as

that described for GOLEM. Positive examples are represented as equations that must

be proven to be true using the induced program, while negative examples are

equations that are not proven true. [9]

2.5.4 Previous Prototype

There is a previous successful prototype of using a genetic algorithm over equational

logic for concept learning [1,3]. The system solved some simple problems and the

results encouraged further research. The system could not solve more complex

problems because of an unexpected memory limitation in LISP and efficiency issues.

It was demonstrated that the system could tolerate noisy data, and compared

21

favorably to FLIP in this respect [3]. The purpose of this thesis is to continue this

research and develop a more robust system (see Introduction).

22

3 IMPLEMENTATION

We begin with an introduction to the Maude system, a major part of this

implementation [4, 18]. Next, we present a high-level description of the entire

induction process from start to finish. Continuing, we will give more detail about

each of the steps of the process from an implementation perspective. We conclude

with a description of the important C++ data structures used by the system.

3.1 Maude

Maude provides the foundation for the implementation of this thesis work. Maude is

a high-performance language and system that can be used for a wide variety of

applications [4, 18]. Applications include:

 Bioinformatics: Cell reactions can be expressed as theories in Maude, which

allows for the development of models of cell biology that can be used to analyze

and predict cell behavior. [19]

 Computer Systems: Work has been done that demonstrates the ability to model a

wide range of real-time and hybrid systems, including object-oriented real-time

systems. [20]

Maude's logical foundations make it particularly useful for this thesis. Its core

representation language is a form of equational logic. A Maude program is a logical

theory, and these theories can easily be used to describe concept learning problems

[4]. Details about this representation are given later in this chapter. A Maude

23

computation is a logical deduction using the rules specified in the theory [4]. This

deductive capability serves as the means for fitness evaluation during the genetic

algorithm. Again, details about this will be given later in this chapter.

Maude is excellent for deduction through rewriting, but it has no facilities for

induction. A main part of the thesis work is to add this functionality to Maude. New

C++ code was written and integrated into the Maude source code.

3.2 High-Level Walkthrough

Suppose that the task is for the system to partially learn the concept of a stack. A

stack consists of zero or more items, which are added and removed from the stack.

Adding an item to a stack means that it is placed on top. In other words, the item at

the top of the stack is always the one that was last added. When given a set of facts

(examples of actions and results), Maude should induce the relationship between the

item at the top of the stack, and what was last added.

The first step is to represent this problem, specifically the set of facts, in Maude. This

step is a matter of understanding equational logic and the language that Maude uses

for representing it. The set of facts is called the fact theory, and this representation

we will call the "Maude representation."

Once the fact theory has been inputted into Maude, the user commands Maude to

"induce" on it. To induce a general theory, the system will use a genetic algorithm to

search over all possible theories given the input. In order to do this, we need a

24

representation amenable to the application of a genetic algorithm. We call this the

"genetic representation."

During the search for solution, the system needs to evaluate the quality of its

candidate solutions. Each candidate theory is a assigned a numerical score, its fitness

score, based on the number of facts it predicts. Maude has built-in functionality for

performing deductions, so we will use it here for this purpose. Because the candidate

theories are in a genetic representation, there is a need to translate the theories to the

Maude representation.

When the search ends, the system will then output to the user the theory with the

highest score. Depending on the situation, various criteria can be used for ending the

search. If the search was successful, the theory produced should be able to predict all

facts in the fact theory (assuming noise-free data) as well as be general enough to

predict other unseen facts.

3.3 Maude Representation

To solve a problem, we must first represent the problem in equational logic. Theories

can be seen to describe some concept, such as a stack. A stack can be described using

equational logic as follows:

25

(1) fmod STACK is
(2) sorts Item Stack .
(3) op s: -> Stack .
(4) ops a b c: -> Item .
(5) op top: Stack -> Item .
(6) op add: Stack Item -> Stack .
(7) var X: -> Stack .
(8) var Y: -> Item .
(9) eq top(add(X, Y)) = Y .
(10) endfm

A good understanding of how each of the lines above describes the concept is

important for understand later discussion. The first line states that the name of the

theory is "STACK." Line 2 introduces the types of things involved with this concept,

namely Items and Stacks.

Lines 3 and 4 declare the building blocks from which all stacks can be described.

Line 3 describes an operator “s” which takes no parameters, and returns a Stack. This

is meant to represent the empty stack. Line 4 describes three operators: a, b, and c.

These operators take no parameters, but return an Item. They are to represent specific

instances of Items. These operators that do not take parameters are typically called

constructors.

Line 5 describes the operator "top," which when given a stack, outputs the item on

top of that stack. Line 6 describes the operator "add," which construct stacks by

adding an item to an existing stack to form a new stack. Lines 7 and 8 are variables

that can represent anything of the appropriate type. In other words, X is any stack,

and Y is any of the items a, b, or c.

26

Line 9 is an equation describing one of the features of a stack; the item of a stack is

whatever item was last added to it. Read more literally: if you add any item Y to any

stack X, then the item on top of the resulting stack is Y.

Theories can also describe facts. Facts are statements that must be true given the

nature of a concept. More concretely, facts are statements that can be deduced from

the theory describing the concept. We use the term fact theory when describing a

theory that represents a collection of facts. Below is an example of a fact theory for

stacks:

fmod STACK-FACTS is
 sorts Item Stack .
 op s: -> Stack .
 ops a b c: -> Item .
 op top: Stack -> Item .
 op add: Stack Item -> Stack .
 eq top(add(s, a)) = a .
 eq top(add(add(s, a), b)) = b .
 eq top(add(add(s, b), a)) = a .
 eq top(add(add(s, a), c)) = c .
endfm

This fact theory contains four facts, represented by the last four equations. Keep in

mind that a, b, and c are concrete items and not variables. This is what is inputted to

the system as the first step in learning the concept. Once inputted, the next step is to

command the system to induce on these facts.

Note that equations are used both to represent facts as well as the induced rules. The

distinction is largely one of interpretation. Consider that the fact theory itself is a

trivial solution to the problem – the equations of the fact theory would of course

predict themselves.

27

3.4 Induction: Extending Maude

The Maude system has no function for induction. One of the major implementation

tasks of this thesis is to add this capability using genetic algorithms as the search

mechanism.

Adding a new command "induce" to Maude is relatively straightforward after

understanding the third-party tools that Maude employs for handling user input.

Specifically, parsing the user input and taking the appropriate action is entirely

controlled by a set of plain-text files for the software tools flex and yacc.

Understanding the nature of these files is critical for adding a new command.

Similarly, tapping into Maude's deductive (rewriting) capabilities can also be

understood by studying these files; details about this will be described together in a

later section with fitness evaluation.

A third-party code library, GAlib, was used as the foundation of the genetic algorithm

[17]. GAlib is a free C++ library of genetic algorithm objects. These objects can be

used with no modification or if needed can serve as a starting point for customizing

the objects for a specific problem. In the case of this thesis a generic genome object

was customized to represent theories, and the reproduction operator objects

customized for these special genomes.

28

3.5 Genetic Algorithm

3.5.1 Representation

Theories are represented in tree format. Actually, only a portion of the theory needs

to be in a genetic representation. Since the sorts, operators, and variables remain

constant through the search, only the equations need to be explicitly represented.

Thus, each candidate theory is a list of equations, where equations are represented as

trees. Terms in an equation correspond to nodes in the tree. A candidate theory

during the search might be:

29

fmod STACK-CANDIDATE-THEORY is
 sorts Item Stack .
 op s: -> Stack .
 ops a b c: -> Item .
 op top: Stack -> Item .
 op add: Stack Item -> Stack .
 var I J K L: -> Stack .
 var W X Y Z: -> Item .
 eq top(add(I, W)) = c .
 eq top(add(a, Y)) = top(add(J, W)) .
 eq top(add(add(J, Y), Z) = Z .
endfm

In its genetic representation, this theory would abstractly look like this:

Figure 4: Candidate theory in tree representation

Incidentally, this is not a good candidate theory because the first two equations will

predict incorrect facts. The third equation by itself would predict correct facts, but it

does not cover them all; in other words it would be sound but incomplete.

=

top

add

I W

c

=

top

add

a

Y

top

add

J W

=

top

add

Z

Z

add

J Y

30

3.5.2 Initialization

The candidate theories are initialized randomly. Each theory has 1 to 10 equations.

Each equation consists of two expressions, each of which is a randomly generated

tree of up to depth 6. All expressions are valid in that there are no type errors.

3.5.3 Evaluation

The candidate solutions are evaluated based primarily on how well they predict the

given facts, and secondarily on the size of the theory.

In the case of noise-free data, it's clear that it is mandatory for the theory to predict all

facts. To encourage solutions to be general, there is a penalty for each equation in the

theory. It is more important for the theory to predict the facts than to be concise, so

the reward for correctly predicting each fact is an order of magnitude greater than the

penalty for each additional equation. In addition, simpler equations are preferable to

complex ones, so there is an additional reward based on the total number of nodes in

the solution.

Specifically, the score of a solution is
te

c
11

++ , where c is the number of correctly

predicted facts, e is the number of equations in the solution, and t is the number of

nodes in the solution. Consider the four facts from our stack example:

(#1) eq top(add(s, a)) = a .
(#2) eq top(add(add(s, a), b)) = b .
(#3) eq top(add(add(s, b), a)) = a .
(#4) eq top(add(add(s, a), c)) = c .

And suppose we have the following two-equation candidate solution:

31

fmod STACK-CANDIDATE-THEORY is
 sorts Item Stack .
 op s: -> Stack .
 ops a b c: -> Item .
 op top: Stack -> Item .
 op add: Stack Item -> Stack .
 var I J K L: -> Stack .
 var W X Y Z: -> Item .
(#1) eq top(add(s, X)) = a .
(#2) eq top(add(I, b)) = b .
endfm

To evaluate this solution, we first determine how many of the facts can be derived

from the solution theory. Equation #1 of the solution says that after adding an Item X

to an empty stack s, the top of the stack is the Item a. Fact #1 can be derived from

this equation by substituting the item “a” for the variable “X” in the equation.

Equation #2 of the solution says that after adding the Item b to any stack I, the top of

that stack is the Item b. Fact #2 can be derived from this equation. However, facts #3

and #4 cannot be derived.

We see that the solution has two equations, and ten terms total between the two

solutions. The counting of terms may vary slightly depending on implementation.

Thus, the score for this candidate solution is 6.2
10

1

2

1
2

11
=++=++

te
c .

3.5.4 Selection

Candidate solutions are selected using a standard roulette-wheel selection method.

Specifically, the chance that a candidate solution will be selected is exactly its fitness

score divided by the total fitness score of all solutions. Thus, the better candidates

have a better chance of chosen when forming the population for the next generation.

32

3.5.5 Mutation

All theories have a certain probability of undergoing mutation, based on the mutation

rate of the genetic algorithm. Once a candidate solution has been selected for

mutation, it will undergo one of three possible mutations:

1) Random Node Mutation

One mutation operator selects a random equation and then selects a random

node in either of the expressions of the equation to be mutated. This node is

then replaced with a random node of the appropriate type. If this node is not a

terminal node, then its sub-expressions are generated at random in the same

way as done for the initial population.

33

Figure 5: Node-level mutation

2) Equation Addition/Deletion

A second mutation operator selects randomly to remove an equation or add an

=

top

add

I W

c

=

top

add

a

Y

top

add

J W

=

top

add

Z

Z

add

J Y

=

top

add

I W

c

=

top

add

Y

top

add

J W

=

top

add

Z

Z

add

J Y

This node has been
selected to be mutated.

add

s a Replaced with
randomly generated
expression of
appropriate type.

34

equation to a theory. This operator will not apply to theories with only one

equation when removing, and will generate expressions for the new equation

as done for the initial population

Figure 6: Equation-level mutation (delete equation)

=

top

add

I W

c

=

top

add

a

Y

top

add

J W

=

top

add

Z

Z

add

J Y
This equation has been
chosen to be deleted.

=

top

add

I W

c

=

top

add

Z

Z

add

J Y

35

3) Literal Generalization

Finally, a third operator will randomly choose a literal node (non-variable leaf

node) in the solution and choose a variable of the appropriate type to replace it.

This operator is a special case of the first operator (random node mutation).

Also, it is similar in idea to the classic ILP specific-to-general strategy.

=

top

add

I W

c

=

top

add

a

Y

top

add

J W

=

top

add

Z

Z

add

J Y

=

top

add

I W

c

=

top

add

Y

top

add

J W

=

top

add

Z

Z

add

J Y

This literal has been
chosen to be generalized.

I

Replaced with randomly
selected variable of the
appropriate type.

36

Figure 7: Literal generalization

It is worth repeating that mutations are guided to produce new solutions that have

valid syntax and type agreement. If this were not the case, it is far more likely for

mutations to produce nonsensical solutions and severely decrease the effectiveness of

the genetic algorithm.

3.5.6 Crossover

When a new theory is to be generated via crossover, two parents are selected. There

are two crossover operators.

1) One operator begins by copying the first parent. Next, a random node from an

equation in the copy is selected for replacement. A node of the same type is

selected in the second parent. Additionally, the resulting equation must meet

the requirement that any variables that appear on the right hand side must also

appear on the left hand side. The marked node in the copy is deleted and

replaced with a copy of the node selected in the second parent.

37

Consider the following diagram as an example of node-level crossover.

Figure 8: Node-level crossover

=

top

add

I W

c

=

top

add

Z

Z

add

J Y

=

top c

This node has been
selected as the
crossover point.

Parent 1 Parent 2

This node has been
selected as the
crossover point.

add

Z add

J Y

38

2) The second crossover operator creates a new theory by randomly choosing

equations from both parents. The new theory is guaranteed to have at least

one equation.

3.5.7 Termination

The genetic algorithm ends when one of the two following conditions becomes true:

 The score of the best candidate solution found in each generation is constant

for a number of generations (specified before starting).

 The genetic algorithm has run for a number of generations (specified before

starting).

Upon termination, the system outputs the candidate with the highest fitness score

along with miscellaneous statistics.

3.5.8 Heuristics

In addition to ensuring that all candidate solutions have correct syntax and types,

several techniques were employed to further reduce the search space.

 When using the system, the user can identify which operators in the fact

theory are the concepts that are to be induced. If these are identified,

whenever the genetic algorithm generates a random equation, it will guarantee

that the left-hand-side of the equation has one of the identified operators at the

top-level. We do this because we know that the solution must have equations

in this form.

39

 Any equation where the left-hand-side is the same as the right-hand-side is

removed and replaced with a randomly generated equation.

 For each candidate solution, equations that do not contribute positively to the

candidate’s fitness score are dropped. The contribution of each equation is

calculated by removing it temporarily and recalculating the score of the

solution. If the fitness of the solution improves by dropping the equation, then

it is dropped.

 Duplicate equations are never allowed.

Experimentally, all of the above heuristics reduced the time it took for the genetic

algorithm to find good solutions. However, it should be noted using these heuristics

(and sacrificing some genetic diversity) may hinder the system from inducing more

complex problems. Further investigation in this are is left for future research.

3.6 Data Structures

In this section we will describe the five major data structures implemented for this

thesis.

3.6.1 csInduce

csInduce runs the genetic algorithm and interacts with the Maude system. This class

is instantiated when Maude receives the "induce" command. Upon instantiation,

csInduce does several things. First, it instantiates a second class called csInterface,

which is used for all Maude interactions. Second, the csInduce command initializes

40

some static variables for the class csTheoryGenome. It has a sole member function

that runs the genetic algorithm, which Maude calls after instantiation.

3.6.2 csInterface

This class is designed to be instantiated by other class as a general-purpose interface

to the inner workings on Maude. In particular, the class is used for:

 Interpreting the internal Maude representations of the user-inputted theory and

examples.

 Translating candidate theories (used by the genetic algorithm) from their

genetic representation into a form recognizable by Maude

 Evaluating candidate theories against the given facts using Maude’s rewrite

functions.

On instantiation, this class reads the Maude representation of the theory and stores the

relevant parts of the theory in its own internal data structures. Specifically, it gets a

list of sorts, operators, and variables from the theory. Sorts are stored simply as a

vector of strings. An individual operator or variable is stored as a vector of strings in

the following format: <name> <paramtype> <paramtype> ... <returntype>. For

example, a variable X of type integer is stored as ("X", "INT"). An addition operator

may look like ("_+_", "INT", "INT", "INT"). The underscores in the name represent

the two parameters for this operator. These variables and operators are stored

together in a single vector. Thus, the structure that holds them is a vector of a vector

of strings.

41

3.6.3 csTheoryGenome

This class represents a theory and is derived from a generic genome class from GAlib.

Methods for managing the equations and expressions of a theory are implemented

here. There are also two features shared by all instances of the genome (static

members). First, custom methods for initialization, mutation, crossover, and

evaluation are implemented here. Also, there is a static data structure "templates" that

holds the valid "building blocks" for expressions. These building blocks represent

valid operators and variables read from the theory being induced. When given a sort,

this "templates" data structure returns two lists. The first is a list of "terminating"

nodes, such as variables and operators with no parameters (constructors). The second

is a list of "non-terminating" nodes, which is basically any other operator. This data

structure is organized this way to reduce the time needed to construct new trees

during the genetic algorithm's initialization and reproduction phases.

3.6.4 csEqua

This class represents an equation of a theory. It is simply keeps track of a pair of

expressions (representing the left and right sides of the equation) and their common

type.

3.6.5 csExpr

This class represents operators and variables of theories and equations in the tree-

representation used by the genetic algorithm. Each instance maintains links to its

parent expression, as well as a list of links to its children. It is used by csEqua to

abstractly represent expressions in a tree format, and also by csTheoryGenome as

42

templates to copied from whenever new nodes are needed (e.g. for initialization,

mutation, crossover).

43

4 RESULTS

In this chapter, we will begin by defining how we will measure the performance of

our system. Next, we will give the results and analysis from our attempts to solve the

specified problems. We end with some concluding remarks and thoughts about future

research.

4.1 Metrics

The performance of the system will be measured by its ability to solve a variety of

concept learning problems. Each problem has a known solution, and we compare the

solutions produced by the system to the known solutions. We are also interested in

solving problems that the previous prototype could not handle. We record the genetic

algorithm parameters and characteristics for each problem. However, it is difficult to

make comparisons to other system because this is the first system to employ genetic

algorithms for concept learning in equational logic.

The six problems were selected to test a wide variety of features. First, we test the

system on two simple problems that were solved by the previous implementation. In

addition, we include two problems that require recursive solutions; the previous

implementation failed to solve one of these problems. The system supports the

inclusion of background knowledge, and for testing this, we include relevant

problems from the FLIP website [8]. Finally, we apply the system to solve two

traditional classification problems.

44

The specific concepts to be learned are:

 Primitive stack operators (simple, solved by previous implementation)

 Sum of natural numbers (recursive, solved by previous implementation)

 Evenness (recursive, unsolved by previous implementation)

 Sum of list elements (recursive, using background knowledge)

 Play tennis (classic classification problem)

 Train direction (classic classification problem)

4.2 Problems, Results, & Analysis

We now describe the problems that the system attempted to solve, and for each

problem we describe the learning parameters used and the results.

45

4.2.1 Primitive Stack Operators

The goal of this problem is to learn the primitive operators for a computer stack. In

the previous implementation, the problem was to learn the “top” operator and

indirectly learn the “push” operator. The previous implementation was successful at

solving this problem. For my thesis, the problem is made slightly tougher by adding

the “pop” operator. The representation and facts for the problem are as follows:

fmod STACK-FACTS is
 sorts Stack Element .
 ops a b c d e f g h : -> Element .
 ops v w x : -> Stack .
 op top : Stack -> Element .
 op pop : Stack -> Stack .
 op push : Stack Element -> Stack .

 eq top(push(v,a)) = a .
 eq top(push(w,c)) = c .
 eq top(push(x,g)) = g .
 eq top(push(v,h)) = h .
 eq top(push(w,e)) = e .
 eq top(push(push(w,b),a)) = a .
 eq top(push(push(v,h),g)) = g .
 eq top(push(push(x,c),d)) = d .
 eq top(push(push(v,e),f)) = f .
 eq top(push(push(x,f),b)) = b .
 eq pop(push(w,a)) = w .
 eq pop(push(v,b)) = v .
 eq pop(push(x,c)) = x .
 eq pop(push(w,d)) = w .
 eq pop(push(v,e)) = v .
 eq pop(push(push(v,a),c)) = push(v,a) .
 eq pop(push(push(w,b),d)) = push(w,b) .
 eq pop(push(push(x,c),e)) = push(x,c) .
 eq pop(push(push(v,d),f)) = push(v,d) .
 eq pop(push(push(w,e),g)) = push(w,e) .
endfm

The learning parameters used for this problem are:

46

200 Total population
100 Maximum number of generations
10 Number of demes (sub-populations)
2 Migration rate

0.7 Probability of crossover
0.3 Probability of mutation
0.99 Convergence ratio
25 Convergence window (generations)

Over 50 runs, the system was able to find a correct and minimal solution 100% of the

time. The average number of generations to convergence is 30.12 and the standard

deviation is 1.57. A typical solution theory generated follows:

fmod BEST-SOLUTION is
sorts Stack Element .
ops a b c d e f g h : -> Element .
ops v w x : -> Stack .
op top : Stack -> Element .
op pop : Stack -> Stack .
op push : Stack Element -> Stack .
var ElementA ElementB ElementC : Element .
var StackA StackB StackC : Stack .
eq top (push (StackA , ElementB)) = ElementB
eq pop (push (StackA , ElementC)) = StackA

endfm

In the solution theories, the sorts and operators are the same as those for the fact

theory. The variables declarations are added by the system during induction. The

interesting part of the solution theories are the equations. In other words, the top

element of a stack is the last element pushed onto it, and popping a stack yields the

stack before the last element was pushed onto it.

47

4.2.2 Sum of Natural Numbers

A second concept is the recursive definition of the function “sum” over the natural

numbers. The natural numbers are given in Peano notation, where the numbers are

represented as s(0) = 1, s(s(0)) = 2, etc. The fact theory is:

fmod SUM-FACTS is
 sort Nat .
 op 0 : -> Nat .
 op s : Nat -> Nat .
 op sum : Nat Nat -> Nat .

 eq sum(0,0) = 0 .
 eq sum(s(0),s(0)) = s(s(0)) .
 eq sum(0,s(0)) = s(0) .
 eq sum(s(s(0)),0) = s(s(0)) .
 eq sum(s(0),0) = s(0) .
 eq sum(s(0),s(s(0))) = s(s(s(0))) .
 eq sum(s(s(0)),s(s(0))) = s(s(s(s(0)))) .
 eq sum(s(s(s(0))),s(0)) = s(s(s(s(0)))) .
 eq sum(s(s(s(0))),s(s(0))) = s(s(s(s(s(0))))) .

 eq (sum(s(0),0) =/= 0) = true .
 eq (sum(0,0) =/= s(0)) = true .
 eq (sum(s(0),s(0)) =/= s(0)) = true .
 eq (sum(s(0),s(0)) =/= 0) = true .
 eq (sum(s(s(0)),s(s(0))) =/= s(s(0))) = true .
endfm

Note that negative examples, i.e. 010 !+ in the last line, are normally given as a set

of statements known to be false. For our system, they are encoded as positive

statements for convenience. The learning parameters used for this problem are:

200 Total population
100 Maximum number of generations
10 Number of demes (sub-populations)
2 Migration rate

0.7 Probability of crossover
0.3 Probability of mutation
0.99 Convergence ratio
25 Convergence window (generations)

Over 50 runs, the system found a correct and minimal solution 49 times. The average

number of generations for convergence is 44.08, with a standard deviation of 14.71.

The following is a typical solution:

48

fmod BEST-SOLUTION is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op sum : Nat Nat -> Nat .
var NatA NatB NatC : Nat .
eq sum (NatA , 0) = NatA
eq sum (NatA , s (NatC)) = sum (s (NatA) , NatC)

endfm

The first equation states that that adding 0 to a value doesn't change it. The second

equation is the key recursive relation that allows for the computation of the sum of

two numbers.

49

4.2.3 Even Numbers

The concept to be learned here is the idea of evenness in the natural numbers. Again,

the natural numbers are represented in Peano notation. The fact theory is:

fmod EVEN-FACTS is
 sorts Int .
 op 0 : -> Int .
 op s : Int -> Int .
 op even : Int -> Bool .

eq even(0) = true .
 eq even(s(s(0))) = true .
 eq even(s(s(s(s(0))))) = true .

 eq (even(s(0)) =/= true) = true .
 eq (even(s(s(s(0)))) =/= true) = true .
 eq (s(s(0)) =/= 0) = true .
 eq (s(s(0)) =/= s(0)) = true .
endfm

The learning parameters are:

200 Total population
100 Maximum number of generations
10 Number of demes (sub-populations)
2 Migration rate

0.7 Probability of crossover
0.3 Probability of mutation
0.99 Convergence ratio
25 Convergence window (generations)

Over 50 runs, the system found a correct and minimal solution 100% of the time. The

average number of generations to convergence is 26.36 generations and the standard

deviation is 0.48. The following is a typical solution:

fmod BEST-SOLUTION is
 sorts Int .
 op 0 : -> Int .
 op s : Int -> Int .
 op even : Int -> Bool .
 var IntA IntB IntC : Int .

eq even (s (s (IntA))) = even (IntA)
eq even (0) = true

endfm

In plain English, zero is even, and the evenness of any other number is the same as

the evenness of that number minus two.

50

4.2.4 Sum of List Elements

This problem is for testing the system’s support for background knowledge. The

problem is to find a recursive way to sum the numbers in a list, given the knowledge

of how to sum two numbers. The problem and facts are represented as follows:

51

fmod SUM-LIST-FACTS is

 sorts Nat NatList .

 op 0 : -> Nat .
 op s : Nat -> Nat .
 op sum : Nat Nat -> Nat .

 op v : -> NatList .
 op p : NatList Nat -> NatList .
 op suml : NatList -> Nat .

 eq suml(p(v,0)) = 0 .
 eq suml(p(v,s(0))) = s(0) .
 eq suml(p(v,s(s(0)))) = s(s(0)) .
 eq suml(p(p(v,0),s(0))) = s(0) .
 eq suml(p(p(v,s(0)),s(0))) = s(s(0)) .
 eq suml(p(p(v,s(s(0))),s(0))) = s(s(s(0))) .
 eq suml(p(p(v,s(s(0))),s(s(0)))) = s(s(s(s(0)))) .
 eq suml(p(p(v,0),s(s(0)))) = s(s(0)) .
 eq suml(p(p(v,0),s(s(s(0))))) = s(s(s(0))) .
 eq suml(p(p(v,s(s(0))),0)) = s(s(0)) .

 eq (suml(p(v,0)) =/= s(0)) = true .
 eq (suml(p(v,s(0))) =/= 0) = true .
 eq (suml(p(v,s(s(0)))) =/= s(0)) = true .
 eq (suml(p(p(v,0),s(0))) =/= s(s(0))) = true .
 eq (suml(p(p(v,s(0)),s(0))) =/= s(s(s(0)))) = true .
 eq (suml(p(p(v,s(0)),s(0))) =/= s(0)) = true .
 eq (suml(p(p(v,s(0)),s(s(0)))) =/= s(s(0))) = true .
 eq (suml(p(p(v,0),s(s(0)))) =/= s(s(s(0)))) = true .
 eq (suml(p(p(p(v,s(0)),s(0)),s(0))) =/= s(s(0))) = true .
 eq (suml(p(p(p(v,s(0)),0),s(0))) =/= s(0)) = true .

endfm

fmod SUM-LIST-BACKGROUND is
 sorts Nat .

 op 0 : -> Nat .
 op s : Nat -> Nat .
 op sum : Nat Nat -> Nat .

 vars X0 X1 X2 : Nat .

 eq sum(0,X0) = X0 .
 eq sum(s(X0),X1) = s(sum(X0,X1)) .
endfm

52

The learning parameters are:

200 Total population
100 Maximum number of generations
10 Number of demes (sub-populations)
2 Migration rate

0.7 Probability of crossover
0.3 Probability of mutation
0.99 Convergence ratio
25 Convergence window (generations)

Over 50 runs, the system found a correct and minimal solution 100% of the time. The

average number of generations to convergence is 35.54, and the standard deviation is

13.88. A typical solution follows:

fmod SUM-LIST-FACTS is
 sorts Nat NatList .
 op 0 : -> Nat .
 op s : Nat -> Nat .
 op sum : Nat Nat -> Nat .
 op v : -> NatList .
 op p : NatList Nat -> NatList .
 op suml : NatList -> Nat .
 vars X0 X1 X2 : Nat .
 vars NatA NatB NatC : Nat .
 vars NatListA NatListB NatListC : Nat .
 eq sum(0,X0) = X0 .
 eq sum(s(X0),X1) = s(sum(X0,X1)) .

eq suml (v) = 0
eq suml (p (NatListA , NatB)) = sum (suml (NatListA) , NatB)

endfm

This solution sums the numbers in a list by summing the last number of the list and

recursively applying the function to the rest of the list. The sum of an empty list is

defined as zero, which completes the solution.

53

4.2.5 Play Tennis

The “Play Tennis” problem is a classic classification problem that is often used to

introduce the subject. The task is to learn whether or not to play tennis when given a

set of environmental conditions. The problem and facts are as follows:

fmod TENNIS-FACTS is

 sorts Outlook Temperature Humidity Wind .

 ops overcast rain sunny : -> Outlook .
 ops hot mild cool : -> Temperature .
 ops high normal : -> Humidity .
 ops weak strong : -> Wind .

 op playtennis : Outlook Temperature Humidity Wind -> Bool .

 eq playtennis(overcast, hot, high, weak) = true .
 eq playtennis(rain, mild, high, weak) = true .
 eq playtennis(rain, cool, normal, weak) = true .
 eq playtennis(overcast, cool, normal, strong) = true .
 eq playtennis(sunny, cool, normal, weak) = true .
 eq playtennis(rain, mild, normal, weak) = true .
 eq playtennis(sunny, mild, normal, strong) = true .
 eq playtennis(overcast, mild, high, strong) = true .
 eq playtennis(overcast, hot, normal, weak) = true .

 eq (playtennis(sunny, hot, high, weak) =/= true) = true .
 eq (playtennis(sunny, hot, high, strong) =/= true) = true .
 eq (playtennis(rain, cool, normal, strong) =/= true) = true .
 eq (playtennis(sunny, mild, high, weak) =/= true) = true .
 eq (playtennis(rain, mild, high, strong) =/= true) = true .

endfm

The learning parameters for this problem are:

300 Total population
100 Maximum number of generations
15 Number of demes (sub-populations)
2 Migration rate

0.7 Probability of crossover
0.3 Probability of mutation
0.99 Convergence ratio
25 Convergence window (generations)

Over 50 runs, the system found a correct and minimal solution 49 times. The average

number of generations to convergence is 40.28 with a standard deviation of 6.87. The

54

typical solution found matches the solution given in most presentations of the

problem:

fmod BEST-SOLUTION is
sorts Outlook Temperature Humidity Wind .
ops overcast rain sunny : -> Outlook .
ops hot mild cool : -> Temperature .
ops high normal : -> Humidity .
ops weak strong : -> Wind .
op playtennis : Outlook Temperature Humidity Wind -> Bool .
vars OutlookA OutlookB OutlookC : Outlook .
vars TemperatureA TemperatureB TemperatureC : Temperature .
vars HumidityA HumidityB HumidityC : Humidity .
vars WindA WindB WindC : Wind .
eq playtennis (overcast , TemperatureA , HumidityA , WindC) = true
eq playtennis (rain , TemperatureA , HumidityC , weak) = true
eq playtennis (sunny , TemperatureA , normal , WindC) = true

endfm

However, the system also converged on a second solution somewhat less frequently

than the first:

fmod BEST-SOLUTION is
sorts Outlook Temperature Humidity Wind .
ops overcast rain sunny : -> Outlook .
ops hot mild cool : -> Temperature .
ops high normal : -> Humidity .

 ops weak strong : -> Wind .
op playtennis : Outlook Temperature Humidity Wind -> Bool .
vars OutlookA OutlookB OutlookC : Outlook .
vars TemperatureA TemperatureB TemperatureC : Temperature .
vars HumidityA HumidityB HumidityC : Humidity .
vars WindA WindB WindC : Wind .
eq playtennis (rain , TemperatureB , HumidityC , strong) = false
eq playtennis (sunny , TemperatureA , high , WindA) = false
eq playtennis (OutlookB , TemperatureB , HumidityC , WindA) = true

endfm

There are two comments to be made about this second solution.

First, from a strictly algebraic perspective, this solution does not make sense in the

way it is presented. The third equation, stating that one should always play tennis, is

clearly at odds with the other two equations. The reason that the system produced

this solution is because the Maude engine considers the equations in order. In other

words, from Maude’s persepective, the solution would essential read:

55

If equation 1 can be applied, apply it.
Else if equation 2 applies, apply it.
Else if equation 3 applies, apply it.

While this is a common implementation approach for logic systems, it does not match

the algebraic semantics. Future work should modify the system to ensure that the

solutions are evaluated on their correct algebraic meaning.

The second point to be made is that the essence of the second solution can be

correctly represented algebraically if the problem is reworded. Specifically, we can

rewrite the facts in terms of falseness:

eq (playtennis(overcast, hot, high, weak) == false) = false .
eq (playtennis(rain, mild, high, weak) == false) = false .
eq (playtennis(rain, cool, normal, weak) == false) = false .
eq (playtennis(overcast, cool, normal, strong) == false) = false .
eq (playtennis(sunny, cool, normal, weak) == false) = false .
eq (playtennis(rain, mild, normal, weak) == false) = false .
eq (playtennis(sunny, mild, normal, strong) == false) = false .
eq (playtennis(overcast, mild, high, strong) == false) = false .
eq (playtennis(overcast, hot, normal, weak) == false) = false .

eq playtennis(sunny, hot, high, weak) = false .
eq playtennis(sunny, hot, high, strong) = false .
eq playtennis(rain, cool, normal, strong) = false .
eq playtennis(sunny, mild, high, weak) = false .
eq playtennis(rain, mild, high, strong) = false .

Running the system again yields the following solution:

fmod BEST-SOLUTION is
sorts Outlook Temperature Humidity Wind .
ops overcast rain sunny : -> Outlook .
ops hot mild cool : -> Temperature .
ops high normal : -> Humidity .
ops weak strong : -> Wind .
op playtennis : Outlook Temperature Humidity Wind -> Bool .
vars OutlookA OutlookB OutlookC : Outlook .
vars TemperatureA TemperatureB TemperatureC : Temperature .
vars HumidityA HumidityB HumidityC : Humidity .
vars WindA WindB WindC : Wind .
eq playtennis (sunny , TemperatureA , high , WindA) = false
eq playtennis (rain , TemperatureA , HumidityA , strong) = false

endfm

This solution describes the facts given just as well as the first solution, but this is

clearly better in the sense of being more concise (two equations instead of three).

56

Also, it is correct from an algebraic perspective in that the equations no longer

conflict with each other.

57

4.2.6 Train Direction

The “train direction” problem is another classic classification problem. The challenge

is to predict the direction that a train is going based on the characteristics of the cars

of the train. The problem is represented as follows:

58

fmod TRAIN-FACTS is

 sorts Shape Length Roof Object Direction Nat Wheels Load Car Train .

 ops rectangular doublerectangular ushaped bucketshaped hexagonal ellipsoidal : -> Shape .
 ops long short : -> Length .
 ops flat jagged peaked curved open : -> Roof .
 ops circle hexagon rectangle longrectangle triangle invertedtriangle square diamond null :
-> Object .
 ops east west : -> Direction .

 op 0 : -> Nat
 op s : Nat -> Nat .

 op makeWheels : Nat -> Wheels .
 op makeLoad : Object Nat -> Load .
 op makeCar : Shape Length Wheels Roof Load -> Car .

 op emptyTrain : -> Train .
 op addCar : Train Car -> Train .

 op direction : Train -> Direction .

 eq direction(addCar(addCar(addCar(addCar(emptyTrain,
 makeCar(rectangular, long, makeWheels(s(s(0))), open, makeLoad(square, s(s(s(0)))))),
 makeCar(rectangular, short, makeWheels(s(s(0))), peaked, makeLoad(triangle, s(0)))),
 makeCar(rectangular, long, makeWheels(s(s(s(0)))), open, makeLoad(hexagon, s(0)))),
 makeCar(rectangular, short, makeWheels(s(s(0))), open, makeLoad(circle, s(0))))
) = east .

 eq direction(addCar(addCar(addCar(emptyTrain,
 makeCar(ushaped, short, makeWheels(s(s(0))), open, makeLoad(triangle, s(0)))),
 makeCar(bucketshaped, short, makeWheels(s(s(0))), open, makeLoad(rectangle, s(0)))),
 makeCar(rectangular, short, makeWheels(s(s(0))), flat, makeLoad(circle, s(s(0)))))
) = east .

 eq direction(addCar(addCar(addCar(emptyTrain,
 makeCar(rectangular, short, makeWheels(s(s(0))), open, makeLoad(circle, s(0)))),
 makeCar(hexagonal, short, makeWheels(s(s(0))), flat, makeLoad(triangle, s(0)))),
 makeCar(rectangular, long, makeWheels(s(s(s(0)))), flat, makeLoad(invertedtriangle,
s(0))))
) = east .

 eq direction(addCar(addCar(addCar(addCar(emptyTrain,
 makeCar(bucketshaped, short, makeWheels(s(s(0))), open, makeLoad(triangle, s(0)))),
 makeCar(doublerectangular, short, makeWheels(s(s(0))), open, makeLoad(triangle,
s(0)))),
 makeCar(ellipsoidal, short, makeWheels(s(s(0))), curved, makeLoad(diamond, s(0)))),
 makeCar(rectangular, short, makeWheels(s(s(0))), open, makeLoad(rectangle, s(0))))
) = east .

 eq direction(addCar(addCar(addCar(emptyTrain,
 makeCar(doublerectangular, short, makeWheels(s(s(0))), open, makeLoad(triangle,
s(0)))),
 makeCar(rectangular, long, makeWheels(s(s(s(0)))), flat, makeLoad(longrectangle,
s(0)))),
 makeCar(rectangular, short, makeWheels(s(s(0))), flat, makeLoad(circle, s(0))))
) = east .

 eq direction(addCar(addCar(emptyTrain,
 makeCar(rectangular, long, makeWheels(s(s(0))), flat, makeLoad(circle, s(s(s(0)))))),
 makeCar(rectangular, short, makeWheels(s(s(s(0)))), open, makeLoad(triangle, s(0))))
) = west .

 eq direction(addCar(addCar(addCar(emptyTrain,
 makeCar(doublerectangular, short, makeWheels(s(s(0))), open, makeLoad(circle, s(0)))),
 makeCar(ushaped, short, makeWheels(s(s(0))), open, makeLoad(triangle, s(0)))),
 makeCar(rectangular, long, makeWheels(s(s(0))), jagged, makeLoad(null, 0)))
) = west .

 eq direction(addCar(addCar(emptyTrain,
 makeCar(rectangular, long, makeWheels(s(s(s(0)))), flat, makeLoad(longrectangle,
s(0)))),
 makeCar(ushaped, short, makeWheels(s(s(0))), open, makeLoad(circle, s(0))))
) = west .

 eq direction(addCar(addCar(addCar(addCar(emptyTrain,
 makeCar(bucketshaped, short, makeWheels(s(s(0))), open, makeLoad(circle, s(0)))),
 makeCar(rectangular, long, makeWheels(s(s(s(0)))), jagged, makeLoad(longrectangle,
s(0)))),
 makeCar(rectangular, short, makeWheels(s(s(0))), open, makeLoad(rectangle, s(0)))),
 makeCar(bucketshaped, short, makeWheels(s(s(0))), open, makeLoad(circle, s(0))))
) = west .

 eq direction(addCar(addCar(emptyTrain,
 makeCar(ushaped, short, makeWheels(s(s(0))), open, makeLoad(rectangle, s(0)))),
 makeCar(rectangular, long, makeWheels(s(s(0))), open, makeLoad(rectangle, s(s(0)))))
) = west .
endfm

59

The learning parameters for this problem are:

300 Total population
100 Maximum number of generations
15 Number of demes (sub-populations)
2 Migration rate

0.7 Probability of crossover
0.3 Probability of mutation
0.99 Convergence ratio
25 Convergence window (generations)

Over 50 runs, the system found a correct solution 40 times. 35 of these solutions

consisted of 4 equations, and 5 consisted of 3 equations. The average number of

generations to convergence is 62.04 with a standard deviation of 15.33. There were a

variety of solutions, representing several strategies for describing the facts.

Some solutions identified the instances of westbound trains. For brevity and

readability, we only show the equations of the solution theory.

eq direction (addCar (TrainB , makeCar (bucketshaped , LengthB , WheelsC ,
open , LoadC))) = west
eq direction (addCar (TrainA , makeCar (ShapeA , LengthA , WheelsB , jagged ,
LoadA))) = west
eq direction (addCar (addCar (emptyTrain , CarB) , CarC)) = west
eq direction (TrainA) = east

In plain English, a train is going west if:

 The train ends with an open, bucket-shaped car, or

 The train ends with a jagged-roofed car, or

 The train consists of two cars

 Otherwise, the train is heading east.

Some of the minimal solutions identified the instances of eastbound trains:

60

eq direction (addCar(TrainA , makeCar (ShapeA , LengthB , WheelsB , flat , LoadB))) = east
eq direction (addCar(addCar(addCar(TrainA,CarC),CarA),makeCar(rectangular,short,WheelsC,RoofA,LoadC)))
= east
eq direction (TrainB) = west

Translated, trains ending with a flat-roofed car, or trains at least three cars long and

ending with a short, rectangular car are east-bound. All other trains are heading west.

As with the second solution in the tennis example, we observe that the both solutions

here have as their last equation a “catch-all” equation. Again, this is due to the way

Maude handles the equations during deduction, and is not correct from an algebraic

perspective. Because of the pressure from the genetic algorithm for candidate

solutions to correctly deduce as many of the facts as possible, the candidate solutions

have taken advantage of this characteristic of Maude.

Certainly either Maude or the system needs to be modified to prevent these types of

algebraically invalid solutions. However prevention is only half of the solution. The

other half is to provide a way for the candidate solutions to represent these solutions

that are essentially correctly, but misrepresented. A possible way to deal with this

issue may be to reconsider how the problems are represented. Also, the system

currently only implements a subset of equational logic. This problem may be

overcome when candidate solutions are not constrained as such.

4.3 Conclusions and Future Work

The work of this thesis shows that it is possible to use genetic algorithms for concept

learning in equational logic. The implemented system is a significant step forward

from the previous prototype and successfully induced solutions to a wide variety of

non-trivial problems. There are some areas in which the system can be improved:

61

 In some cases, the system needs produces solutions that are correct in spirit,

but are represented in a way that is algebraically incorrect. Recall the

solutions from the tennis and train examples where the final equation of the

solution conflicted with the other equations.

 The system only implements a subset of equational logic. The system can be

extended to support conditional equations, which would allow for more

complex facts and concepts to be modeled. It may also aid in solving the

problem stated in the previous point.

 A feature of genetic algorithms is their inherent tolerance for noisy data.

Traditional techniques must explicitly detect and handle situations where they

may be noisy data. The system should be tested in its ability to induce correct

theories when there are incorrect facts.

 Conceptually, the system has potential to be applied to data mining. More

testing needs to be done to observe the system’s behavior when given large

datasets. In particular, we are interested in the effect on its speed and memory

usage.

More generally, a more detailed comparison must be made between the traditional

ILP methods (top-down, bottom-up) and genetic algorithms as search methods for

inductive logic programming. The obvious characteristics to compare are quality of

solutions, execution speed, and memory usage.

62

REFERENCES

[1] L. Hamel. Breeding Algebraic Structures--An Evolutionary Approach To

Inductive Equational Logic Programming, GECCO 2002: Proceedings of the Genetic

and Evolutionary Computation Conference, 2002, pp 748-755, Morgan Kaufmann

Publishers.

[2] P. A. Flach. The Logic of Learning: A Brief Introduction to Inductive Logic

Programming, Proceedings of the CompulogNet Area Meeting on Computational

Logic and Machine Learning, 1998.

[3] L. Hamel. Evolutionary Search in Inductive Equational Logic Programming,

Proceedings of the Congress on Evolutionary Computation, pp2426-2434, Canberra

Australia, IEEE, 2003, ISBN 0-7803-7805-9

[4] Maude website. http://maude.cs.uiuc.edu. September 2004.

[5] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,

5(3):239–266, 1990.

[6] S. Muggleton & C. Feng. Efficient induction of logic programs. Proc. First Conf.

on AlgorithmicLearning Theory, Ohmsha, Tokyo, 1990.

[7] S. Muggleton. Inverse entailment and Progol. New Generation Computing,

13:245–286, 1995.

[8] C. Ferri-Ramirez, J. Hernandez-Orallo, and M.J. Ramirez-Quintana. The FLIP

system homepage, 2000. http://www.dsic.upv.es/%7Eflip/flip/.

63

[9] C. Ferri-Ramirez, J. Hernandez-Orallo, and M.J. Ramirez-Quintana. FLIP User’s

Manual (v0.7), 2000.

[10] J. R. Quinlan and R.M. Cameron-Jones. FOIL: A midterm report. In P. Brazdil,

editor, Proceedings of the 6th European Conference on Machine Learning, volume

667 of Lecture Notes in Artificial Intelligence, pages 3-20. Springer-Verlag, 1993.

[11] G.D. Plotkin. A further note on inductive generalization. In Machine Intelligence,

volume 6, pages 101-124. Edinburgh University Press, 1971.

[12] G. Plotkin. Automatic methods of inductive inference. PhD thesis, University of

Edinburgh, 1971.

[13] Peter A. Flach. The use of functional and logic languages in machine learning. In:

Ninth International Workshop on Functional and Logic Programming (WFLP2000),

Maria Alpuente, editor, pages 225--237. Universidad Politecnica de Valencia,

September 2000.

[14] M. Hanus. The Integration of Functions into Logic Programming: From Theory

to Practice. Journal of Logic Programming, 19-20:583-628, 1994.

[15] H. A. Simon. "Why should machine learn?", in Machine Learning: An Artificial

Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Editors

1983, Springer-Verlag. Berlin. pp. 25-37.

64

[16] Darwin, Charles. The Origin of Species by Means of Natural Selection: or the

Preservation of Favored Races in the Struggle for Life. 6th edition, 1896. 2 vols. New

York: D. Appleton and Company.

[17] Matthew Wall, GAlib: A C++ Library of Genetic Algorithms Components,

version 2.4.6, 1996. http://lancet.mit.edu/ga/

[18] Maude Manual Version 2.1, March 2004. http://maude.cs.uiuc.edu/maude2-

manual/

[19] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez.

Pathway Logic: Symbolic analysis of biological signaling. In Proceedings of the

Pacific Symposium on Biocomputing, pages 400–412, January 2002.

[20] Peter Csaba Ölveczky. Specification and Analysis of Real-Time and Hybrid

Systems in Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000.

http://maude.csl.sri.com/papers/

[21] Luger, George F. Artificial Intelligence: Structures and Strategies for Complex

Problem Solving. 4th ed. Harlow, England: Addison-Wesley, 2002

[22] Holland, J.H. Adaptation in Natural and Artificial Systems. The University of

Michigan Press, 1975.

65

BIBLIOGRAPHY

Clavel, M., et. Al., Maude Manual, Version 2.1, March 2004.

http://maude.cs.uiuc.edu/maude2-manual/

Darwin, C., The Origin of Species by Means of Natural Selection: or the Preservation

of Favored Races in the Struggle for Life. 6th edition, 1896. 2 vols. New York: D.

Appleton and Company.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., and Sonmez, K..

Pathway Logic: Symbolic analysis of biological signaling. In Proceedings of the

Pacific Symposium on Biocomputing, pages 400–412, January 2002.

Ferri-Ramirez, C., Hernandez-Orallo, J., and Ramirez-Quintana, M.J.. The FLIP

system homepage, 2000. http://www.dsic.upv.es/%7Eflip/flip/.

Ferri-Ramirez, C., Hernandez-Orallo, J., and Ramirez-Quintana, M.J., FLIP User’s

Manual (v0.7), 2000.

Flach, P. A., The Logic of Learning: A Brief Introduction to Inductive Logic

Programming, Proceedings of the CompulogNet Area Meeting on Computational

Logic and Machine Learning, 1998.

Flach , P. A.,. The use of functional and logic languages in machine learning. In:

Ninth International Workshop on Functional and Logic Programming

(WFLP2000), Maria Alpuente, editor, pages 225--237. Universidad Politecnica de

Valencia, September 2000.

66

Hamel, L., Breeding Algebraic Structures--An Evolutionary Approach To Inductive

Equational Logic Programming, GECCO 2002: Proceedings of the Genetic and

Evolutionary Computation Conference, 2002, pp 748-755, Morgan Kaufmann

Publishers.

Hamel, L., Evolutionary Search in Inductive Equational Logic Programming,

Proceedings of the Congress on Evolutionary Computation, pp2426-2434,

Canberra Australia, IEEE, 2003, ISBN 0-7803-7805-9

Hanus, M. The Integration of Functions into Logic Programming: From Theory to

Practice. Journal of Logic Programming, 19-20:583-628, 1994.

Holland, J. H., Adaptation in Natural and Artificial Systems. The University of

Michigan Press, 1975.

Luger, G. F., Artificial Intelligence: Structures and Strategies for Complex Problem

Solving. 4th ed. Harlow, England: Addison-Wesley, 2002

Maude website. http://maude.cs.uiuc.edu. September 2004.

Muggleton, S., Efficient induction of logic programs. Proc. First Conf. on

AlgorithmicLearning Theory, Ohmsha, Tokyo, 1990.

Muggleton, S., Inverse entailment and Progol. New Generation Computing, 13:245–

286, 1995.

67

Ölveczky, P. C., Specification and Analysis of Real-Time and Hybrid Systems in

Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000.

http://maude.csl.sri.com/papers/

Plotkin, G. D., A further note on inductive generalization. In Machine Intelligence,

volume 6, pages 101-124. Edinburgh University Press, 1971.

Plotkin, G. D.. Automatic methods of inductive inference. PhD thesis, University of

Edinburgh, 1971.

Quinlan, J. R., Learning logical definitions from relations. Machine Learning,

5(3):239–266, 1990.

Quinlan, J. R., Cameron-Jones, R.M., FOIL: A midterm report. In P. Brazdil, editor,

Proceedings of the 6th European Conference on Machine Learning, volume 667

of Lecture Notes in Artificial Intelligence, pages 3-20. Springer-Verlag, 1993.

Simon, H. A., "Why should machine learn?", in Machine Learning: An Artificial

Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell,

Editors 1983, Springer-Verlag. Berlin. pp. 25-37.

Wall, M., GAlib: A C++ Library of Genetic Algorithms Components, version 2.4.6,

1996. http://lancet.mit.edu/ga/

