
QUESTIONNAIRE DE

LA FOLLE COURSE INFORMATIQUE

THE MAD PROGRAMMING RACE

PROBLEMS

Département de génie électrique et de génie informatique
Faculté de génie

Département de génie électrique et de génie informatique

Computer Science Department

Novembre 2000

2

A few words on the Mad

Programming Race

Dear programmers, once again this year Sherbrooke University presents the 2k edition of �La Folle
Course Informatique� also known as �The Mad Programming Race�. Even if some aspects of the
MPR haven't changed, such as:

� The competition spirit,

� the format: 8 hours of programming,

� the bonus points,

� the teams of 2 to 4 participants with one an only one computer,

There are some new issues. Among others, this year's edition takes into consideration the team's
experience and distinguishes the �rst-time participants from the returning ones. This allows new
participants to rank higher. For this reason two price categories are introduced in this year's edition:

1. �Le Grand Prix AbacUS�: this is the �rst price for teams which have at least one member that
has already articipated in any of the previous editions of the MPR.

2. �Le Grand Prix ArgUS�: this is the �rst price for teams composed only of members that have
never participated in any of the MPR editions.

This year the MPR has gone international with the participation of Rhode's Island University.

We would like to give our sincere thanks to all those who have participated in the elaboration of
this edition: those who wrote problems, participated in the elaboration of the questionnaire, wrote
the programs that solve the problems, the correctors and everyone in the organizing committee.
These people are: Vincent Boisclair, Alex Boisvert, Paule Bolduc, Jonathan Bourque, Jean-Denis
Boyer, Charles-Antoine Brunet, Paul-André Chassé, Soumaya Cherkaoui, Daniel Dalle, Jean-Marie
Dirand, Simon-Charles DuBerger, Denis Goyette, Jean Goulet, Gaétan Haché, Johanne Hallée, Jean-
Yves Hervé, Ahmed Khoumsi, Yannick Lacroix, Jean-Philippe Matte, Benoit Tessier, Yannick Syam,
Lourdes Zubieta. Last but not least are the sponsors !! Our sponsors' list is on the MPR Web page.

Martine Bellaïche, École Polytechnique de Montréal.
Nelly Khouzam, Bishop's University.
Ruben Gonzalez-Rubio, Université de Sherbrooke.

i

ii

Introduction

Read this preamble with the questionnaire of the Mad Programming Race. It contains a summary
of the rules and various instructions related to the handing-over of the programs.

The Mad Programming Race

The Mad Programming Race is a programming competition. The participating teams must write
programs according to given speci�cations. Each program that successfully runs earns points for the
team and the winning team is the one that accumulates the most points.

For each problem, you must conceive a C, C++ or Java program1 that respects the speci�cations.
This program will be tested with some testing �les, a number of points will be granted to you
according to the number of �les correctly treated by your program. The number of tests and points
corresponding is indicated at the end of each problem. The same sets of testing �les be used to
evaluate the programs of all the teams.

Bonus points : For a particular problem, bonus points will be given to teams whose programs
will successfully pass all the testing �les. The amount of the bonus will be determined according to
the di�culty of the problem and the time of submission.

The following table indicates how the bonus points will be granted:

Problem number Bonus at t0 Bonus at the end of the race tf

1, 2 30 % 0 %

3, 4, 5, 6, 7, 8 40 % 0 %

9, 10 50 % 0 %

where t0 is the starting time of the competition and tf is the end of the competition.

Hence, bonus points decreases in a linear way, as time advances. For example, if after four hours
of competition a team hands-over the program for question 10 and that it passes all the tests, it has
a bonus of 25 %. If a team hands-over the program for question 10 after six hours of competition
and it passes all the tests, it earns a bonus of 12,5 %.

1In Sherbrooke we chose these three languages, however, the corrector may allow other compiled languages to be

used. If your local organization chooses to use a di�erent language, it is necessary then to consult the particular

procedures for the handing-over of programs. In the questionnaire, we refer only to the C, C++ and Java languages.

iii

iv

The bonus is a percentage calculated according to the following formula:

B = p�
tr

tt

where, B is the percentage bonus to be granted, p is the starting percentage at t0, tr is time remaining
when the program is delivered and tt is the total time of the race. The granularity of time is that
of the marker and is estimated at two seconds.

In a sentence, the quicker the program is handed-over, the larger is the bonus, of course provided
that the program passes all the tests.

In eight hours, it is not very probable but not impossible that a team has su�cient time to
program all the problems presented. You will have to show judgement by choosing the problems
you try to solve.

We tried to present the problems in a uniform way and without ambiguity. Each statement
comprises a description and speci�cation of the problem to be solved, as well as examples and �les
that could be needed for the problem.

At the end of the race, the classi�cation of the teams will be established according to the total
of the points accumulated for each handed-over program. In the possibility where two teams would
obtain an equal number of points, the �rst to reach that number of points will be the winning team.

Handing-over programs

You must hand-over only one source �le for each problem. This �le will have the extension �.C� if
it must be compiled in C, �.CPP� if it is in C++, �.java� if it is in Java. The �rst part of the name
will be made up of the number of the problem followed by the number of your team according to
the format �P##_EQ##�. For example, problem 3 of team 9, coded in C++, would bear the name
�P03_EQ09.CPP� and �P03_EQ15.CPP� for the same problem of team 15. In Java, and for problem
3 team 9, the source �le �p03_eq09.java� must contains a class named �p03_eq09� which must
contains the main. Be careful to write the class name in lower cases since Java is case sensitive:
this is very important for the correction. Since you must submit only one �le (exactly one for each
problem), if you want to de�ne more than one class they must be non-public or inner-class. The
name of the �le comprises exactly 8 characters before the point. Files which do not conform to

this format will not be considered for correction.

Each handed-over �le will be compiled in order to produce an object program. This program
will be run several times with the testing �les. The output �les will be analyzed in order to check
whether they are in conformity with the speci�cations, and the points will be granted accordingly.
A program must compile without any error (warnings will be tolerated). A program which does
not compile will not thus be given any point. With the correction, the outputs on the console (like
printf or others) are also tolerated, but the execution time increases quickly. It is thus advised to
avoid them in order not to exceed allocated time. Note that your source code will not be examined
so you have total freedom on the programming style you will use.

Note that the correction is automated and is carried out during the race in real time. Unless
there is a technical problem with the correction system, you will be able to consult your results on
a monitor and this a few moments after you handed-over your program.

v

The inputs and outputs are always done via ASCII text �les. Those will be named according to
the number of the problem with the format �P##.ENT� for input �les and �P##.SOR� for output �les.
The ## indicates the number of the problem, it varies between 01 and 10. Their contents and how
to use them is clearly de�ned in the statement of each problem. Moreover, one example is presented
for each one of these �les.

Take for granted that the input �les which will be used to test your programs will follow rigorously
the format which is indicated in each problem. The examples of �les shown in the text will be
provided to you.

It is crucial that the �les produced by your programs respect the speci�cations

rigorously since they will be automatically corrected.

When you hand-over your program for its evaluation, you have to copy it in a � deposit box
� which will be indicated to you at the time of the race as well as the exact procedure. You will
be able to deposit only once your solution to each problem. Once a program is handed-over, no
modi�cation will be accepted. If you deposit your program again, the new copy will be ignored.

The rules

� Only one computer will be assigned to each team. A team can use only the computer which
is assigned to it. In the event of a breakdown, the team has to wait until an organizer assigns
you a new computer.

� A study room near the computer room will be available to the teams.

� You have the right to bring and to use any relevant documentation, as long as it is printed or
hand-written. Any material support (other then documents) is prohibited during the race, in-
cluding portable diskettes and computers. A team bringing such unauthorized material

will be automatically disquali�ed.

� The local area network will be cut from the external world and therefore Internet will not be
usable.

� In order to avoid annoying accidents, any food or drink will be prohibited in the computer
rooms.

� We count on the honesty and the good faith of the participants.

Final Remarks

The Mad Programming Race is organized by a team of voluntary members, which is renewed with
each edition. We endeavor to write speci�cations as clearly as possible.

We wrote programs to the speci�cations of the problems, we wrote the sets of testing �les and
program correctors by devoting much e�ort and time. Even during the race, we check in order to
make sure that all is �ne and that everything occurs in an equitable way. However, we do not claim

vi

perfection! For this reason, we ask you to call upon your �computer-sportsmanship� spirit in order
to accept the �o�cial� classi�cations given at the end of the race. Indeed, it is practically impossible
to change the distribution of the prices if changes in the classi�cation occurred. We think that
the greatest reward associated with this competition is satisfaction to have made an e�ort to write
programs and hopefully to have learned something. However, we are open to remarks which could
improve the future competitions or which inform us with an error.

The �Grand Prix AbacUS� and the �Grand Prix ArgUS� will be allotted after a few days to make
sure that all the possible checks were made.

Conventions used in the questionnaire

To indicate the beginning and the end of a �le we use the symbols . and / respectively. Of course
these symbols do not form part of the �le.

For example, the following �le contains only one line with the chain hello.

.

hello

/

Attention! The end of �le could be just after the o character or at the begining of the next
line!

Contents

1 Encryption 3

2 Code Breaking 9

3 Card Shu�ing 11

4 Encryption (Again!) 15

5 Computer Networks 21

6 Data Decompression - The Hu�man Code 25

7 Email Transfer Protocol: SMTP 29

8 Error Detecting Codes 37

9 Binary Crosswords 43

10 The puzzle 53

vii

viii CONTENTS

The Speci�cations

1

Speci�cation 1

Encryption

Ruben Gonzalez-Rubio

File to be produced containing your source code: P01_EQ##.*

The encryption of messages was almost certainly invented during war to hide important information
from the enemy. In principle, only two people will know the contents of a message : the person who
encrypts or encodes the message and the person who decodes it.

From The American Heritage Dictionary of the English Language:

encrypt v.tr. encrypted, encrypting, encrypts.

1. To put into code or cipher.

2. Computer Science. To scramble access codes to (computerized information) so as to
prevent unauthorized access.

Problem

Among the many techniques of encoding, there is one based on factors. We will use this latter in
this problem.

Above all, it is necessary to agree on an alphabet. To simplify the problem, we will use only the
capital letters from �A� to �Z�.

Here is a message:

SEE YOU AT THE MAD PROGRAMMING RACE

The �rst thing to do is to remove spaces, such that the message becomes the string:

3

4 SPECIFICATION 1. ENCRYPTION

SEEYOUATTHEMADPROGRAMMINGRACE

It is then necessary that the message contain a number of letters equal to a multiple of 5. If
this is not the case additional character(s) must be added to the end of the string: Z if missing 1
character, ZQ if missing 2 character, ZQJ if missing 3 character, ZQJX if missing 4 character.

As this message comprises 29 characters, we add Z. This gives1:

SEEYOUATTHEMADPROGRAMMINGRACEZ

It is here that the factors are introduced. Since we have 30 characters, the factor pairs giving 30
are:

1 � 30

30 � 1

2 � 15

15 � 2

3 � 10

10 � 3

5 � 6

6 � 5

We will choose the factors 15 and 2 (15 � 2) for our encoding. This means that the line of 30
characters will be divided into 15 columns and 2 lines. We will build the 15 columns so that the
message may be read downwards starting at the top left corner. Other ways to build the columns
will be described later.

S E O A T E A P O R M I G A E

E Y U T H M D R G A M N R C Z

Here, we introduced spaces to facilitate the reading, but actually the result should be :

SEOATEAPORMIGAE

EYUTHMDRGAMNRCZ

We concatenate the two lines, the �rst then the second, giving:

SEOATEAPORMIGAEEYUTHMDRGAMNRCZ

To �nish, we divide the character string into words of 5 letters:

SEOAT EAPOR MIGAE EYUTH MDRGA MNRCZ

1If the message was YOUATTHEMADPROGRAMMINGRACE it would become YOUATTHEMADPROGRAMMINGRACEZQJX since we

add ZQJX to have 30 characters (30 is a multiple of 5!).

5

Illegible, right?

To decipher (or decrypt) the message, one follows the reverse procedure. We remove the spaces :

SEOATEAPORMIGAEEYUTHMDRGAMNRCZ

We divide the chain into two, of course we know that the factors are 15 and 2 (15� 2) :

SEOATEAPORMIGAE

EYUTHMDRGAMNRCZ

We then read the columns downwards starting once more, from the top left hand corner. The
message is almost reconstituted :

SEEYOUATTHEMADPROGRAMMINGRACEZ

Of course, spaces would have to be added and the last character removed, but this treatment
must be carried out by somebody who understands well the language of the message. In the present
case, we will be satis�ed to simply �nd all the letters of the message in the correct order. The
expected result is therefore :

SEEYOUATTHEMADPROGRAMMINGRACEZ

If instead of the factor pair 15 � 2, we had used the 3 � 10, this would give 10 lines of three
columns :

SEM

EMM

EAI

YDN

OPG

URR

AOA

TGC

TRE

HAZ

Once again, we have built our columns using the rule that the message must be read downwards,
one column at a time, starting from the left.

However, there are in general four ways to build columns from a message. Consider our example
message encoded using the factor pair 6� 5.

Type 0 Vertical, beginning at top left, reading downwards (as previously described)

6 SPECIFICATION 1. ENCRYPTION

SUERMR

EAMOMA

ETAGIC

YTDRNE

OHPAGZ

Type 1 Vertical, beginning at top right, reading downwards

RMREUS

AMOMAE

CIGATE

ENRDTY

ZGAPHO

Type 2 Vertical, beginning at bottom left, reading upwards

OHPAGZ

YTDRNE

ETAGIC

EAMOMA

SUERMR

Type 3 Vertical, beginning at bottom right, reading upwards

ZGAPHO

ENRDTY

CIGATE

AMOMAE

RMREUS

In short, this problem requires that you encrypt or decrypt a message using the factor pair
technique.

Input File

The �le that you must read is �P01.ENT�. It is divided into groups of two lines, the groups are
separated by a blank line.

The �rst line contains the command, the second line contains the message. The command consists
of four integers. The �rst integer can take values 0 or 1, (0 for encoding and 1 for decoding). The
second integer can take values 0 to 3, indicating the type of column building to be used (i.e., one
of the four types de�ned above). The last two integers represent the factor pair, the �rst giving the
number of columns and the second the number of lines. The four integers are separated by at least
one space. The second line contains the message to encrypt or decipher.

Here is an example:

.

7

0 0 15 2

SEE YOU AT THE MAD PROGRAMMING RACE

1 0 15 2

SEOAT EAPOR MIGAE EYUTH MDRGA MNRCZ

/

Output File

You must write the �le �P01.SOR� which will contain the messages which have been either encrypted
or deciphered. Each message must appear on a new line and the messages must be separated by a
blank line. They must appear in the same order as in the input �le.

Thus, for the input �le described above, the output �le should be:

.

SEOAT EAPOR MIGAE EYUTH MDRGA MNRCZ

SEEYOUATTHEMADPROGRAMMINGRACEZ

/

It is guaranteed that the message contains between 16 and 2056 characters. The total number of
messages to encrypt or decipher is between 16 and 2056. The number of messages to encrypt may
be di�erent from that to decipher.

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 80

2 120

3 160

4 200

Maximum execution time for your program : 10 seconds.

8 SPECIFICATION 1. ENCRYPTION

Speci�cation 2

Code Breaking

Ruben Gonzalez-Rubio

File to be produced containing your source code: P02_EQ##.*

This problem still treats encoding, but it is about decoding a message. It can be of use to the
enemy who wants to decipher the message.

From the Webster's Revised Unabridged Dictionary:

decipher n De*ci"pher n v.t. [imp. & p. p. Deciphered; p. pr. & vb. n. Deciphering.] [Pref. de-
+ cipher. Formed in imitation of F. d['e]chi�rer. See Cipher.]

1. To translate from secret characters or ciphers into intelligible terms; as, to decipher a
letter written in secret characters.

Problem

We assume that the technique of factors (see speci�cation 1) is the one that is still used. Factor
pairs, the addition of the characters and the types are the same as described before. The problem
here is to �nd the type used for encrypting the message, the factors and the message itself.

Let us take as an example the following encrypted message:

SEOAT EAPOR MIGAE EYUTH MDRGA MNRCZ

Suppose that we know that the word RACE exists in the message, we must �nd the type, i.e.
vertical, beginning at top left hand corner, reading downwards, and the factor pair 15 and 2. We
must also �nd the decoded message.

9

10 SPECIFICATION 2. CODE BREAKING

Input File

The �le that you must read is �P02.ENT �. It contains two lines. On the �rst, the encrypted message
(a character string) and on the second, a word of the message (a character string).

.

SEOAT EAPOR MIGAE EYUTH MDRGA MNRCZ

PROGRAMMING

/

The encryption type is the same as in problem 1.

It is guaranteed that the word of the message is a representative character string (�ve or more
characters and that it appears only once in the message).

Output File

You must write the �le �P02.SOR � which will also contain two lines. The �rst line contains three
integers separated by at least a space. The �rst integer indicates the encryption type, the second
the number of columns and the third, the number of lines. The second line contains the decoded
message without added spaces.

.

0 15 2

SEEYOUATTHEMADPROGRAMMINGRACEZ

/

In cases where more than one decoded message could result, the output �le should contain only
one of them.

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 80

2 120

3 160

4 200

Maximum execution time for your program : 20 seconds.

Speci�cation 3

Card Shu�ing

Alex Boisvert

File to be produced containing your source code: P03_EQ##.*

Most card games rely on chance to provide excitement. Card shu�ing is thus a signi�cant operation
which determines, indirectly, the outcome of a game.

For some unscrupulous players, card shu�ing is an art. Obviously, the one which can put the
chances on his side will be the winner.

Problem

You must write a program which simulates the " perfect " shu�ing of a package of cards which
contains N unique cards.

The shu�ing technique is carried out as follows:

One cuts the package to the (m)th card starting from the top to obtain two piles1: a upper pile
and a lower pile. The shu�ing starts by depositing the bottom card of the upper pile, followed by
the bottom card of the lower pile. The shu�ing continues by depositing a card from each of the two
piles, in alternation, until one of the two piles is empty. The remainder of the cards go on the top
of the new pile.

The problem is to �nd the number of consecutive perfect shu�ings necessary to bring, at the
end, the pack back in its original order.

Example

Let us suppose a package of cards having N = 5 cards. One successively cuts it to the 3rd
(m = 3) card.

1the card m is in the upper pile

11

12 SPECIFICATION 3. CARD SHUFFLING

Original Pack :

1

2

3

4

5

After the �rst shu�ing :

1

4

2

5

3

After the second shu�ing :

1

5

4

3

2

After the 3rd shu�ing:

1

3

5

2

4

And after the 4th shu�ing, one �nds the original pack, therefore, the answer is 4.

Input File

The �le that you must read is �P03.ENT�. the entry is made up of two values: the number N of
unique cards in the pack and the place where the package is cut m. The values are given on two
lines.

.

5

3

/

The number of single cards varies between 2 and 501 whereas the cutting position varies between
1 and the number of cards in the package minus 1.

13

Output File

You must write the �le �P03.SOR� which will contain only one value, the number of perfect shu�ings
necessary to bring the pack back in its original order.

.

4

/

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 120

2 180

3 240

4 300

Maximum execution time for your program : 10 seconds.

14 SPECIFICATION 3. CARD SHUFFLING

Speci�cation 4

Encryption (Again!)

Jean-Marie Dirand

File to be produced containing your source code: P04_EQ##.*

In 1854, Sir Charles Wheatstone invents an encoding algorithm encoding baptized " Playfair " in
honor of his friend Lyon Playfair, Baron of St.Andrews, who popularized and di�used encoding. Its
simplicity and its robustness, compared with the simple substitution techniques caused its immediate
success in the �eld of cryptography, in particular by the British during the Boers and First World
Wars. It was then used by several armies during the Second world war as an emergency encoding
algorithm. When the PT-109 of the Lieutenant John F. Kennedy was sunk by a Japanese ship o�
the Solomon Islands, JF Kennedy was able to reach, with the survivors of his crew, the shore of
Plum Pudding island in enemy territory. He then transmitted from an ally hut a message encrypted
using the Playfair algorithm. The enemy was unable to decrypt the message, and a rescue operation
was ordered and carried out successfully recovering all the survivors.

Problem

In order to simplify the problem, the alpabet will consist of just the capital letters �A� to �Z�.

To encrypt a message with the Playfair algorithm, it is enough to take a keyword and to write
it in a table of size 5 � 5, deleting multiple occurences of letters and combining letters I and J in
the same box. In the following example, we use the keyword MANCHESTER and write it in table line
by line. Alternatively, it could be written di�erently, for example column by column or in spiral
starting from a corner of the table going towards the center. Following the keyword, the remainder
of the letters of the alphabet are introduced according to the alphabetical order.

15

16 SPECIFICATION 4. ENCRYPTION (AGAIN!)

M A N C H

E S T R B

D F G I/J K

L O P Q U

V W X Y Z

Once this coding table is determined, it serves to prepare the message for encoding, for the
example THISSECRETMESSAGEISENCRYPTED (note that the letters constituting the message string
are capital letters), encoding is done in the following way: Initially letters are gathered two by two;
if a pair consists of the same letter it is necessary to insert a X between them and to propagate the
shift; if the string ends in a group made up of only one letter then it is necessary to complete the
pair with a X .

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

Now we have to encrypt each pair. For TH , we �nd T and H in the table, which delimits a
rectangle, and then we locate the letters corresponding to the opposite corners of the rectangle. Here
is the diagram:

. . N . H

. . T . B

.

.

.

To encrypt the pair TH , we start with the �rst letter and replace it by its counterpart located at
the adjacent corner on the same line, then apply the same thing to the second letter: TH becomes
BN . The process of encoding continues with the next pair, and so on.

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

BN FR

For the pair SE, its letters are on the same line. In such a case

.

E S T . .

.

.

.

we take the letter at the right-hand side of each letter of the pair, thus SE becomes TS . Note:
if there is over�ow of letter at the end of the line, we obtain the letter located in �rst position of the
same line.

17

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

BN FR TS

The following pair CR is on the same column. In such a case we take the letter below each letter.
Note: if there is over�ow at the end of the column, we obtain the letter located in �rst position of
the same column.

. . . C .

. . . R .

. . . I/J .

.

.

Thus CR produces RI (Note: I and J being in the same box, by convention the value of the
box is I). This is the last special case. The process of encoding continues, producing:

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

BN FR TS RI SR ED TW FS DT FR TM RI XQ RS GV

To decode the message, we proceed in the opposite way: If the two letters of a pair are in di�erent
columns and lines, we take the letters of the adjacent corners of the rectangle. If they are in the
same line, we take the letters on the left of each one of them (modulo on the same line). If they
are in the same column, we take the letters located above each one of them (modulo on the same
column).

Input File

The �le that you must read is �P04.ENT �. It is composed of 3 lines and will contain a message to
encrypt or to decode.

Here are the contents of the 3 lines for a �le:

Line 1: the keyword

Line 2: operation mode (0 for encryption, 1 for decoding)

Line 3 : The text; a sequence of capital letters of unspeci�ed length.

Example of an input �le in a case of encryption :

.

MANCHESTER

0

THISSECRETMESSAGEISENCRYPTED

/

Example of an input �le in a case of decoding :

.

18 SPECIFICATION 4. ENCRYPTION (AGAIN!)

MANCHESTER

1

BNFRTSRISREDTWFSDTFRTMRIXQRSGV

/

An example of a �le is :

.

MANCHESTER

1

BNFRTSRISREDTWFSDTFRTMRIXQRSGV

/

Output File

You must write the �le �P04.SOR� which will contain the answer, a coding table followed by two
groups of lines of pairs of capital case characters. The �rst group consists of the pairs of characters
derived from the message in the input �le, the second group contains the transcoded pairs.

Encryption Case

The coding table on 5 lines; the letters on each line are separated by a space.

M A N C H

E S T R B

D F G I K

L O P Q U

V W X Y Z

Followed by the lines containing pairs of characters. Each line contains 40 pairs of characters or
less for the last line. The pairs of characters are separated by a space.

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

The coded text made up of pairs. Each line contains 40 pairs of characters or less for the last
line.

BN FR TS RI SR ED TW FS DT FR TM RI XQ RS GV

An example of a complete �le is :

.

19

M A N C H

E S T R B

D F G I K

L O P Q U

V W X Y Z

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

BN FR TS RI SR ED TW FS DT FR TM RI XQ RS GV

/

Decoding Case

The coding table on 5 lines; the letters on each line are separated by a space.

M A N C H

E S T R B

D F G I K

L O P Q U

V W X Y Z

Followed by the lines containing pairs of characters. Each line contains 40 pairs of characters or
less for the last line. The pairs of characters are separated by a space.

BN FR TS RI SR ED TW FS DT FR TM RI XQ RS GV

The coded text made up of pairs. Each line contains 40 pairs of the characters or less for the
last line.

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

An example of complete �le is :

.

M A N C H

E S T R B

D F G I K

L O P Q U

V W X Y Z

BN FR TS RI SR ED TW FS DT FR TM RI XQ RS GV

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX

/

It is guaranteed that the message contains between 1 and 2056 characters.

20 SPECIFICATION 4. ENCRYPTION (AGAIN!)

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 120

2 180

3 240

4 300

maximum execution time for your program : 10 seconds.

Speci�cation 5

Computer Networks

Lourdes Zubieta

File to be produced containing your source code: P05_EQ##.*

Suppose someone asks you to connect a number of computers by using the minimum amount of
cable in order to minimize the cost.

We consider the computers of the network to be connected as the nodes of a graph. The possible
links between two nodes (computers) are the edges of this graph. Each edge e has a corresponding
"length" or cost attached �(e).

Figure 5.1 shows a network example. The possible alternatives and the distances between the
nodes to be connected are in table 5.1. The number of computers to be connected is: N=7

Start End Distance

1 2 15
1 3 40
1 4 30
1 5 65
1 6 60
2 5 45
3 5 30
3 7 25
4 6 20
5 7 35
6 7 15

Table 5.1: The table representing the graph

21

22 SPECIFICATION 5. COMPUTER NETWORKS

2

1

�������
3

5

..............

NNNNNNNNNNNNNN

pppppppppppppp

7

NNNNNNNNNNNNNN

4

6

666666666666666666666666666666666

TTTTTTTTTTTTTTTTTTTT

��������������

Figure 5.1: A network

Problem

The problem is to determine which edges, among the possibilities given in the �le containing the
table, should be included so that a minimum amount of cable is used. We must connect all the
clients with a single path. For example, the solution {(1,2),(2,5),(1,3),(3,5),(3,7),(7,6),(6,4)} visits
client 5 twice and therefore is not acceptable. Another example, {(1,2), (1,3), (1,4), (1,5), (1,6)} is
not good since client 7 is not connected.

Input File

The �le you must read is �P05.ENT�. It contains lines giving the possible edges between nodes and
their costs. Each line contains three integers, the �rst is the source node, the second is the destination
node and the third is the cost. The integers are separated by one or more spaces.

.

1 2 15

1 3 40

1 4 30

1 5 65

1 6 60

2 5 45

3 5 30

3 7 25

23

4 6 20

5 7 35

6 7 15

/

We can have between 2 and 1000 nodes or computers.

Output File

You must write the �le �P05.SOR� that will contain the nodes composing the minimal network in the
same format (three integers) and on the last line the total cost. The order of the lines is determined
by the cost of the corresponding edge, the smallest cost must appear �rst then in ascending order.
If two edges are equal, the lines can appear in the �le in any order. The total cost �ts in a 32-bit
integer.

Here is the output �le for the example input �le :

.

1 2 15

6 7 15

4 6 20

3 7 25

3 5 30

1 3 40

145

/

If there are several solutions of minimum cost only one must appear in the output �le.

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 120

2 180

3 240

4 300

Maximum execution time for your program : 10 seconds.

24 SPECIFICATION 5. COMPUTER NETWORKS

Speci�cation 6

Data Decompression - The Hu�man

Code

Martine Bellaïche

File to be produced containing your source code: P06_EQ##.*

Problem

In computer science, the technological developments and the users requirements lead to increasingly
large amount of data. In order to put the data in a format such that they occupy less memory space,
multiple studies were undertaken on the compression algorithms. Once compressed, the data is not
any longer directly accessible, and it has to be decompressed so that it becomes understandable.
Data compression is vital in order to decrease the size of the �les and the transfer time of �les
through modems.

An algorithm largely used in the data compression is the Hu�man algorithm, that generates
binary codes of variable lengths. Starting from the original data, a statistic study bearing on the
frequency of the characters present in the �le is carried out, then the Hu�man algorithm assigns to
each character a binary code. The more frequent the character is, the shorter (less number of bits)
the code is. Moreover, no code associated with any character is a pre�x for another.

Our problem is to decompress a �le already compressed by the codes generated by the Hu�man
algorithm. In order to decompress a �le, there is a heading at the beginning of the �le which contains
all information useful for compression: the binary codes, and numbers it bits associated with the
characters.

25

26 SPECIFICATION 6. DATA DECOMPRESSION - THE HUFFMAN CODE

Example

The �le to compress is:

bafedaffa

Here is is the binary Huffman code for every character of the

file:

b a f e d a f f a

010 00 10 011 11 00 10 10 00

We gather the bits byte by byte to �nd the contents of the compressed data.

0100 0100 1111 0010 1000

code ascii 68 code ascii 242 code ascii 8

Table 6.1: ASCII charcters table and Hu�man binary code
Ascii code a b d e f

binary code 00 010 11 011 10

number of bits 2 3 2 3 2

Input File

The �le you must read is �P06.ENT�. Be careful, the �le is in binary format. Here we give

the explanations necessary to understand it. You will have the real input �le on your

computer during the Race.

The binary �le has the following structure, byte by byte:

bytes 1 and 2: the number of characters of the original �le;

bytes 3 and 4: the number of coded characters;

bytes 5 and 6: the largest number of bits in the binary codes;

In ASCII order and for all the coded characters, we have 2 bytes for the ASCII character, 2 bytes
for the Hu�man binary code, and 2 bytes for the number of bits in the Hu�man binary code;

Then, byte by byte, we have the compressed data.

Here is an example of an input �le given in hexadecimal where we deliberately inserted a space
between each byte for better presentation. This space is not stored in the �le.

27

00 2f 00 11 00 06 00 20 00 00 00 02 00 2c 00 3e 00 06 00 2e 00 1e

00 06 00 61 00 0a 00 04 00 63 00 3f 00 06 00 64 00 1f 00 06 00 65

00 0e 00 04 00 66 00 0c 00 05 00 69 00 02 00 03 00 6c 00 0d 00 05

00 6e 00 0b 00 04 00 6f 00 1a 00 05 00 70 00 1b 00 05 00 72 00 04

00 03 00 73 00 0e 00 05 00 74 00 0c 00 04 00 75 00 1e 00 05 8b ac

be 1d d3 07 f8 ff 5e 8a 7c 26 8c af 61 ba 98 a1 46 f4 af 1e

00 2f: the number of characters of the original �le, that is, in decimal, 47.

00 11: the number of coded characters, that is, in decimal, 17.

00 06: the largest number of bits in the binary codes, that is, in decimal, 6.

00 20 00 00 00 02: ASCII: 32, code: 0, bits:2.

00 2c 00 3e 00 06: ASCII: 44, code: 62, bits:6.

00 2e 00 1e 00 06: ASCII: 46, code: 30, bits:6.

00 61 00 0a 00 04: ASCII: 97, code: 10, bits:4.

00 63 00 3f 00 06: ASCII: 99, code: 63, bits:6.

00 64 00 1f 00 06: ASCII: 100, code: 31, bits:6.

00 65 00 0e 00 04: ASCII: 101, code: 14, bits:4.

00 66 00 0c 00 05: ASCII: 102, code: 12, bits:5.

00 69 00 02 00 03: ASCII: 105, code: 2, bits:3.

00 6c 00 0d 00 05: ASCII: 108, code: 13, bits:5.

00 6e 00 0b 00 04: ASCII: 110, code: 11, bits:4.

00 6f 00 1a 00 05: ASCII: 111, code: 26, bits:5.

00 70 00 1b 00 05: ASCII: 112, code: 27, bits:5.

00 72 00 04 00 03: ASCII: 114, code: 4, bits:3.

00 73 00 0e 00 05: ASCII: 115, code: 14, bits:5.

00 74 00 0c 00 04: ASCII: 116, code: 12, bits:4.

00 75 00 1e 00 05: ASCII: 117, code: 30, bits:5.

8b ac be 1d d3 07 f8 ff 5e 8a 7c 26 8c af 61 ba 98 a1 46 f4 af 1e

are the bytes of the compressed �le.

Ouput File

Youmust write the �le �P06.SOR�. In the �le, we �nd the decompressed data in an intelligible format.

Here is the output �le for the example above:

.

rien ne sert de courir, il faut partir a point.

/

28 SPECIFICATION 6. DATA DECOMPRESSION - THE HUFFMAN CODE

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 160

2 240

3 320

4 400

Maximum execution time for your programme : 10 seconds.

Speci�cation 7

Email Transfer Protocol: SMTP

Martine Bellaïche

File to be produced containing your source code: P07_EQ##.*

This problem is inspired by a problem of the 23rd Programming Contest of the ACM.

Problem

We will describe to you the bidirectional communication protocol for transfer of electronic mail
SMTP (Simple Mail Transfer Protocol). A user sender sends an electronic mail containing SMTP
commands and a message to another user receiver. The SMTP Transmitter receives this mail
and establishes a bidirectional communication with the SMTP receiver. Once, the communication
established, the SMTP transmitter transmits one command at a same time to the SMTP receiver,
which sends back a 3-digit response according to the transmitted command. The goal of the program
is to �nd the dialogue of the commands interchanged between the SMTP transmitter and the SMTP
receiver. The SMTP server will play at the same time the role of the transmitter and the receiver.
The commands that the SMTP transmitter and SMTP receiver transmit, are de�ned in tables 7.1
and 7.2. The commands of SMTP transmitter and receiver are case sensitive. In order to write the
program, it is important to know the characteristics of SMTP servers. The characteristics of the
server montreal.ca are :

� it's name: montreal.ca.

� the list of its local users. For example: destin, leduc, bier, lange. Their email addresses
are destin@montreal.ca, leduc@montreal.ca, bier@montreal.caand lange@montreal.ca

� the list of the local users who forwarded their addresses to another address where each trans-
ferred address is speci�c to each of the users. For example, destin destin@paris.fr means

29

30 SPECIFICATION 7. EMAIL TRANSFER PROTOCOL: SMTP

that the local user destinwith the server montreal.ca forwarded his mail to destin@paris.fr
and the alias bier bier@milan.it means that the local user bier forwards to the address
bier@milan.it.

� aliases correspond to a local or non-local user. If a user sending from an SMTP server sends
a message to simply a name, then that the server looks among its aliases for the electronic
address. For example, the alias lele leduc corresponds to the local user leduc and the alias
mama mancini@paris.fr to the non-local user mancini@paris.fr

Table 7.1: SMTP Transmitter Commands

HELO Name Name of the SMTP transmitter
to start the communication

MAIL FROM sender Electronic Address of the user sender

RCPT TO recipient Address of the recipient user.

VRFY User alias Find the alias' complete electronic address

DATA The following lines contain the message consisting of the date,
the subject and the text of the message after the command 354 of the receiver.
The character * in �rst column indicates the end of the message

QUIT Ends the communication

Table 7.2: Commands of the SMTP receiver

221 After a QUIT

Closing of the connection

250 ok After a HELO, MAIL FROM or a RCPT TO

The command is well received.

250 Alias' local electronic Address After a VRFY

251 forward to After VRFY
another non-local electronic address the SMTP

receiver indicates to the SMTP transmitter
the forward address, without the SMTP transmitter
opening a new connection with the SMTP server
of the forward address.

354 start email After the command DATA

550 no user After RCPT TO

means that the destination user
on the receiving server is unknown

We will describe to you another SMTP server paris.fr in order to show you the dialogue between
that it and the server montreal.ca.

31

� it's name: paris.fr.

� the list of its local users: destin, mancini, gagne, kasper. Their email addresses are
destin@paris.fr, mancini@paris.fr, gagne@paris.fr and kasper@paris.fr

Example of communication between paris.fr and montreal.ca. The SMTP server paris.fr
plays the sender role, and the server montreal.ca is the recipient. The sending user is gagne@paris.fr
who sends amessage to the users lange@montreal.ca, leclaire@montreal.caand bier@montreal.ca.

HELO paris.fr

250 ok

MAIL FROM gagne@paris.fr

250 ok

RCTP TO lange@montreal.ca

250 ok

RCPT TO leclaire@montreal.ca

550 no user

RCTP TO bier@montreal.ca

251 forward to bier@milan.it

.......

......

Input File

The �le that you must read is �P07.ENT�.

The input �le contains initially

� the number of SMTP servers,

� the description of all the SMTP servers,

� the number of messages,

� the messages.

On the line describing the SMTP server, one �nds its name, the number of its users, then on
each line a reserved word followed by the name of its email users. The various reserved words are:

� local user local to the server.

� forward local user followed by a forward address.

� alias user_name followed by a local or non-local electronic address.

We have at least, the description of the server.

Then, for the lines describing the message, we have:

32 SPECIFICATION 7. EMAIL TRANSFER PROTOCOL: SMTP

� the reserved word from always followed by the electronic address of the sending user

� the reserved word to followed by the number of the destination users and the list of their email
addresses. If we have only the name of a local user or of an alias, then the server is the same
as the sending user. We have at least one destination user.

� the reserved word date followed by the date and time of the message.

� the reserved word subject followed by the subject of the message.

� the message text.

� to end the message text, we �nd the character * in the �rst column and on a line by itself.

The servers of the users' electronic addresses are always valid and de�ned in the description of
the server.

Here is an example of an input �le:

2

montreal.ca 7

local destin

local leduc

local bier

local lange

forward destin destin@paris.fr

alias lele leduc

alias mama mancini@paris.fr

paris.fr 5

local destin

local mancini

local gagne

local hudon

alias gaga gagne

3

from destin@montreal.ca

to 2 hudon@paris.fr lange@montreal.ca

date 12/05/00

subject un petit bonjour

Comment vas-tu ?

Fait-il beau chez vous ?

*

from lange@montreal.ca

to 1 lele

date 02/08/00

subject confirmation

veuillez confimer

votre date d'arrivÈe

33

Paul

*

from bier@montreal.ca

to 3 destin pierre@montreal.ca mama@montreal.ca

date 02/08/00

subject Hello

Donnez nous de vos

nouvelles

Sophie

*

Output File

You must write the �le �P07.SOR� that will contain the dialog between the SMTP transmitter and
receiver.

On each line, we �nd the SMTP server commands, according to tables 7.1 and 7.2. The commands
are case-sensitive.

Here is the output �le for the example above:

HELO montreal.ca

250 ok

MAIL FROM destin@montreal.ca

250 ok

RCPT TO lange@montreal.ca

250 ok

DATA

354 start email

date 12/05/00

subject un petit bonjour

Comment vas-tu ?

Fait-il beau chez vous ?

QUIT

221

HELO montreal.ca

250 ok

MAIL FROM destin@montreal.ca

250 ok

RCPT TO hudon@paris.fr

250 ok

DATA

354 start email

date 12/05/00

subject un petit bonjour

Comment vas-tu ?

34 SPECIFICATION 7. EMAIL TRANSFER PROTOCOL: SMTP

Fait-il beau chez vous ?

QUIT

221

HELO montreal.ca

250 ok

MAIL FROM lange@montreal.ca

250 ok

VRFY lele

250 leduc@montreal.ca

DATA

354 start email

date 02/08/00

subject confirmation

veuillez confimer

votre date d'arrivÈe

Paul

QUIT

221

HELO montreal.ca

250 ok

MAIL FROM bier@montreal.ca

250 ok

RCPT TO destin@montreal.ca

250 ok

RCPT TO pierre@montreal.ca

550 no user

VRFY mama

251 forward to mancini@paris.fr

DATA

354 start email

date 02/08/00

subject Hello

Donnez nous de vos

nouvelles

Sophie

QUIT

221

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

35

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 160

2 240

3 320

4 400

Maximum execution time for your program : 10 seconds.

36 SPECIFICATION 7. EMAIL TRANSFER PROTOCOL: SMTP

Speci�cation 8

Error Detecting Codes

Gaétan Haché

File to be produced containing your source code: P08_EQ##.*

This is no secret: in any data transmission system there is always a possibility that the received
message is di�erent from the one that was sent. Moreover, it is impossible to verify with 100%
certainty that there were no transmission error. Nevertheless, we know from Shannon's Theorem
that it is possible to verify with a certainty of 100% - �, � > 0, whether there were any transmission
errors. In other words, it is possible to reduce as much as we want the probability of not detecting
errors when some indeed occurred. We call this probability the probability of not detecting an error

(or simply the error probability) and it is denoted by pndec. Of course there is a price to pay for
reducing pndec: you must add redundancy to the message. For example, say you are using a binary
data transmission channel (telephone line, satellite telecommunication, etc.) with a symmetric error
probability of p = 0:10. This is not very good (unless you're "talking" or receiving data form a
satellite outside the solar system...). This symmetric probability of p = 0:10 means that one time
out of ten you receive a 0 (respectively a 1) when 1 (respectively 0) was e�ectively transmitted. You
really don't like that so you decide that all messages should be doubled: so to send the message "1"
the binary word 11 is sent and the same hold for sending the message "0", that is, 00 is sent. This
way if you receive 01 or 10 you are 100% sure that transmission errors occured. But if you receive
00 nothing tells you that 00 was e�ectively sent so that pndec 6= 0.

In this problem, instead of calculating pndec, we will perform an intermediate computation that,
once obtained, yields directly pndec in most solutions used in practice to detect errors.

In order to understand the problem we give a few examples of what we call error detecting codes.
For those of you who know about this, they are in fact called error correcting code since not only
you can detect errors with such codes but you can correct the errors as well.

Example 1: Repeating the message

37

38 SPECIFICATION 8. ERROR DETECTING CODES

We consider again the idea we have just seen: to send the message "1" the binary word 11 is sent
and the same hold for sending the message "0" that is 00 is sent. To compute pndec we make the
following observation: since the channel is symmetric (i.e. the probability p of error transmission
is the same whether a 1 or a 0 is transmitted) the probability of receiving 11 while 00 was sent
or receiving 00 while 11 was sent is the same in both cases: this probability is pndec = p2, thus if
p = 0:10 then pndec = 0:01.

What we have just done here is constructing a error detecting code of length 2, that is C2 =

f00; 11g. A transmission error is detected whenever a received binary word of length 2 is not in C2.

Exemple 2 : the parity bit

We consider now the code of length 4

C4 = f0000; 0011;0101; 0110;1001; 1010;1100; 1111g:

Observe that this code is exactly the set of all binary word of length 3 to which a parity bit was
added so that the number of 1 in the word is an even number. Observe that the error patterns that
transform the word 0000 into another word of C4 are exactly the same that transform any word
of C4 into another one. An error pattern is a binary word indicating in which position an error
occurred. For example, the pattern 1010 transforms the word 0000 into 1010 which is also an word
of C4. Similarly, this same pattern transform 0110 2 C4 into 1100 which is also in C4. We also
observe that the error patterns that transform a word of C4 into another word of C4 are themselves
words of C4. This nice property comes from the fact that the code is linear. Hence, without loss of
generality we can assume for the calculation of pndec that the word that was sent is 0000: in this
case an error is not detected if any of the other words of C4 is received. Hence the probability of
not detecting an error is the probability of receiving one of 0011, 0101, 0110, 1001, 1010, 1100 ou
1111 which is

pndec = (1�p)2p2+(1�p)p(1�p)p+(1�p)p2(1�p)+p(1�p)2p+p(1�p)p(1�p)+p2(1�p)2+p4 = 6p2(1�p)2+p4:

Before going any further we need the following de�nition: we call the weight of a binary word
the number of 1 in the word. Hence in the code C4 above there is no word of odd weight, there is 1
word of weight 0, 6 of weight 2 and 1 of weight 4.

Exemple 3 - The double parity bit

Consider C8 the set of all binary words of length 6 to which we add 2 bits according to the
following rule: (a1; a2; a3; a4; a5; a6; b1; b2) 2 C8 if an only if a1; a2; a3; b1 has even weight and so has
a4; a5; a6; b2. In other words, b1 is a parity bit over the 3 �rst bits and and so is b2 over the next
three bits.

It is easy to verify that C8 contains no word of odd weight and that it contains exactly 1 word of
weight 0, 6 of weight 2, 9 of weight 4 and none of weight 6. One again the code is linear and using
the same arguments as we did in the previous example we �nd:

pndec = 6p2(1� p)6 + 9p4(1� p)4:

In general, for a code C of length n if we denote wC(i) the number of word of weight i in the
code C then

pndec =

nX
i=1

wC(i)p
i(1� p)n�i:

39

Hence to compute pndec it is enough to compute wC(i) for i = 1; 2; : : : ; n where n is the length
of the code. This sequence of integer, that is

wC(1); wC(2); wC(3); : : : ; wC(n);

is called the weight distribution of C.

You will agree that the examples we have just seen are "small". In practice the codes that are
used are very long. For example, a CD player uses codes of length up to n = 256 and the number
of words in the code is way over 2200. Obviously it is not practical, if not impossible, to enumerate
all the words in a code to check if a received word belongs to the code or not. We use instead parity

check matrices. For example, the code C8 above has the following parity check matrix:

�
1 1 1 0 0 0 1 0

0 0 0 1 1 1 0 1

�

This matrix is used as followed: a word (c1; c2; c3; c4; c5; c6; c7; c8) is in C8 if and only if

1. (1; 1; 1; 0; 0; 0;1;0) � (c1; c2; c3; c4; c5; c6; c7; c8) has even weight and

2. (0; 0; 0; 1; 1; 1;0;1) � (c1; c2; c3; c4; c5; c6; c7; c8) also has even weight

where the operation � consists of applying, bit to bit, the "and" de�ned as usual: by 0 = 0 � 0 =

0 � 1 = 1 � 0 and 1 = 1 � 1.

For example,

(1; 1; 1; 0; 0;0;1; 0) � (0; 1; 1; 1; 1; 0; 0;0) = (0; 1; 1; 0; 0; 0; 0; 0)

and

(0; 0; 0; 1; 1;1;0; 1) � (0; 1; 1; 1; 1; 0; 0;0) = (0; 0; 0; 1; 1; 0; 0; 0)

are two words of even weight thus (0; 1; 1; 1; 1;0; 0; 0)2 C8.

On the other hand, since (1; 1; 1; 0; 0; 0; 1;0) � (1; 1; 1; 1; 0;0; 0; 0) = (1; 1; 1; 0; 0; 0; 0;0) has odd
weight, the word (1; 1; 1; 1; 0;0;0; 0) is not in C8.

In general, if

H =

2
6664

h11 h12 � � � h1n
h21 h22 � � � h2n
...

...
. . .

...
hk1 hk2 � � � hkn

3
7775

is the parity check matrix of a code C and c = (c1; c2; : : : ; cn) is a binary word of length n then

c 2 C () (hj1; hj2; : : : ; hjn) � (c1; c2; : : : ; cn)has even weight for j = 1; 2; : : :k:

40 SPECIFICATION 8. ERROR DETECTING CODES

Problem

Your problem is to write a program that will compute the weight distribution of codes of length 32
which parity check matrix will be given in the input �le.

It is very di�cult to go through all words of length 32 in less thant one minute (you would need
to go through about 71.5 millions in less than a second). Nevertheless, your program should be able
to compute the partial weight distribution

wC(0); wC(1); : : :wC(l)

for l � 6. If your program is e�cient then it should be able to compute up to l = 7 if not l = 8.

Input �le

The �le you must read is �P08.ENT�.

In this �le, the �rst line contains an integer indicating up to which weight you must compute
the partial weight distribution of the code which parity check matrix is given on the following lines.
The "n" indicates that the preceding line is the last line of the parity check matrix. After the "n"
you will either �nd the input for another weight distribution calculation or an "F" indication that
there is no more computation to perform.

Following is an example of an input �le followed by the corresponding output �le.

.

5

11111111111111111111111111100000

01111111111111111111111111110000

00111111111111111111111111111000

00011111111111111111111111111100

00001111111111111111111111111110

00000111111111111111111111111111

n

6

10101010101010101010101010101010

11001100110011001100110011001100

11110000111100001111000011110000

11111111000000001111111100000000

11111111111111110000000000000000

11111111111111111111111111111111

n

F

/

Note: there is no blank between 0 and 1 in the line of a parity check matrix.

41

Output �le

You must write a �le called �P08.SOR� in which each line will contain the partial weight distributions
of the codes which parity check matrices were given in the input �le.

Here is the output �le for the example :

.

1 0 231 110 7325 7700

1 0 0 0 1240 0 27776

/

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 160

2 240

3 320

4 400

Maximum execution time for your program : 20 seconds.

42 SPECIFICATION 8. ERROR DETECTING CODES

Speci�cation 9

Binary Crosswords

Daniel Dalle

File to be produced containing your source code: P09_EQ##.*

One proposes to evaluate an algorithm of correction of error for a system of telecommunications
which takes as a starting point the the principle of redundancy that one �nds in the cross words.

The message to be transmitted on a channel of communication is appeared as a bit train.

message M) communication system) message M 0

Where the communication system is made up as :

M) coding) transmission) link) reception) decoding) M 0

In the communication link, errors can occur that deteriorate the binary message. If there are
no errors, M = M 0. If there is, then M 6= M 0. However, one can code the message M in order to
detect and correct a certain number of errors.

Note: we do not claim to present here a powerful algorithm of error correction, this is merely
a programming exercise.

The binary stream to code is divided into packets of N2 bits, which makes it possible to present
them like a square of N � N bits. The packet is made of bits of the original message placed line
after line in the reading order of the characters of a text. To transmit this " square " of bits, the
system sends initially the bits line after line and then, it repeats the message column after column.
At the end of each line and each column, the system inserts an error detection code of M bits. The
detection code is evaluated according to an algorithm described hereafter.

43

44 SPECIFICATION 9. BINARY CROSSWORDS

The corresponding system of reception decodes the message according to a reciprocal logic. The
error detection code received makes it possible to know if a line or a column contains an error by
comparing it with the calculated code.

To illustrate the principle, here is an example of a small size message of 64 bits. The binary
message is < b1 b2 . . . b63 b64 >. The message is represented in a square of N � N bits.
In the example, N equals 8.

b1 b2 b3 b4 b5 b6 b7 b8

b9 b10 b11 b12 b13 b14 b15 b16

b17 b18 b19 b20 b21 b22 b23 b24

b25 b26 b27 b28 b29 b30 b31 b32

b33 b34 b35 b36 b37 b38 b39 b40

b41 b42 b43 b44 b45 b46 b47 b48

b49 b50 b51 b52 b53 b54 b55 b56

b57 b58 b59 b60 b61 b62 b63 b64

It is equivalent to a crossword grid. In a received message there are uncertainties because several
bits may be deteriorated by transmission errors. One adds redundant information to detect and
correct these errors.

Considering this error possibility, the message is transmitted twice : �rst, line by line and then,
column by column, while adding after each line and each column an error detection code error of M
bits.

The �rst time, line by line:

b1 b2 b3 b4 b5 b6 b7 b8 < horizontal detection code 1 >

b9 b10 b11 b12 b13 b14 b15 b16 < horizontal detection code 2 >

b17 b18 b19 b20 b21 b22 b23 b24 < horizontal detection code 3 >

b25 b26 b27 b28 b29 b30 b31 b32 < horizontal detection code 4 >

b33 b34 b35 b36 b37 b38 b39 b40 < horizontal detection code 5 >

b41 b42 b43 b44 b45 b46 b47 b48 < horizontal detection code 6 >

b49 b50 b51 b52 b53 b54 b55 b56 < horizontal detection code 7 >

45

b57 b58 b59 b60 b61 b62 b63 b64 < horizontal detection code 8 >

The second time, column by column:

b1 b9 b17 b25 b33 b41 b49 b57 < vertical detection code 1 >

b2 b10 b18 b26 b34 b42 b50 b58 < vertical detection code 2 >

b3 b11 b19 b27 b35 b43 b51 b59 < vertical detection code 3 >

b4 b12 b20 b28 b36 b44 b52 b60 < vertical detection code 4 >

b5 b13 b21 b29 b37 b45 b53 b61 < vertical detection code 5 >

b6 b14 b22 b30 b38 b46 b54 b62 < vertical detection code 6 >

b7 b15 b23 b31 b39 b47 b55 b63 < vertical detection code 7 >

b8 b16 b24 b32 b40 b48 b56 b64 < vertical detection code 8 >

The detection codes are described hereafter.

By analogy with crosswords, the horizontal detection codes act as the the horizontal de�nitions
and the vertical codes as the vertical de�nitions.

We can �nd an algorithm which exploits this redundancy of information to eliminate the most
possible uncertainties and which repeatedly improve the solution just like in crosswords.

If a message is longer than N � N bits, it is segmented and the process is repeated on several
consecutive packets. If the last packet is incomplete, we complement the message with 0s.

In the problem to be treated, the dimension N of the square is �xed at 32 and the dimensionM
of the detection codes is 16.

Example : The example given at the end of the problem statement problem corresponds to a
message of 1024 bits with a square of 32� 32 and detection codes of 16 bits. The original message
of the example, shown line by line:

10000000000000000000000000000000

11000000000000000000000000000000

11100000000000000000000000000000

11110000000000000000000000000000

11111000000000000000000000000000

11111100000000000000000000000000

11111110000000000000000000000000

11111111000000000000000000000000

11111111100000000000000000000000

46 SPECIFICATION 9. BINARY CROSSWORDS

11111111110000000000000000000000

11111111111000000000000000000000

11111111111100000000000000000000

11111111111110000000000000000000

11111111111111000000000000000000

11111111111111100000000000000000

11111111111111110000000000000000

11111111111111111000000000000000

11111111111111111100000000000000

11111111111111111110000000000000

11111111111111111111000000000000

11111111111111111111100000000000

11111111111111111111110000000000

11111111111111111111111000000000

11111111111111111111111100000000

11111111111111111111111110000000

11111111111111111111111111000000

11111111111111111111111111100000

11111111111111111111111111110000

11111111111111111111111111111000

11111111111111111111111111111100

11111111111111111111111111111110

11111111111111111111111111111111

This example contains a very regular pattern but the test messages are completely random.

Calculation of the error detection codes: CRC 16 bits CCITT

The error-correcting code CRC corresponds to the remainder of a polynomial division of polynomials
whose coe�cients are the bits of the message by a constant polynomial. In practice the calculation
of the CRC is carried out very simply with single bits memory cells connected as a shift register on
which we apply XOR functions at each occurrence of a bit of the message according to the following
diagram :

Figure 9.1: Code CRC CCITT 16 bits

The operators
L

represent exclusif ORs (XOR).

47

The CRC is initialized to 0. For each bit of the message, the shift register is updated as follows:

Example of evolution :

sequence CRC

message MSb LSb

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+

bit 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0

bit 2 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0

bit 3 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0

...

etc ...

At the end of the message, the CRC is appended to the message starting with its LSb (least
signi�cant bit) Example :

Line of message: 10111010000100110000010000000000

Calculated CRC: 1011 0001 1111 0010

CRC from LSb to MSb 0100 1111 1000 1101

Transmitted code:

message------------------------- CRC-------------

10111010000100110000010000000000 0100111110001101

When the CRC is placed in this way, we observe the very useful property that a new CRC2
calculated on the message concatenated with the �rst CRC1 has a null value. If a bit was incoherent
with the CRC1, it would not be the case.

The new CRC calculated on the message concatenated with its first CRC:

message------------------------- CRC1------------

message + CRC1----------------------------------- CRC2------------

10111010000100110000010000000000 0100111110001101 0000000000000000

Problem

To write a program that decodes the messages coded and altered by errors during the transmission.
The program must detect the largest possible number of errors.

� At the input: a �le including a coded and deteriorated message. One does not know in advance
where the erroneous bits are; they can be either in the message itself or in the detection codes.

� At the output: a �le including only the original message decoded in which as much errors as
possible are corrected. The program receives only the coded and deteriorated �le.

The test is successful if all the errors are corrected. We guarantee that all the test �les can be
corrected completely.

48 SPECIFICATION 9. BINARY CROSSWORDS

Input File

The �le you must read is �P09.ENT�. The �les are text �les, they contain ASCII characters 0 ou 1.
The characters other than 0 or 1 and the line feeds must be ignored. Only the sequences of bits are
considered. The line feeds are present for the legibility of the �les only.

The following �le represents the example message coded et altered by errors.

.

100000000000000000000011000000001101110100111000

110000000000000100000000000000001011001110100100

111000000000000000000000000000001000010011101010

111100000000000000000000000000001001101101001101

111110000000000000000000000000000001101010001110

111111000000000000000000000000001101000001111111

111111100000000000000000000000000010110100010111

111111110000000000000000000000000100101110100011

111111111000000000000000000000000111000011011001

111110111100010000000000000000000110110101010100

111111111110010000000000000000001110101110010010

111111111111000000000000000000001010100011110001

111111111111100000000000000000000000000101010000

110111111111110000000000000000001101110110010000

111111111111111000000000000000001011001111110000

111111111110111100000000000000001000010011000000

111110111111111110000000000000001001111101011000

111111111111111111000000000000001001001010010100

111111111111111011100000000000001001010001110010

111111111111111111110000010000001001011100000001

111111111111111011111000000000000001111010101000

111111111111111111111100000000001101001001001100

111111111111111111111110000000001011010000001110

111101111111111111111111000000001000011100111111

111111111111111111111111100000000001011010110111

111111111111111111111111110000000101111001110011

111111111111111111111111111000000111101000010001

111111111111111111111111111100000110100000100000

111111111111111111111111111110001110100100101000

111111111111111111111111111110001010100110101100

111111111111111111111111101111101000110111101110

111111111111111111111111111111111101100111001111

111111111111111111111111111111111001100111011111

011111111111111101111111111111110100010011110111

001111111111111111111111111111110010101001101011

000111111111111111111111111111110001110100100101

000011111111111111101111111111110000011010000010

49

000001111111111111111111111111111000001101000001

000000111111111111111111111111110100100110110000

000000001111111111111111111111111010010011011000

000000001111111111111111111111111101001001101100

000000000111111111111111111111111110110100110110

000000000011111111111111111111111111010010011011

000000000001111111111111111111110111001001011101

000000000000111111111111111111110011000100111110

000000000000011111111111111111111001100010011111

000000000000001111111111111111110100010001011111

000000000000000111111111111111110010101000111111

000000000010000011111111111111110001110100001111

000000000000000001111110111111110000111010010111

000000000000000000111111111111110000101101011011

000000000000000000011111111111110000010100111101

000000000000000000001111111111110000111011001110

000000000000000000000111111111111000011101100111

000000000000000000000011111101110100101110100011

000000000000000000000001111111110010110111000001

000000000000000000000000111111110001111011110010

000000000000000000000000011111111000111101111000

000000000000000000000000001111111101011110111100

000000000000000000000000000111111110001111011110

000000000000000000000000000011111111000111101111

000000000000000000100000000001110111000011100111

000000000100000000000000000000110011000001100011

000000000000000000000000000000010001000000100001

/

There are 36 altered bits out of 3072 bits which form the complete coded message in this example
(an alteredbit is changed from 1 to 0 or reciprocally). The altered bits can be bits of message or the
detection codes.

The �rst part of these �les represents the message line by line. At the end of each line the 16-bit
error-correcting code is inserted.

The second part repeats this message column by column. At the end of each line of this part, we
�nd the 16-bit error-correcting code of the line which corresponds to a column of the original table.

Output File

The �le you must produce is �P09.SOR�. It contains the decoded message in the same format as the
original message with the corrected errors. The algorithm of this example did not leave any residual
error.

Here is the output �le corresponding to the example input �le :

.

50 SPECIFICATION 9. BINARY CROSSWORDS

10000000000000000000000000000000

11000000000000000000000000000000

11100000000000000000000000000000

11110000000000000000000000000000

11111000000000000000000000000000

11111100000000000000000000000000

11111110000000000000000000000000

11111111000000000000000000000000

11111111100000000000000000000000

11111111110000000000000000000000

11111111111000000000000000000000

11111111111100000000000000000000

11111111111110000000000000000000

11111111111111000000000000000000

11111111111111100000000000000000

11111111111111110000000000000000

11111111111111111000000000000000

11111111111111111100000000000000

11111111111111111110000000000000

11111111111111111111000000000000

11111111111111111111100000000000

11111111111111111111110000000000

11111111111111111111111000000000

11111111111111111111111100000000

11111111111111111111111110000000

11111111111111111111111111000000

11111111111111111111111111100000

11111111111111111111111111110000

11111111111111111111111111111000

11111111111111111111111111111100

11111111111111111111111111111110

11111111111111111111111111111111

/

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

51

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 240

2 360

3 480

4 600

Maximum execution time for your program : 10 seconds.

52 SPECIFICATION 9. BINARY CROSSWORDS

Speci�cation 10

The puzzle

Charles-Antoine Brunet

File to be produced containing your source code: P10_EQ##.*

Most of us have played with those small square puzzles where one must move the tiles one at a time
in order to reconstitute an image. The image must be reconstituted by moving repeatedly a tile into
the adjacent empty cell until the �nal image is obtained. These puzzles were invented by Sam Loyd
in 1878.

Problem

The goal is to move tiles from an initial state or arrangement, until the desired �nal state is reached
. The only allowed moves are a horizontal or vertical displacement of a tile into the free adjacent
cell. The �gure 10.1 shows some examples of possible moves.

12

8

4

1

13

5

6

2

14

9

3

15

10

11

7

-

6

�?

12

8

4

1

13

9

5

2

14

20

6

3

15

10

7

-

6

Figure 10.1: Examples of possible moves for a puzzle with dimension N = 4.

53

54 SPECIFICATION 10. THE PUZZLE

The puzzle must be square and has only one free cell called the hole. The square is of side N
with N � 3. The number of cells in the puzzle is thus N2 and the cells are numbered from 0 to
N2� 1 from left to right, top to bottom, as illustrated with the �gure 10.2. The tiles are numbered
1 to N2 � 1 and the hole has the number 0. The required �nal state is always the same one: the
tiles above the cells with the same cell number and the hole above the cell 0.

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

Figure 10.2: The numbering of cells for a puzzle with dimension N = 4.

Input File

The �le you must read is �P10.ENT�.

The input �le gives the dimension of the puzzle (N) on the �rst line and the initial state on the
following line. The initial state indicates which tile is above which cell, by ascending order of cell
number. Here is an example of the input �le which represents the problem of the �gure 10.3.

.

4

1 2 3 7 4 6 0 11 8 5 9 10 12 13 14 15

/

The dimension of the puzzle(N) can be between 3 and 10. The problem is guaranteed to have a
solution.

12

8

4

1

13

5

6

2

14

9

3

15

10

11

7

Figure 10.3: Example of problem with a puzzle of dimension N = 4.

55

Output File

You must write the �le �P10.SOR � which will contain your sequence of displacements of the hole
required to reach the �nal state starting from the initial state. The displacement of the hole from a
cell to another is only given by the cell destination, the preceding cell being known. The following
is an example of an output �le that gives the solution to the problem of �gure 10.3. It is also the
solution to the problem.

.

5 9 10 11 7 3 2 1 0

/

Marking

The problem will be marked by submitting your program to four di�erent input test �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output�le in the proper format.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 240

2 360

3 480

4 600

Maximum execution time for your program : 10 seconds.

