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ABSTRACT 

The Autoencoder (AE) is a kind of artificial neural network, which is widely used 

for dimensionality reduction and feature extraction in unsupervised learning tasks. 

Analogously, the Self-Organizing Map (SOM) is an unsupervised learning algorithm to 

represent the high-dimensional data by a 2D grid map, thus achieving dimensionality 

reduction. Some recent work has shown improvement in performance by combining the 

AEs with the SOMs. Knowing which variations of AEs work best and finding out 

whether the selection of AEs is data-depended or not is the purpose of this research. 

Five types of AEs are implemented in this research; three different data sets are 

used for training; map embedding accuracy and estimated topographic accuracy are 

used for measuring the model quality. Overall, this research shows that nearly all AEs 

at least improve the SOM performance, improving embedding accuracy and letting the 

training process become efficient. The Convolutional Autoencoder (ConvAE) shows an 

outstanding performance in image-related data set, the Denoising Autoencoder (DAE) 

works well with the real-word data with noise, and the Contractive Autoencoder (CAE) 

performs excellently in the synthetic data set. Therefore, we can see that the selection 

of AEs depends on the properties of data.  
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CHAPTER 1 

Introduction 

The Autoencoder (AE) is a kind of artificial neural network. It is an unsupervised 

learning algorithm that is mainly used for feature extraction and dimensionality 

reduction [1]. It consists of an encoder and a decoder, which intend to reconstruct the 

original input data from the hidden layer representation. The architecture of an AE is 

shown in Figure 1.  

The Self-Organizing Maps (SOMs) proposed by T. Kohonen [2] is another 

approach to reduce dimensionality, which shows the clustering results for high-

dimensional input data onto a 2D grid map. In recent research, combining the AEs 

with SOMs has shown some promise in improving the performance of regular SOMs 

[3]. A Deep Neural Maps (DNMs) [4] model proposed in 2018 achieved this 

combination and gave excellent performance in high-dimensional data visualization. 

However, there are many different kinds of AEs, and knowing which one works best 

is an open question. Performance comparison of different AEs could help one find 

more appropriate AEs for a data set, hence improving the performance of the 

underlying SOMs. 

In fields such as genomic data clustering [5] [6] and cluster analysis of massive 

astronomical data [7] [8], the SOM is a good approach since it does not only 

accomplish the clustering task but also provides an accessible visible clustering 

representation. However, because both genomic data and astronomical data are high-

dimensional, it takes the SOM a long time to train the data. The AE is an excellent 
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method to bring the data to a lower dimensionality while keeping the intrinsic 

structure of the data. Hence, the SOM in conjunction with AE could help save the 

training time. This project can help select an appropriate AE for a data set to reduce 

data dimensionality, thus reducing the computing time of SOM. 

 

Figure 1. The architecture of an autoencoder (the shape of flowcharts does not 

represent the dimension variation) 

In this research, I implemented five types of AEs which are basic Autoencoder 

(AE), Sparse Autoencoder (SAE), Contractive Autoencoder (CAE), Denoising 

Autoencoder (DAE), and Convolutional Autoencoder (ConvAE). I fed the SOM with 

the encoded data extracted from the five types of AEs and evaluated the performance 

in three different data sets. I selected a synthetic data set called ‘dim064’, a real-word 

data set named ‘Landsat Satellite’, and a subset of the ‘MNIST’ handwritten digits 

data set. Experiments on various data sets can help answer the question if the selection 

of the AEs in conjunction with SOMs is data-dependent or not. The performance 

evaluation methods of the SOM are based on the quality measures proposed by L. 

Hamel [9], which is based on map embedding accuracy and estimated topographic 

accuracy. 

The remaining chapters of this thesis are organized as follows: 
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Chapter 2 Literature Review: introduce the theory and relevant research of 

SOMs, variations of AEs, and Deep Neural Map based on various literature. 

Chapter 3 Methodology: explain the experiment design, dataset selection, 

evaluation methods, and model implementation details. 

Chapter 4 Results: show the experiment results, compare and evaluate the 

performance of each model. 

Chapter 5 Conclusion: summarize the results I obtained, propose for future 

work. 
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CHAPTER 2 

Literature Review 

2.1 Self-Organizing Map 

A kind of artificial neural network created by Teuvo Kohonen [2], the Self-

Organizing Map (SOM), is an unsupervised learning algorithm that is mainly used for 

the visualization of high-dimensional data. Usually, it produces a two-dimensional 

lattice of nodes (called a map) to represent the high-dimensional input data while 

preserving the topological relationships of the input [2], and therefore it is utilized in 

dimensionality reduction. The convergence of the SOM algorithm has been proved by 

Y. Cheng [10], the model will converge after reasonably long iterations [2]. 

The basic SOM algorithm can be summarized as follows [11]: 

1) Selective step: initialize each node’s weight vectors randomly, select a training 

data vector 𝐱𝑘 from the input space. 

2) Competitive step: find the best matching neuron based on the Euclidean 

distance between the data vector 𝐱𝑘 and the neurons: 

𝑐 = argmin𝑖(‖𝐦𝑖 − 𝐱𝑘‖) (1) 

where 𝑚𝑖 is a neuron indexed by 𝑖 and 𝑐 denotes the index of the best matching 

neuron 𝐦𝑐  on the map.  

3) Update step: update the winning neuron’s neighborhood using the following 

rule: 

𝐦𝑖 ←  𝐦𝒊 −  𝜂(𝐦𝑖 − 𝐱𝑘)ℎ(𝑐, 𝑖) (2) 
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where 𝜂(𝐦𝑖 − 𝐱𝑘) denotes the difference between the neuron and the training 

instance scaled by the learning rate 𝜂 (0 < 𝜂 < 1), ℎ(𝑐, 𝑖) denotes the following loss 

function: 

ℎ(𝑐, 𝑖) =  {
1  𝑖𝑓 𝑖 ∈ Γ(𝑐),
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (3) 

where Γ(𝑐) is the neighborhood of the best matching neuron 𝑚𝑐. 

Repeat from the selective step for 𝑁 iterations until the model converges. For a 

large high-dimensional data set, 𝑁 could be a large number, however, the basic SOM 

does not show a high performance after reasonably long iterations [11]. 

2.1.1 Vectorized SOM Training 

Vectorized SOM training (VSOM) proposed by L. Hamel [11] is an efficient 

implementation of stochastic training for SOMs, which replaces all iterative constructs 

with vector and matrix operations. It is a single threaded algorithm, providing 

substantial performance increases over the basic SOM algorithm (up to 60 times 

faster)[11]. Because R does not support multi-threading well, the VSOM is well suited 

as a replacement for iterative stochastic training of SOM in R [11]. The VSOM 

implementation is available in R based POPSOM package [12]. 

2.2 Autoencoder 

The origin of the autoencoder (AE) is not clear and the terminology may change 

over time. J. Schmudhuber [13] indicates that perhaps the first work to study potential 

benefits of unsupervised learning based pre-training was published by Dana H. Ballard 

[14] in 1987, which proposed unsupervised AE hierarchies. According to the 

information provided in [15], I summarize the AE as following.  
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An AE is a kind of artificial neural network that is mainly used for feature 

extraction and dimensionality reduction. It is composed of two parts, an encoder and a 

decoder, which aims to reconstruct the original input. The encoder maps the input into 

a hidden layer representation (or called code), and then the decoder reconstructs the 

input from the hidden layer representation. 

An autoencoder could be undercomplete or overcomplete. The one with code 

dimension less than the input dimension is called undercomplete, while the one with 

code dimension greater than the input dimension is called overcomplete. 

Regularization can prevent the overcomplete autoencoder from only copying the input 

to the output without learning anything useful [15], such as sparse autoencoder, 

denoising autoencoder, and contractive autoencoder. 

2.2.1 Sparse Autoencoder 

In 1997, Olshausen and Field [16] indicated that sparse coding with an 

overcomplete basis set leads to interesting interactions among the code elements 

because sparsification weeds out those basis functions not needed to describe a given 

image structure. Hence, sparse coding is a good candidate for the data set whose input 

data contain much noise [17].   

Sparse autoencoder (SAE) is a kind of overcomplete autoencoder that includes 

more hidden nodes than input, but only a small number of hidden nodes are activated 

at once [18]. The training criterion of an SAE involves a sparsity penalty Ω(𝒉) on the 

code layer 𝒉, in addition to the reconstruction error L, the objective function is as 

following [15]: 
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𝐿 (𝑥, 𝑔(𝑓(𝑥))) + Ω(𝒉) (4) 

where 𝑓(𝑥) denotes the encoder output, 𝑔(𝒉) denotes the decoder output, we have 

𝒉 = (ℎ1, ℎ2, … , ℎ𝑛) = 𝑓(𝑥). The sparsity penalty Ω(𝒉) can be formulated in different 

ways, and one approach is applying L1 regularization term on the activation and 

scaling by a tuning hyperparameter 𝜆 [15]: 

Ω(𝒉) =  𝜆 ∑|ℎ𝑖|

𝑖

 (5) 

 Recently, an autoencoder with linear activation function called K-Sparse 

Autoencoder [19] was proposed in 2013, in which only the k-highest activities are 

kept in hidden layers. It achieves high speed on the encoding stage and well-suits to 

large problem sizes[19]. 

2.2.2 Denoising Autoencoder 

Differently from SAE that adds a penalty to the loss function, the denoising 

autoencoder (DAE) achieves a representation by changing the reconstruction error 

term of the loss function [15]. The DAE takes corrupted input data and is trained to 

predict the original uncorrupted data as output [15], therefore the input and output for 

a DAE are no longer the same. Figure 2 shows the architecture of a DAE: 

 

Figure 2. The DAE architecture. Reproduced from ref [20] 
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the initial input 𝑥 is corrupted into 𝑥 by stochastic mapping  𝑥 ~𝑞𝒟(𝑥|𝑥), the encoder 

then maps it to a hidden representation ℎ =  𝑓𝜃(𝑥) from which we reconstruct the 𝑧 =

 𝑔𝜃′(ℎ), and the reconstruction error is measured by loss 𝐿(𝑥, 𝑧) [21]. In order to let 

reconstruction 𝑧 as close as possible to the clean input 𝑥, the parameters 𝜃 and 𝜃′ are 

trained to minimize the average reconstruction error over the training set [21]. Note 

that the corruption process 𝑞𝒟(𝑥|𝑥) could be any types, such as Gaussian noise, 

Masking noise, and Salt-and-pepper noise [21].  

2.2.3 Contractive Autoencoder 

The contractive autoencoder (CAE) aims to resist perturbations of the input and is 

encouraged to contract the input neighborhood to a smaller output neighborhood [15]. 

CAE adds a regularizer penalty ‖𝐽𝑓(𝑥)‖
𝐹

2
  (the Frobenius norm of the Jacobian matrix  

𝐽𝑓(𝑥) ) to the reconstruction cost function to encourage robustness of the 

representation 𝑓(𝑥) [22]: 

‖𝐽𝑓(𝑥)‖
𝐹

2
=  ∑ (

𝜕ℎ𝑗(𝑥)

𝜕𝑥𝑖
)

2

𝑖𝑗

 (6) 

where ℎ is the hidden representation, the penalty is the sum of squares of all partial 

derivatives of the extracted features ℎ(𝑥) with respect to the input 𝑥 [22]. Similar as 

SAE, the objective function of the CAE has the following form: 

L (𝑥, 𝑔(𝑓(𝑥))) + 𝜆‖𝐽𝑓(𝑥)‖
𝐹

2
 (7) 

By comparing CAEs with DAEs, we can see that CAEs encourage robustness of 

representation 𝑓(𝑥), but DAEs encourage robustness of reconstruction 𝑔(𝑓(𝑥)) [22]. 

In 2014, Alain and Bengio [23] showed that in the limit of small Gaussian input noise 
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DAEs make the reconstruction function resistant to finite-sized perturbations of the 

input, but CAEs make the reconstruction function resistant to infinitesimal 

perturbations of the input [15]. 

2.2.4 Convolutional Autoencoder 

Different from basic autoencoders, a convolutional autoencoder (ConvAE) is built 

with convolutional layers rather than fully connected layers, hence it is efficient for 

image data sets. To exploit the spatial structure of images, the convolutional 

autoencoder is defined as follow [24]: 

𝑓𝑊(𝑥) =  𝜎(𝑥 ∗ 𝑊) = ℎ 

𝑔𝑈(ℎ) =  𝜎(ℎ ∗ 𝑈) (8) 

where 𝑓𝑊(𝑥) denotes the encoder output, 𝑔𝑈(ℎ) denotes the decoder output,  𝑥 and the 

embedded code ℎ are matrices or tensors, 𝜎 is the activation function, and ∗ is 

convolution operator. The object is to minimize the mean squared errors between the 

input and output over all samples [24]: 

min
𝑊,𝑈

1

𝑛
∑‖𝑔𝑈(𝑓𝑊(𝑥𝑖)) − 𝑥𝑖‖2

2
𝑛

𝑖=1

 (9) 

In recent research, a Fully Convolutional Autoencoder (FCAE) [25] was proposed 

in 2017 which can be trained in an end-to-end manner. It is composed of convolution 

(de-convolution) layers and pooling (un-pooling) layers, plus adding batch 

normalization layers to each of the convolution-type layers. Different from the 

traditional ConvAEs, the FCAE could avoid the tedious and time-consuming layer-

wise pretraining stage [25]. 
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2.3 Deep Neural Map 

A new Deep Neural Maps (DNMs) model designed by Mehran Pesteie, Purang 

Abolmaesumi and Robert R. Rohling [4] in 2018 gives excellent performance in high-

dimensional data visualization, which uses SOM models in conjunction with deep 

convolutional AEs shown in Figure 3. The result shows that the DNM has separated 

each class of input data and mapped it to a particular position on a lattice successfully 

[4]. D. Rajashekar [3] proposed an Autoencoder based Self Organizing Map 

(AESOM) framework, which uses an AE that contains two hidden layers. It shows 

improvements in data representation and improves detection rates from encoding and 

reduces the feature space of the input [3]. 

     

Figure 3. The DNM architecture. Reproduced from ref [4] 
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CHAPTER 3 

Methodology 

3.1 Experiment Design 

In this research, the experiment is mainly divided into two parts: 1) implement the 

AEs and SOMs (build five AEs with Keras[26] in TensorFlow[27] library and 

implement SOMs with the R-based POPSOM library[12]), 2) evaluate the 

performance. In this chapter, I will introduce the evaluation methods and 

implementation process in detail. 

3.1.1 Model Structure 

Based on the DNM model, the overall model structure is shown in Figure 4. First, 

I input the original data to each of the five types of AEs (basic AE, SAE, DAE, CAE, 

ConvAE), then extract the encoded data (embedding) and input it to SOMs. I also 

input the original data to SOMs as a contrast experiment. Moreover, I measure the 

reconstruction error between the input and the reconstructed input and evaluate the 

quality of SOMs. 

 

 

 

 

 

 

 

Input Encoder Embedding Decoder 
Reconstructed 

Input 

SOM 

AutoEncoder 

(AE, SAE, DAE, CAE, Convolutional AE) 

Figure 4. A Variant of DNM model architecture 
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3.1.2 Data Set Selection 

In this project, the task of AEs is reducing dimensionality and extracting features, 

and the task of SOMs is clustering the input data. For this purpose, the ideal data set 

for this project is the one with high dimensionality and precise classification. To 

compare and to evaluate the performance of AEs in conjunction with SOMs in various 

circumstances, three different types (synthetic, real-world, image) of data sets were 

selected.  

1) The ‘dim064’  [28] [29] is a 64-dimensional synthetic data set with 1024 

observations that well separated in 16 Gaussian clusters (Figure 5). I split the data set 

with a ratio of 0.4, namely 60% data for training (614 instances) and 40% data for 

testing (410 instances).  

 

Figure 5. The head five rows of ‘dim064’ data set 

2) The ‘Landsat Satellite’ from UCI machine learning repository [30] is a real-

world data set with 6435 instances and 36 attributes that categorized in 6 classes 

(Figure 6). The data set consists of the multi-spectral values of pixels in 3 by 3 

neighborhoods in a satellite image, and the classification associated with the central 
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pixel in each neighborhood. The original image cannot be reconstructed because the 

data is given in random order and the certain lines of data have been removed. The 36 

attributes (4 spectral bands multiply by 9 pixels in neighborhood) are numerical in the 

range 0 to 255, the 6 classes of pixels are coded as numbers (1: red soil, 2: cotton crop, 

3: grey soil, 4: damp grey soil, 5: soil with vegetation stubble, and 7: very damp grey 

soil). The training set contains 4435 instances, and the test set contains 2000 instances. 

 

Figure 6. The head five rows of ‘Landsat Satellite’ data set 

3) The ‘MNIST’ database [31]is a large database of handwritten digits that is 

widely used for machine learning. It consists of 70,000 (60,000 for training, 10,000 for 

testing) grey-scale images of handwritten digits (‘0’ – ‘9’) whose size is 28 by 28 

pixels. I selected 10,000 examples from the training set and 2,000 examples from the 

test set to make a subset of MNIST database that as my third data set.  

I converted the original image into 28 by 28 2D-array and scaled the value of 

each cell between 0 and 1, and each cell represents the single pixel of the image. 

Before feeding to the AEs (except ConvAEs), the 2D array was flattened into a 1D 

array, hence the dimension of the data set is 784 (28 by 28). 



 

14 

 

3.2 Evaluation Methods 

3.2.1 Performance Evaluation of AEs 

The evaluation process of AEs is based on the loss error (reconstruction error). I 

plot the loss functions of training data and validation data for each type of AEs and 

compare the mean and minimum value of them. For image data sets, I also plot the 

original input images and the decoded images to show visible reconstruction results. 

Additionally, the evaluation results of SOMs also indicate the quality of AEs that 

whether the encoders extract useful features. 

3.2.2 Performance Evaluation of SOMs 

Within this research, the evaluation methods of SOMs are based on the SOM 

quality measures presented by L. Hamel [9], which is an efficient statistical approach 

measures both the embedding and the topological quality of a SOM. 

1) Embedding Accuracy 

The motivation for the map embedding accuracy is that [9], ‘A SOM is 

completely embedded if its neurons appear to be drawn from the same distribution as 

the training instances.’ That features are embedded means that their mean and variance 

are adequately modeled by the neurons in the SOM. The embedding accuracy (𝑒𝑎) for 

𝑑 features are defined as following: 

𝑒𝑎 =  
1

𝑑
∑ 𝜌𝑖

𝑑

𝑖=1

, (10) 

where 

𝜌𝑖 = {
1   if feature 𝑖 is embedded,
0   otherwise.  

 (11) 
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A map is fully embedded if the embedding accuracy equals 1. 

2) Estimated Topographic Accuracy 

The topographic error [32] is almost the simplest measure of the topological 

quality of a map which is defined as: 

𝑡𝑒 =  
1

𝑛
∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑛

𝑖=1

  (12) 

where 

𝑒𝑟𝑟(𝑥𝑖) = {
1  if 𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖)are not neighbors,
0  otherwise.

 

𝑛 is the number of training instances, 𝑥𝑖 denotes the 𝑖th training vector on the map, 

𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖) are the best matching unit and the second-best matching unit 

for 𝑥𝑖. The estimated topographic accuracy [9] can be defined as, 

𝑡𝑎′ = 1 −  
1

𝑠
 ∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑠

𝑖=1

  (13) 

where 𝑠 is the size of a sample 𝑆 of the training data. L. Hamel indicated that we can 

get accurate values for 𝑡𝑎′ with very small samples so that the algorithm is more 

efficient than conventional topographic accuracy (1 - 𝑡𝑒). We say a map is fully 

organized if the topographic accuracy close to 1. 

3) Convergence Accuracy 

Convergence accuracy is an SOM quality assessment which is implemented in the 

R-based POPSOM package [12] [33]. It is defined as, 

𝑐𝑎 =  
1

2
 𝑒𝑎 + 

1

2
 𝑡𝑎′ (14) 
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The convergence accuracy is a linear combination of the embedding accuracy and 

the estimated topographic accuracy, which indicates the model performance from both 

the training data set and the map neurons. It is the primary approach to evaluate and 

compare the quality of SOMs in this research. 

3.3 Implementation 

The five types of AEs were implemented in Python with the TensorFlow Keras 

framework. The SOMs were built in R with the POPSOM package. 

3.3.1 Basic AE 

I implemented a single fully-connected layer as encoder and as decoder. The 

parameters of the basic AE for each data set are shown in Table 1, Table 2, and Table 

3. The architecture of the basic AE for each data set are shown in Figure 7, Figure 8, 

and Figure 9. 

1) dim064 data set 

Table 1. Parameters of basic AE in ‘dim064’ 

Encoding Dimensionality 12 

Encoder Activation  relu 

Decoder Activation  sigmoid 

Optimizer adam 

Loss mean squared error 
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Figure 7. Architecture of basic AE in ‘dim064’ 

2) Landsat Satellite data set 

Table 2. Parameters of basic AE in ‘Landsat Satellite’ 

Encoding Dimensionality 8 

Encoder Activation  relu 

Decoder Activation  sigmoid 

Optimizer adam 

Loss mean squared error 

 

 

 

Figure 8. Architecture of basic AE in ‘Landsat Satellite’ 
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3) Subset of MNIST data set 

Table 3. Parameters of basic AE in ‘MNIST’ 

Encoding Dimensionality 64 

Encoder Activation  relu 

Decoder Activation  sigmoid 

Optimizer adadelta 

Loss binary cross entropy 

 

 

 

Figure 9. Architecture of basic AE in ‘MNIST’ 

3.3.2 SAE 

The SAE adds an L1 regularizer to the encoded layer base on the basic AE. Both 

the parameters (Table 1, Table 2, Table 3) and architecture (Figure 7, Figure 8, Figure 

9) of SAE for each data set are the same as the basic AE.  

3.3.3 CAE 

The CAE uses the same parameters (Table 1, Table 2, Table 3) and architecture 

(Figure 7, Figure 8, Figure 9) as the basic AE as well, except that a different loss 

function is applied. According to the objective function (Equation 7) of the CAE, I 

implemented a distinct loss function by expanding the Equation 6 as, 
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‖𝐽𝑓(𝑥)‖
𝐹

2
=  ∑ (

𝜕ℎ𝑗(𝑥)

𝜕𝑥𝑖
)

2

𝑖𝑗

 

= ∑[𝑓𝑗(1 − 𝑓𝑗)]
2

𝑗

 ∑(𝑊𝑗𝑖
𝑇)

2

𝑖

(15) 

then translated the equation to Python code and got a contractive loss function [34].  

3.3.4 DAE 

I set the noise factor to be 0.5 to create noisy input. For ‘dim064’ and ‘Landsat 

Satellite’ data sets, both the encoded layer and the decoded layer are still single fully-

connected layers, and the parameters are the same as before. For the subset of MNIST 

data set, I implemented a Denoising Convolutional Autoencoder (DCAE), the 

architecture is shown in Figure 10. Before feeding to the network, I reshaped each 

input into size 28 × 28 × 1. 

The encoder consists of three 2D convolutional layers followed by down-

sampling (max-pooling) layers (pooling size 2 × 2) and a flatten layer (encoded 

layer). The first two convolutional layers have 32 filters and the third one has 4 filters 

of size 3 × 3. The output of the encoded layer is 64 dimensional. 

The decoder consists of four 2D convolutional layers followed by three up-

sampling layers (size 2 × 2), the last convolutional layer is the decoded layer. The first 

convolutional layer has 8 filters, the following two convolutional layers have 32 

filters, and the decoded layer has 1 filter of size 3 × 3.  
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Figure 10. Architecture of DCAE in ‘MNIST’ 

3.3.4 ConvAE 

For the ‘dim064’ and the ‘Landsat Satellite’ data sets, I utilized 1D convolutional 

layers, 1D max-pooling layers, and 1D up-sampling layers to build the models. The 

architectures of convolutional AEs for these two data sets are shown in Figure 11 and 

Figure 12. Both architectures consist of the same types of neural network layers and 

are adapted to the input shapes of the data, which causes some differences in 

intermediate layers between the two.  
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Figure 11. Architecture of ConvAE in ‘dim064’ 
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Figure 12. Architecture of ConvAE in ‘Landsat Satellite’ 

For the subset of the MNIST data set, the architecture of ConvAE is the same as 

DCAE. Differently, input the original data to the network rather than the noisy data. 

3.3.5 SOM 

Before feeding the SOM with the encoded data extracted from five AEs, I drop 

the columns which are consisted of all zeros, because they contain no information for 

the clustering task. For the ‘dim064’ data set, I implemented a 20 × 15 map that has 

300 neurons in total. For the ‘Landsat Satellite’ data set, I implemented a 40 × 35 

map that has 1,400 neurons in total. For the subset of the ‘MNIST’ data set, I 

implemented a 40 × 40 map that has 1,600 neurons in total.  
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CHAPTER 4 

Results 

In this chapter, I will use the abbreviations shown in Table 4 to represent each 

model. 

Table 4. Model abbreviation 

Model Abbreviation Input data of SOM encoded by 

AE_SOM Basic AE 

SAE_SOM SAE 

CAE_SOM CAE 

DAE_SOM DAE 

DCAE_SOM DCAE 

ConvAE_SOM ConvAE 

 

4.1 ‘dim064’ Experiment Results 

4.1.1 Loss of AEs 

After 200 epochs, the training loss and validation loss of each model are shown in 

Figure 13. All the models were trained well. For the DAE and ConvAE, the 

generalization of the models could not be further improved due to that the validation 

loss became saturated after approximately 150 epochs. 
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Figure 13. Training loss and validation loss of five models in ‘dim064’ 

4.1.2 SOM Models Results 

I trained the SOM models from 10 to 400,000 (10, 100, 1000, 10,000, 50,000, 

100,000, 200,000, 400,000) iterations for 5 times, plotted the convergence accuracy, 

embedding accuracy, and estimated topographic accuracy of each model, shown in 

Figure 14 and Figure 15. I scaled the x axis (iterations) as log base 2. 
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Figure 14. SOM, AE_SOM, SAE_SOM model quality measures in ‘dim064’ 



 

26 

 

 

Figure 15. CAE_SOM, DAE_SOM, ConvAE_SOM model quality measures in 

‘dim064’ 

For the original data, the convergence accuracy varies around 0.88 after 10,000 

iterations, both the embedding accuracy and the estimated topographic accuracy have 
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oscillations after 10,000 iterations. The DAE_SOM shows very similar results as the 

SOM fed by original data. 

For the AE_SOM, the convergence accuracy varies around 0.75, the embedding 

accuracy become oscillatory after 50,000 iterations, and the estimated topographic 

accuracy shows a downtrend, which indicates that the performance could not be better 

with more extended training.  The embedding accuracy of SAE_SOM shows a similar 

trend as AE_SOM but with higher values, which up to 1, and the highest value of 

convergence accuracy is very close to 1. An appropriate iteration could help get better 

results for this model. 

The CAE_SOM shows good results after 50,000 iterations. The embedding 

accuracy reaches the maximum 1, which shows that the neurons on the maps are 

perfectly drawn from the underlying distribution of training instances. The 

ConvAE_SOM also shows good embedding accuracy after 100,000 iterations, but the 

estimated topographic accuracy varies around 0.88 after 100 iterations and could not 

be further improved. 

By comparison, CAE_SOM is the best, followed by ConvAE_SOM. This 

indicates that data have a property that they are insensitive to small perturbation so 

that CAE best captures their intrinsic structure. Except for the basic AE_SOM, using 

encoded data yields better results than using original data. Moreover, the encoding 

brings data to a lower dimensional representation, therefore it makes computing SOM 

more efficient.  

Overall, all these models perform quite well in this dataset. The reason could be 

that synthetic datasets have a very good underlying clustering structure. Each feature 
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in the data is equally important. The number of each category is averagely distributed 

among the data set. Little noise is persistent in the data. Thus, it is much easier for 

SOM to learn the actual distribution of training data even without encoding. 

4.1.3 Clustering Result Representation 

The starburst representation of the model (Figure 16) gives us a visible clustering 

result with class labels. The clusters are identified by light color (yellow) and cluster 

boundaries are identified by darker colors (red) [11]. The starburst lines help identify 

the center of each cluster, that all nodes are connected to their centroid node [33]. I 

plot the heat maps to confirm that those quantities (embedding accuracy, estimated 

topographic accuracy, convergence accuracy) when meeting certain criteria provide a 

good measure that SOM learns the underlying structure. 

Since the CAE_SOM model achieved the best result, I implemented a 20 × 15 

CAE_SOM compared with the SOM with unencoded data. I trained the models with 

200,000 iterations and output the starburst representations of clusters, shown in Figure 

16 and Figure 17.  

  Visibly, both maps separate the data into 14 clusters while two classes (with 

label 6 and label 7) are mis-clustered, and the locations of clusters distribute similarly 

on the maps. Overall, the clustering structure is almost the same, and CAE_SOM 

shows an excellent clustering result. Therefore, the encoded data has a similar 

structure to the original data, and both structures are successfully discovered by the 

SOM. It also suggests that we can trust the encoded data as the input of the SOM. 
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Figure 16. Starburst representation of CAE_SOM in ‘dim064’ 

 

Figure 17. Starburst representation of SOM with unencoded data in ‘dim064’ 
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4.2 ‘Landsat Satellite’ Experiment Results 

4.2.1 Loss of AEs 

As seen from Figure 18, all the models were trained well after 200 epochs. For 

the DAE, the generalization of the models could not be further improved due to that 

the validation loss became saturated after approximately 175 epochs. 

 

Figure 18. Training loss and validation loss of five models in ‘Landsat Satellite’ 

4.2.2 SOM Models Results 

I trained the SOM models from 10 to 400,000 (10, 100, 1000, 10,000, 50,000, 

100,000, 200,000, 300,000, 400,000) iterations for 5 times, plotted the convergence 
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accuracy, embedding accuracy, and estimated topographic accuracy of each model, 

shown in Figure 19 and Figure 20. I scaled the x axis as log base 2. 

 

Figure 19. SOM, AE_SOM, SAE_SOM model quality measures in ‘Landsat Satellite’ 
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Figure 20. CAE_SOM, DAE_SOM, ConvAE_SOM model quality measures in 

‘Landsat Satellite’ 

All six models show similar results of estimate topographic accuracy, which 

varies around 0.75 and could not be further improved after roughly 1000 epochs. 

Moreover, they all show a consistently increasing trend in embedding accuracy with 
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increasing training iterations. In rare cases, the model fed with encoded data could get 

a peak value of embedding accuracy at 100,000 iterations except for Conv_SOM. 

Overall, the embedding accuracy of the AE_SOM model is below 0.5, which is 

the worst here. SAE_SOM and CAE_SOM only have a slightly better performance 

against AE_SOM. On the other hand, Conv_SOM and DAE_SOM have a more 

noticeable performance improvement after sufficient iterations. The reasons that 

Conv_SOM and DAE_SOM have a better performance could be due to that spectral 

data are extracted from images which contain observational noises. ConvAE is most 

suited to retrieve information in images, while DAE helps improve model robustness 

against noise. 

4.2.3 Clustering Result Representation 

 

Figure 21. Starburst representation of ConvAE_SOM in ‘Landsat Satellite’ 
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Figure 22. Starburst representation of SOM with unencoded data in ‘Landsat Satellite’ 

I implemented a 40 × 35 ConvAE_SOM compared with the SOM with 

unencoded data. I trained the models with 400,000 iterations. From the starburst 

representations shown in Figure 21 and Figure 22, the number of the identified 

clusters is almost the same and the visible starburst lines span in a similar way, which 

shows that the clustering structure is nearly the same. Therefore, the encoded data has 

a similar structure to the original data, and both structures are successfully discovered 

by the SOM. It also suggests that we can trust the encoded data as the input of the 

SOM. 
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4.3 ‘MNIST’ Experiment Results 

4.3.1 Loss of AEs 

I plotted the loss and visible reconstruction results of each model, which are 

shown in Figure 23 – Figure 27. 

 

 
Figure 23. Loss of AE and reconstruction result 

 
Figure 24. Loss of SAE and reconstruction result 
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Figure 25. Loss of CAE and reconstruction result 

 
Figure 26. Loss of DCAE and reconstruction result 
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Figure 27. Loss of ConvAE and reconstruction result 

The training loss and validation loss of each model show that all the models were 

trained well after 100 epochs. All the AEs reconstruct the original input. Judging from 

the visible results, DCAE and ConvAE did a better job. 

4.3.2 SOM Models Results 

Similarly, I plot the convergence accuracy, embedding accuracy, and estimated 

topographic accuracy of each model (Figure 28, Figure 29). I scaled the x-axis as log 

base 2. 
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Figure 28. SOM, AE_SOM, SAE_SOM model quality measures in ‘MNIST’ 
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Figure 29. CAE_SOM, DCAE_SOM, ConvAE_SOM model quality measures in 

‘MNIST’ 

To achieve better embedding accuracy, I chose a larger map size, which contains 

1600 neurons. As a result, the topographic accuracy in all six models all exhibits a flat 

trend starting from the small number of iterations. The best clustering results are 

achieved by using ConvAE. It is not surprising that such AE performs best since 
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convolutional operators capture the local features in images, which are the most 

important and informative ones for identification.  

Generally speaking, to cluster MINST dataset by SOM is challenging as the data 

have high dimensionality and consist of plenty of zeros or near-zeros. This causes 

most of the features, namely the pixel values, which are not significant. While most 

AEs (except ConvAE) do not show significant improvement in clustering, they do 

provide a low dimensional representation containing intrinsic features and help to 

reduce training time in SOM. 

4.3.3 Clustering Result Representation 

 

Figure 30. Starburst representation of ConvAE_SOM in ‘MNIST’ 
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Figure 31. Starburst representation of SOM with unencoded data in ‘MNIST’ 

 

I implemented a 30 × 30 ConvAE_SOM trained with 100,000 iterations. In 

Figure 30, although the clustering results are not as good as the other two data sets, the 

model still achieved a reasonable cluster of some easily distinguishable digits. 

Compared with the starburst representation shown in Figure 31, the ConvAE_SOM 

shows a close clustering structure as the SOM with unencoded data because the 

number of the identified clusters are almost the same and the visible starburst lines 

span similarly. It indicates that the encoded data has a similar structure to the original 

data, and both structures are successfully discovered by the SOM. It also suggests that 

we can trust the encoded data as the input of the SOM.
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CHAPTER 5 

Conclusion 

The objective of this research is to find answers for the following two questions, 

1) for one data set, what kind of AE performs best in improving the performance of 

the underlying SOM, 2) whether the selection of AEs in conjunction with SOMs is 

data-dependent or not. According to the experiment results, we can see that nearly all 

AEs at least improve the performance of SOM. They also bring original data to a 

lower dimension representation, which let the training process become efficient. The 

CAE performed excellently in the synthetic data set. The ConvAE shows an 

outstanding performance in image-related data set. The DAE works well with the real-

word data with noise. The SAE did not show good results in the three chosen data sets, 

which may be due to that data do not have the sparse property. Hence, the selection of 

the AEs depends on the property of data, based on the features of a data set to select an 

appropriate AE could help the SOM obtain a better clustering result. 

Interestingly, many embedding accuracy figures have a peak value after a certain 

number of iterations. This could arise from that the neurons start to learn a finer-scale 

cluster; therefore, the embedding accuracy drops down a little. I suspect it will rise 

again until adequately learning an even finer scale in the future. To the end, each 

neuron is a cluster itself and the embedding accuracy approaches 1. 
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5.1 Future Work 

Firstly, it is worth studying when the peak value of embedding accuracy comes 

out, which may help train a model with appropriate training iterations. For now, we 

could see that the embedding accuracy oscillates after the peak value, but I do not 

know the definite trend in the future. Training the model with much more iterations in 

the featured study will help discover the embedding accuracy variate trend and find 

the relationships between the peak value and training iterations. 

Secondly, it is suggested to compare the SOM performance by using different 

dimensionality encoded data as input. In this research, I only encoded the original data 

into one type of dimensionality. Test different encoding dimensionality to see whether 

the encoding degree will affect the SOM clustering result could yield more interesting 

insight. 

Additionally, there are still some other variations of AEs such as variational 

autoencoder and stacked autoencoder, which could be emphasized in the future study.
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