
Inductive machine learning [1, 2] suggests an alternative 
approach to the algebraic specification of software systems 
[3]: rather than using test cases to validate an existing 
specification we use the test cases to induce a specification.  
In the algebraic setting test cases are ground equations that 
represent specific aspects of the desired system behavior or, 
in the case of negative test cases, represent specific behavior 
that is to be excluded from the system.  Acceptable 
specifications must satisfy the positive test cases and must 
not satisfy the negative test cases.   
 It is interesting to observe that in this alternative 
approach the burden of constructing a specification is placed 
on the machine. This leaves the system designer free to 
concentrate on the quality of the test cases for the desired 
system behavior.  In addition, the induction process can be 
viewed as a coherence test for the test cases.  For example, a 
failure of the system to induce a specification that satisfies 
all the (positive) test cases can be due to the fact that some 
of the test cases are contradictory.  Inductive logic 
programming [4] and in particular inductive equational logic 
programming [5, 6] seem well suited for this task.  In this 
framework the learning system is asked to search for an 
equational theory (hypothesis) H such that, 
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where B is a possibly empty equational theory representing 
background knowledge, E+ is the set of ground equations 
representing the positive test cases, and E- is the set of 
ground equations representing the negative test cases.  
Posterior sufficiency (1) states that the theory H ∪ B has to 
satisfy all the positive test cases and posterior satisfiability 
(2) states that none of the negative test cases can be a logical 
consequence of the induced theory together with the 
background.  In addition, some other technical requirements 
such as prior satisfiability and prior necessity need to hold 
in order for this induction framework to make sense [4]. 
 The following is a simple example that shows the 
induction of a stack specification from a set of positive test 
cases for the stack operations ‘top’, ‘push’, and ‘pop’ [6].  
They are given in the syntax of the OBJ3 specification 
language [3]. 
obj STACK-FACTS is sorts Stack Element . 
  ops a b :-> Element . op v: -> Stack . 
  op top : Stack -> Element .  
  op pop : Stack -> Stack .  
  op push : Stack Element -> Stack .  
  eq top(push(v,a)) = a .  
  eq top(push(push(v,a),b)) = b .  
  eq top(push(push(v,b),a)) = a .  
  eq pop(push(v,a))= v .  
  eq pop(push(push(v,a),b)) = push(v,a) .  
  eq pop(push(push(v,b),a)) = push(v,b) . 
endo  

The set of negative examples and the background 
knowledge is empty.  A hypothesis specification that 
satisfies the positive facts is, 

obj STACK is sorts Stack Element .  
  op top : Stack -> Element .  
  op pop : Stack -> Stack .  
  op push : Stack Element -> Stack .  
  var S : Stack . var E : Element .  
  eq top(push(S,E)) = E .  
  eq pop(push(S,E)) = S .  
endo 

It is noteworthy that our implementation of an inductive 
equational logic system within the Maude specification 
system [5, 7] induces this specification unassisted.  In 
addition, we have used our system to induce the algebraic 
specifications of a number of challenging problems [5, 6].  
Most interestingly, the system was able to induce a 
successful description of the trains in Michalski’s train 
problem [8]. 
 The system, as implemented at this point, only 
supports many sorted equational logic.  We have plans to 
investigate the implementation of order sorted as well as 
hidden sorted equational logic.  Of these extensions the 
hidden sorted equational logic is particularly interesting 
because induced theories only need to satisfy the test cases 
over the visible sorts or behaviorally.  Therefore, the 
induction algorithm has much more flexibility in the 
construction of suitable hypotheses.  
 A number of systems have been designed that aim 
to induce equational theories from a set of (ground) 
equations [9-11].  However, our approach seems to be 
unique in that we firmly base it on inductive learning 
principles. 

References 
 [1] S. Muggleton, Inductive acquisition of expert knowledge, Glasgow, 
Scotland; Reading, Mass.: Turing Institute Press ;Wokingham, England; 
Addison-Wesley, 1990.  
[2] T.M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.  
[3] J. Goguen and G. Malcolm, Software engineering with OBJ : algebraic 
specification in action, , vol. 2, Boston: Kluwer Academic, 2000.  
[4] S. Muggleton and L.D. Raedt, "Inductive Logic Programming: Theory 
and Methods," Journal of Logic Programming, 19,20:629-679, 1994. 
[5] C. Shen, "Evolutionary Concept Learning in Equational Logic,"  
Masters Thesis, University of Rhode Island, 2006.  
[6] L. Hamel, "Evolutionary Search in Inductive Equational Logic 
Programming," in Proceedings of the Congress on Evolutionary 
Computation (CEC2003), 2003, pp. 2426-2434.  
[7] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer 
and J.F. Quesada, "Maude: Specification and Programming in Rewriting 
Logic," Theoretical Computer Science, 2002. 
[8] J. Larson and R.S. Michalski, "Inductive inference of VL decision 
rules,"  SIGART Bull., pp. 38-44, 1977.  
[9] J. Darlington and R. Burstall, "A system which automatically improves 
programs,"  Acta Informatica, vol. 6, pp. 41-60, 1976.  
[10] J. Hernandez-Orallo and M.J. Ramirez-Quintana, "A Strong Complete 
Schema for Inductive Functional Logic Programming," In Proc. of the 
Ninth International Workshop on Inductive Logic Programming, ILP'99, 
volume 1634 of LNAI, pages 116-127, 1999. 
[11] N. Dershowitz and U.S. Reddy, "Deductive and Inductive Synthesis of 
Equational Programs," J. Symb. Comput. 15(5/6): 467-494 (1993). 

Inductive Acquisition of Algebraic Specifications 
Extended Abstract 

Lutz Hamel and Chi Shen 
Department of Computer Science and Statistics 

University of Rhode Island 
Kingston, Rhode Island, USA 


