
Inductive machine learning [1, 2] suggests an alternative
approach to the algebraic specification of software systems
[3]: rather than using test cases to validate an existing
specification we use the test cases to induce a specification.
In the algebraic setting test cases are ground equations that
represent specific aspects of the desired system behavior or,
in the case of negative test cases, represent specific behavior
that is to be excluded from the system. Acceptable
specifications must satisfy the positive test cases and must
not satisfy the negative test cases.
 It is interesting to observe that in this alternative
approach the burden of constructing a specification is placed
on the machine. This leaves the system designer free to
concentrate on the quality of the test cases for the desired
system behavior. In addition, the induction process can be
viewed as a coherence test for the test cases. For example, a
failure of the system to induce a specification that satisfies
all the (positive) test cases can be due to the fact that some
of the test cases are contradictory. Inductive logic
programming [4] and in particular inductive equational logic
programming [5, 6] seem well suited for this task. In this
framework the learning system is asked to search for an
equational theory (hypothesis) H such that,

!

H "B =E
+
, (1) and

!

H "B#E
$
, (2)

where B is a possibly empty equational theory representing
background knowledge, E+ is the set of ground equations
representing the positive test cases, and E- is the set of
ground equations representing the negative test cases.
Posterior sufficiency (1) states that the theory H ∪ B has to
satisfy all the positive test cases and posterior satisfiability
(2) states that none of the negative test cases can be a logical
consequence of the induced theory together with the
background. In addition, some other technical requirements
such as prior satisfiability and prior necessity need to hold
in order for this induction framework to make sense [4].
 The following is a simple example that shows the
induction of a stack specification from a set of positive test
cases for the stack operations ‘top’, ‘push’, and ‘pop’ [6].
They are given in the syntax of the OBJ3 specification
language [3].
obj STACK-FACTS is sorts Stack Element .
 ops a b :-> Element . op v: -> Stack .
 op top : Stack -> Element .
 op pop : Stack -> Stack .
 op push : Stack Element -> Stack .
 eq top(push(v,a)) = a .
 eq top(push(push(v,a),b)) = b .
 eq top(push(push(v,b),a)) = a .
 eq pop(push(v,a))= v .
 eq pop(push(push(v,a),b)) = push(v,a) .
 eq pop(push(push(v,b),a)) = push(v,b) .
endo

The set of negative examples and the background
knowledge is empty. A hypothesis specification that
satisfies the positive facts is,

obj STACK is sorts Stack Element .
 op top : Stack -> Element .
 op pop : Stack -> Stack .
 op push : Stack Element -> Stack .
 var S : Stack . var E : Element .
 eq top(push(S,E)) = E .
 eq pop(push(S,E)) = S .
endo

It is noteworthy that our implementation of an inductive
equational logic system within the Maude specification
system [5, 7] induces this specification unassisted. In
addition, we have used our system to induce the algebraic
specifications of a number of challenging problems [5, 6].
Most interestingly, the system was able to induce a
successful description of the trains in Michalski’s train
problem [8].
 The system, as implemented at this point, only
supports many sorted equational logic. We have plans to
investigate the implementation of order sorted as well as
hidden sorted equational logic. Of these extensions the
hidden sorted equational logic is particularly interesting
because induced theories only need to satisfy the test cases
over the visible sorts or behaviorally. Therefore, the
induction algorithm has much more flexibility in the
construction of suitable hypotheses.
 A number of systems have been designed that aim
to induce equational theories from a set of (ground)
equations [9-11]. However, our approach seems to be
unique in that we firmly base it on inductive learning
principles.

References
 [1] S. Muggleton, Inductive acquisition of expert knowledge, Glasgow,
Scotland; Reading, Mass.: Turing Institute Press ;Wokingham, England;
Addison-Wesley, 1990.
[2] T.M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.
[3] J. Goguen and G. Malcolm, Software engineering with OBJ : algebraic
specification in action, , vol. 2, Boston: Kluwer Academic, 2000.
[4] S. Muggleton and L.D. Raedt, "Inductive Logic Programming: Theory
and Methods," Journal of Logic Programming, 19,20:629-679, 1994.
[5] C. Shen, "Evolutionary Concept Learning in Equational Logic,"
Masters Thesis, University of Rhode Island, 2006.
[6] L. Hamel, "Evolutionary Search in Inductive Equational Logic
Programming," in Proceedings of the Congress on Evolutionary
Computation (CEC2003), 2003, pp. 2426-2434.
[7] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer
and J.F. Quesada, "Maude: Specification and Programming in Rewriting
Logic," Theoretical Computer Science, 2002.
[8] J. Larson and R.S. Michalski, "Inductive inference of VL decision
rules," SIGART Bull., pp. 38-44, 1977.
[9] J. Darlington and R. Burstall, "A system which automatically improves
programs," Acta Informatica, vol. 6, pp. 41-60, 1976.
[10] J. Hernandez-Orallo and M.J. Ramirez-Quintana, "A Strong Complete
Schema for Inductive Functional Logic Programming," In Proc. of the
Ninth International Workshop on Inductive Logic Programming, ILP'99,
volume 1634 of LNAI, pages 116-127, 1999.
[11] N. Dershowitz and U.S. Reddy, "Deductive and Inductive Synthesis of
Equational Programs," J. Symb. Comput. 15(5/6): 467-494 (1993).

Inductive Acquisition of Algebraic Specifications
Extended Abstract

Lutz Hamel and Chi Shen
Department of Computer Science and Statistics

University of Rhode Island
Kingston, Rhode Island, USA

