
QUESTIONNAIRE DE

LA FOLLE COURSE INFORMATIQUE

THE MAD PROGRAMMING RACE

PROBLEMS

Département de génie électrique et de génie informatique
Facultéde génie

Département de génie électrique et de génie informatique

Computer Science Department

Novembre 1999

2

A few words on the Mad

Programming Race

This already the 5th edition of the �La Folle Course Informatique� or �The Mad Programming
Race�. By way of a short story, the �rst competition was held in Sherbrooke and organized by
the Department of Electrical and Software engineering. The 2nd, 3rd and 4th edition involved the
participation of the École Polytechnique de Montréal which held the competition on its campus
while it was run simultaneously in Sherbrooke. This year will be associated with � Le prix AbacUS �
and a bilingual questionnaire thanks to the collaboration of Bishop's University. This also explains
why our name is now bilingual.

We want to thank Jean-Marie Dirand (professor at the Université de Sherbrooke) for having
read the questionnaire and making many pertinent remarks. Others who took part in the drafting
of the questionnaire and in the writing of the programs must be also thanked. Here is the list
in alphabetical order: Alex Boisvert, Paule Bolduc, Jean-Denis Boyer, Paul-André Chassé, Nicolas
Courtemanche, Guillaume Coté, Rusty Deschênes, Jean-Yves Hervé, Nelly Khouzam, Roch Lefebvre,
Benoît Parent, Nicolas Pelletier, Ginette Roy.

Martine Bellaïche, École Polytechnique de Montréal.
Gaétan Haché, Bishops University.
Ruben Gonzalez-Rubio, Université de Sherbrooke.

i

ii

Introduction

Read this preamble with the questionnaire of the �fth edition of the Mad Programming Race. It
contains a summary of the rules and various instructions related to the handing-over of the programs.

The Mad Programming Race

The Mad Programming Race is a programming competition. The participating teams must write
programs according to given speci�cations. Each program that successfully runs earns points for the
team and the winning team is the one that accumulates the most points.

For each problem, you must conceive a C, C++ or Java program 1 that respects the speci�cations.
This program will be tested with one or more testing �les, a number of points will be granted to
you according to the number of �les correctly treated by your program. The number of tests and
points corresponding is indicated at the end of each problem. The same sets of testing �les be used
to evaluate the programs of all the teams.

New rules for bonus points For a particular problem, bonus points will be given to teams
whose programs will successfully pass all the testing �les. The amount of the bonus will be deter-
mined according to the di�culty of the problem and the time of submission.

The following table indicates how the bonus points will be granted:

Problem number Bonus at t0 Bonus at the end of the race

1, 2 30 % 0 %

3, 4, 5, 6, 7, 8 40 % 0 %

9, 10 50 % 0 %

where t0 is the starting time of the competition and tf is the end of the competition.

Hence, bonus points decreases in a linear way, as time advances. For example, if after four hours
of competition a team hands-over the program for question 10 and that it passes all the tests, it has
a bonus of 25 %. If a team hands-over the program for question 10 after six hours of competition
and it passes all the tests, it earns a bonus of 12,5 %.

1In Sherbrooke we chose these three languages, however, the corrector may allow other compiled languages to be

used. If your local organization chooses to use a di�erent language, it is necessary then to consult the particular

procedures for the handing-over of programs. In the questionnaire, we refer only to the C, C++ and Java languages.

iii

iv

The bonus is a percentage calculated according to the following formula:

B = p�
tr

tt

where, B is the percentage bonus to be granted, p is the starting percentage at t0, tr is time remaining
when the program is delivered and tt is the total time of the race. The granularity of time is that
of the marker and is estimated at two seconds.

In a sentence, the quicker the program is handed-over, the larger is the bonus, of course provided
that the program passes all the tests.

In eight hours, it is not very probable but not impossible that a team has su�cient time to
program all the problems presented. You will have to show judgement by choosing the problems
you try to solve.

We tried to present the problems in a uniform way and without ambiguity. Each statement
comprises a description and speci�cation of the problem to be solved, as well as examples and �les
that could be needed for the problem.

At the end of the race, the classi�cation of the teams will be established according to the total
of the points accumulated for each handed-over program. In the possibility where two teams would
obtain an equal number of points, the �rst to reach that number of points will be the winning team.

Handing-over programs

You must hand-over only one source �le for each problem. This �le will have the extension �.C� if
it must be compiled in C, �.CPP� if it is in C++. The �rst part of the name will be made up of the
number of the problem followed by the number of your team according to the format �P##_EQ##�.
For example, problem 3 of team 9, coded in C++, would bear the name �P03_EQ09.CPP� and
�P03_EQ15.CPP� for the same problem of team 15. In Java, and for problem 3 team 9, the source
�le �p03_eq09.java� must contains a class named �p03_eq09� which must contains the main. Be
careful to write the class name in lower cases since Java is case sensitive: this is very important for
the correction. Since you must submit only one �le (exactly one for each problem), if you want to
de�ne more than one class they must be non-public or inner-class. The name of the �le comprises
exactly 8 characters before the point. Files which do not conform to this format will not be

considered for correction.

Each handed-over �le will be compiled in order to produce an object program. This program
will be run several times with the testing �les. The output �les will be analyzed in order to check
whether they are in conformity with the speci�cations, and the points will be granted accordingly.
A program must compile without any error (warnings will be tolerated). A program which does
not compile will not thus be given any point. With the correction, the outputs on the console (like
printf or others) are also tolerated, but the execution time increases quickly. It is thus advised to
avoid them in order not to exceed allocated time. Note that your source code will not be examined
so you have total freedom on the programming style you will use.

Note that the correction is automated and is carried out during the race in real time. Unless
there is a technical problem with the correction system, you will be able to consult your results on
a monitor and this a few moments after you handed-over your program.

v

The inputs and outputs are always done via ASCII text �les. Those will be named according to
the number of the problem with the format �P##.ENT� for input �les and �P##.SOR� for output �les.
The ## indicates the number of the problem, it varies between 01 and 10. Their contents and how
to use them is clearly de�ned in the statement of each problem. Moreover, one example is presented
for each one of these �les.

Take for granted that the input �les which will be used to test your programs will follow rigorously
the format which is indicated in each problem. The examples of �les shown in the text will be
provided to you.

It is crucial that the �les produced by your programs respect the speci�cations

rigorously since they will be automatically corrected.

When you hand-over your program for its evaluation, you have to copy it in a � deposit box
� which will be indicated to you at the time of the race as well as the exact procedure. You will
be able to deposit only once your solution to each problem. Once a program is handed-over, no
modi�cation will be accepted. If you deposit your program again, the new copy will be ignored.

The rules

� Only one computer will be assigned to each team. A team can use only the computer which
is assigned to it. In the event of a breakdown, the team has to wait until an organizer assigns
a new computer.

� A study room near the computer room will be available to the teams.

� You have the right to bring and to use any relevant documentation, as long as it is printed or
hand-written. Any material support (other then documents) is prohibited during the race, in-
cluding portable diskettes and computers. A team bringing such unauthorized material

will be automatically disquali�ed.

� The local area network will be cut from the external world and therefore Internet will not be
usable.

� In order to avoid annoying accidents, any food or drink will be prohibited in the computer
rooms.

� We count on the honesty and the good faith of the participants.

Final Remarks

The Mad Programming Race is organized by a team of voluntary members, which is renewed with
each edition. We endeavor to write speci�cations as clearly as possible.

We wrote programs to the speci�cations of the problems, we wrote the sets of testing �les and
program correctors by devoting much e�ort and time. Even during the race, we check in order to
make sure that all is �ne and that everything occurs in an equitable way. However, we do not claim

vi

perfection! For this reason, we ask you to call upon your �computer-sportsmanship� spirit in order
to accept the �o�cial� classi�cations given at the end of the race. Indeed, it is practically impossible
to change the distribution of the prices if changes in the classi�cation occurred. We think that
the greatest reward associated with this competition is satisfaction to have made an e�ort to write
programs and hopefully to have learned something. However, we are open to remarks which could
improve the future competitions or which inform us with an error.

The �Grand Prix AbacUS� will be allotted after a few days to make sure that all the possible
checks were made.

Conventions used in the questionnaire

To indicate the beginning and the end of a �le we use the symbols . and / respectively. Of course
these symbols do not form part of the �le.

For example, the following �le contains only one line with the chain hello.

.

hello

/

Contents

1 The detective 3

2 The hidden words 11

3 The Lottery 15

4 Latin Square 21

5 Links 25

6 Queue Simulation 29

7 Bridges on the Internet 33

8 Honey, I blow my fuse! 39

9 The Powerline 47

10 The Cat and the Mouse 53

vii

viii CONTENTS

The Speci�cations

1

Speci�cation 1

The detective

Paul-André Chassé

File to be produced containing your source code: P01_EQ##.*

Most of all children dreamt one day of becoming a detective like Poirot, Sherlock Holmes or Colombo.
The game Clue of PARKER BROTHER makes it possible for anyone to test their logical deduction
capacity. The rules of this game are so simple that it is often believed that it is by chance that one
wins the game. That is certainly not always the case, for it often happens that one of the players
seems to have a particular gift to �nd the solution after only a few guesses. If you are such a player,
this problem is for you.

The rules

The game is played between 3 and 6 players.

The goal of the game is to solve the enigma of the assassination of the owner of a castle whose
body was found in one of the rooms of his castle. To win the game, it is necessary to answer three
questions:

1. Who is the culprit?

2. With which weapon was the crime committed?

3. In which room did the crime take place?

The original game comprises the following accessories:

� a small playing board illustrating the nine rooms of the castle,

3

4 SPECIFICATION 1. THE DETECTIVE

� a die,

� six pawns of colors representing the six suspects,

� six miniature weapons and

� a deck of 21 cards which contains:

� one card for each of the six suspects,

� one card for each of the six weapons,

� one card for each room of the castle.

The cards are only used to represent the suspects, the weapons and the rooms of the castle and
do not have any numerical value.

The preparations for the game are as followed: If it is not already done, one of the players, the
dealer, groups the cards in three smaller decks, one deck for each of the following:

� suspect cards,

� weapon cards,

� room cards.

Each of the three decks is shu�ed and placed face down on the table. Then, without looking
at it, the dealer takes a card on each of the three decks and puts the three of them in an envelope
which is put in the center of the playing board. This envelope contains the solution which the players
will try to discover, i.e. the culprit, the weapon and the room. The remaining cards of the three
decks are mixed together then distributed to the players, one by one, starting at the dealer's left
and continuing clockwise until all the cards are given.

The pawns are put on their starting box on the playing board and each player chooses one of the
pawns by taking the one which is closest to him. Usually the player who has the red pawn begins
the game.

The game proceeds as follows:

The players play in turns, the �rst one to play is the one with the red pawn. At each one of
his turns, a player tries to bring his pawn in one of the rooms by moving it the number of boxes
corresponding to the number (1 to 6) he obtained by throwing the die. If the number obtained
by the die is su�ciently high to make it possible to enter one of the rooms, the player can choose
to enter this room and make a guess. The goal of the guess is to determine by elimination which
cards are in the envelope. The guess must comprise exactly one of the suspects, exactly one of the
weapons and exactly the room in which the pawn of the player is. The suspect and the weapon are
the choice of the player. The player makes a verbal announce of his guess to the other players.

When a guess is made, the player immediately to the left of the player that made the guess must
check if he has one of the cards named in the guess. If so, he must show it only to the player who
made the guess. That proves that the guess was wrong since the shown card is not in the envelope.
The player who made the guess then notes the card in his detective notebook and the game continues.

5

If the player to the left of the one that makes a guess cannot prove that the assumption is false, i.e.
he does not have any the cards named in the guess, then the following player will check if he has
one of the cards named in the guess and so on. Note that even if a player has more than one card
named in the guess, he shows only one of them, one of his choice, to the player who made the guess.

If none of the other players can prove that the guess is false, the player who made the guess can
either �nish his turn or carry a charge. A player carries a charge when he believes that he knows
which cards are in the envelope. A player carries a charge by naming the three cards he believes to
be in the envelope. Then he looks at the cards in the envelope making sure that nobody else than
him can see them. If the cards in the envelope are those that he named, he then shows them to
everyone and wins the game. If he was mistaken, he puts the cards back in the envelope and the
game continues with the other players. The player who makes a false charge loses the game but his
cards are still available to the other players as if he was still playing.

When a player believes he has guessed the solution, he must await his turn to play to carrying
charge. Note that it is not necessary to be in a room nor to make a guess as a preliminary to carry
a charge. It is also allowed to make a guess and on the same turn carry a charge, even if the guess
is wrong.

In order to obtain information more quickly or simply to mislead his adversaries, a player who
makes a guess can name one or more cards he has in his hand.

Problem

We put in a �le the key elements of the game outcome Clue as seen by the winning player. We
omitted just a small detail, the �nal charge.

From the information contained in the input �le, you must write a program which will �nd the
three cards of the �nal charge.

For copyrights reasons, we changed the name of the characters and the intrigue of the play. The
rules of the game remain however the same. The goal of our version of the game consists in �nding:

1. Who damaged the Nissan Maxima of the vice-chancellor of the University of Sherbrooke1?

2. Which kind of vehicle the culprit was driving?

3. In which parking lot the o�ense took place?

In our game the possible suspects are:

Suspect Code

The senior of the FLSH 1

A bus driver 2

A former vice-rector 3

The Minister of education 4

A poor student 5

A rich student 6

The possible vehicles are:

1This is a game, the characters and the components are �ctitious and without any connection with reality.

6 SPECIFICATION 1. THE DETECTIVE

Vehicle Code

a minibus from the CMTS 7

A blue limousine 8

A 1976 CCM Targa bicycle 9

A red Jeep 10

A red Honda Civic CRX 11

A blue Hyundai 12

The possible parking lots are:

Parking lot Code

Green parking lot of the Central House 13

Parking lot of the Sporting Center 14

Parking lot of the FLSH 15

Parking lot of the Faculty of Administration 16

Parking lot of J.S. Bourque building 17

Parking lot of the Carrefour de l'Estrie 18

Parking lot of Cinema 9 19

Parking lot of the St-Hubert Restaurant 20

Parking lot on Wellington south 21

In order to simplify the inputs/outputs of your program, we will use the numeric codes indicated
in the second column of the preceding tables in order to identify the suspects, the vehicles and the
parking lots.

The players will be also represented by whole numbers. The player having the red pawn, which
for this problem will be also the dealer, is number 1. The player on his left is number 2 and so on.

Here in detail the outcome of the game corresponding to the input �le given in the example of
the next section:

1. The game was played by three players and your program will have all the information available
to player #3 who won the game.

2. After the cards of the culprit, his vehicle and parking lot were put in the envelope, the 18

remaining cards were distributed.

3. Player #3 received the 6 following cards:

(a) The senior of the FLSH

(b) a poor student

(c) green parking lot of the central house

(d) parking lot of the sporting center

(e) parking lot of the Carrefour de l'Estrie

(f) Parking lot of the St-Hubert restaurant

4. Player #1 throws the die and succeeds in entering the parking lot of the St-Hubert restaurant.
He declares:

7

I suspect the minister of education of having damaged the Nissan Maxima of the
vice-chancellor while driving the blue Hyundai in the parking lot of the St-Hubert
restaurant.

5. Player #2 looks at his cards and since he has at least one of the cards related to the guess
made by player #1, player #2 chooses one of these cards and shows it to player #1. Player
#1's guess being false, he chooses to pass his turn.

6. Player #2 throws the die and succeeds in entering the parking lot of the J.S. Bourque building.
He declares:

I suspect the bus driver of having damaged the Nissan Maxima of the vice-chancellor
while driving a red Jeep in the parking lot of the J.S. Bourque building.

7. Player #3 looks at his cards and says: I do not have anything to prove that this guess is false.
Player #1 looks at his cards and says: I do not have anything to prove that this guess is false.

8. Although no other player could prove that the guess was false, player #2 chooses to pass his
turn without carrying a charge.

9. Player #3 throws the die and succeeds in entering the parking lot of the St-Hubert restaurant.
He declares:

I suspect the rich student of having damaged the Nissan Maxima of the vice-
chancellor while driving a red Jeep in the parking lot of the St-Hubert restaurant.

10. Player #1 looks at his cards and says: I do not have anything to prove that this guess is false.
Player #2 looks at his cards and says: I do not have anything to prove that this guess is false.

11. Although no other player could prove that the guess was false player #3 chooses to pass his
turn without carrying a charge.

12. Player #1 throws the die and succeeds in entering the parking lot of Cinema 9. He declares:

I suspect the senior of the FLSH of having damaged the Nissan Maxima of the
vice-chancellor while driving a blue Hyundai in the parking lot of Cinema 9.

13. Player #2 looks at his cards and says: I do not have anything to prove that this guess is false.
Player #3 looks at his cards and since he has at least one of the cards he shows one to player
#1. His guess being false, player #1 chooses to pass his turn.

14. Player #2 throws the die but does not obtain a su�cient result to enter another parking lot.
His turn �nishes without him being able to make a guess.

15. Player #3 throws the die and succeeds in entering the parking lot of Cinema 9. He declares:

I suspect the minister of education of having damaged the Nissan Maxima of the
vice-chancellor while driving a 1976 CCM Targa bicycle in the parking lot of Cinema
9.

8 SPECIFICATION 1. THE DETECTIVE

16. Player #1 looks at his cards and says: I do not have anything to prove that this guess is false.
Player #2 looks at his cards and since he has at least one of the cards he shows one to player
#3. The card shown by player #2 is the one of the Minister of education.

17. Although his guess is wrong, player #3 has accumulated su�cient information to carry a
charge. He says then:

18. I accuse the rich student to have damaged the Nissan Maxima of the vice-chancellor while
driving a red Jeep in the parking lot of Cinema 9.

19. Player #3 opens the envelope and �nds out that his charge is good and he wins the game.

The Input File

The input �le is named �P01.ENT�. It contains between 4 and 40 lines.

The �rst line of this �le contains a whole number j corresponding to the number of players for
this game (3 � j � 6).

The second line contains a whole number g corresponding to the number of the player that won
the game.

The third line contains a succession of whole numbers separated by one or more spaces. These
numbers are the numeric codes (given in the previous section) corresponding to the cards that the
player number g received at the beginning of the game.

Each following line until the one before last contains 6 whole numbers separated by one or more
spaces. These numbers give information related to a guess made by one of the players during the
game:

� the �rst number indicates the number of the player who made the guess.

� the three following numbers indicate the numeric code of the suspect, the vehicle and the
parking lot that were indicated in the guess.

� the �fth number is the number of the player who contradicted the guess. A zero �0� indicates
that no player was able to contradict the guess.

� If the player who made the guess is the winning player then the sixth number corresponds to
the numeric code of the card that was shown to prove that the guess was wrong. If the player
who made the guess is not the player that won the game, the sixth number is zero �0�.

Hint: You can always assume the following: When a player, di�erent than player g (the winner),
makes a guess which is not contradicted by any other players then you may assume that this player
made a guess having in his hand at least one of the cards related to his guess.

The last line of the input �le contains 6 zeros separated by spaces (0 0 0 0 0 0) to indicate to
your program that it has all the necessary information to discover the three cards in the envelope.

Here for example, the input �le corresponding to game in the previous section:

.

9

3

3

1 5 13 14 18 20

1 4 12 20 2 0

2 2 10 17 0 0

3 6 10 20 0 0

1 1 12 19 3 0

3 4 9 19 2 4

0 0 0 0 0 0

/

Output File

You must write the �le �P01.SOR� which will contain a line with three integers separated by spaces.
These three numbers correspond to the �nal charge. The �rst number corresponds to the numeric
code of the culprit, the second to the numeric code of the vehicle and the third to the numeric code
of the parking lot.

Here, for example, the output �le corresponding to the input �le given previously.

.

6 10 19

/

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 80

2 120

3 160

4 200

Maximum time of execution of your program : 20 seconds.

10 SPECIFICATION 1. THE DETECTIVE

Speci�cation 2

The hidden words

Ruben Gonzalez-Rubio et Jean-Denis Boyer

File to be produced containing your source code: P02_EQ##.*

This problem scans for words in a square grid of letters. Its di�culty is to know how to read in
any direction.

Problem

Consider a square grid containing the capital letters (ASCII characters [A.. Z]). We want to count
all the occurrences of a word (a character string containing capital letters).

A word m is in a text T if there is a sub-chain of T equal to the chain m. Following are the
�reading rules� to �nd a word in the text.

The word has to hold on one line, column or diagonal1. Following are the ways that a word can
be read in the grid:

� on a line (horizontal)

� From left to right;

� from right to left;

� on a column (vertical)

� From top to bottom;

� From bottom to top;

1A word cannot start on a line, column or diagonal to end on another line, column or diagonal

11

12 SPECIFICATION 2. THE HIDDEN WORDS

� on a diagonal:

� From left to right;

� From top to bottom

� From bottom to top;

� From right to left;

� from top to bottom;

� from bottom to top;

The input �le

The input �le you must read is �P02.ENT�. It is divided in three parts.

The �rst part is the �rst line of the �le containing the word to seek. Its size lies between 1 to 64
characters. The second part is an integer n which is size of the grid (a grid of size n is a n�n grid,
i.e. n lines and n columns). The value of n range between 1 and 256. The third part is the grid
itself: at this point in the input �le until the end of the �le, each line correspond to a line in the
grid. Such a line in the �le contains n ASCII capital letters seperated by one or more blank spaces.

Each part of the input �le are separated by a blank line.

.

ABACUS

7

A B A C U S A

B B X Z B B S

A B A B A U W

C Q C C C G R

U U U A U M J

S S B B Y S D

L A R R G R B

/

Output �le

You must write in the �le �P02.SOR�. This output �le must contain the number of occurrences of
the word in the grid.

.

5

13

/

In order to clarify the problem, here another example of input �le and its corresponding output
�le (answer):

.

ABA

7

A B A C U S A

B B X Z B B S

A B A B A U W

C Q C C C G R

U U U A U M J

S S B B Y S D

L A R R G R B

/

Output �le:

.

16

/

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 80

2 120

3 160

4 200

Maximum time of execution of your program : 20 seconds.

14 SPECIFICATION 2. THE HIDDEN WORDS

Speci�cation 3

The Lottery

Paul-André Chassé

File to be produced containing your source code: P03_EQ##.*

In certain lotteries, the playermust choose n numbers from a set of integers from 1 tom inclusively
where m � n. The �rst prize is won if at least one of the players chose exactly the same n numbers
as those obtained from a draw which is generally carried out with a mechanical device that randomly
chooses n balls numbered from 1 to m. The n numbers corresponding to the n balls drawn are then
sorted in ascending order to easily recognize the winning combination.

For example, in lottery 6/49, the winning combination is made up of 6 numbers ranging between
1 to 49. If, during a drawing, the �rst number to came out is 23, the second is 42, the third is
17, the fourth is 2, the �fth 18 and �nally the sixth 33, then the winning combination will be
f2; 17; 18; 23; 33; 42g.

The Problem

In the remainder of this text the following symbols are used:

A series of numbers between f and g is used to represent a combination. For example f1; 2; 3; 4; 5; 6g
and f2; 5; 7; 8;10;11g.

The symbol faig
n
i=1 represents a combination of n numbers where, for i = 1; 2; : : :n, each ai is

an integer between 1 and m. Hence faig
6
i=1 is equivalent to fa1; a2; a3; a4; a5; a6g.

The symbol Cn
m represents the number of combinations of n elements among m elements. One

calculates this number by using the formulaCn
m = m!

n!(m�n)!
. One easily sees that the number Cn

m is

exactly the number of all possible combinations in a lottery of the type we described.

15

16 SPECIFICATION 3. THE LOTTERY

We want to assign to each combination an integer index ranging between 1 and Cn
m and such that

each combination corresponds to only one index and each index corresponds only to one combination.
One can suppose that we will build a table with two columns containing Cn

m lines, each line being
indexed from 1 to Cn

m and containing one combination.

The �rst column will be reserved for the indices which go from 1 to Cn
m. On the �rst line, the

index is 1, on the second line the index is 2 and so on.

The second column will contain all the Cn
m possible combinations laid out while following the

following rules:

1. The numbers forming a combination must be in ascending order, i.e. from smallest to largest
when going from left to right.

2. The combination to be registered on the �rst line is ai = i for i = 1; 2; : : :; n. For n = 6 the
�rst combination is f1; 2; 3; 4; 5;6g.

3. For the subsequent lines of the second column, the combination to be registered is built by
incrementing the combination registered on the preceding line according to the algorithm 1

Algorithm 1: Next combination

Input: n;m; Combination[index]
Output: Combination[index+ 1]
NextCombination(n, m, Combinationindex)
(1) faig

n
i=1 Combinationindex

(2) if (a1 == (m � n + 1))
(3) return ''No other combination''

(4) i n

(5) while (ai == (m � n+ i))
(6) do

(7) i i � 1
(8) od

(9) ai ai + 1
(10) while (i < n)
(11) do

(12) ai+1 ai + 1
(13) i i + 1
(14) od

(15) Combinationindex+1 faig
n
i=1

(16) return Combinationindex+1

Here are examples from lotto 6/49.

Example 1.

The combination registered in line 1 is f1; 2; 3; 4;5; 6g. The last value of this combination is 6
as 6 is not equal 49, the combination to be registered in line 2 is f1; 2; 3; 4;5; 7g.

Example 2.

17

The combination registered in line 44 is f1; 2; 3; 4; 5;49g since the 6th element is equal to 49
and that 5 is not equal to 48, the combination to be registered in line 45 is f1; 2; 3; 4; 6; 7g.

Example 3.

The combination registered in line 1711512 is f1; 37; 46; 47;48;49g. Since the 6th, 5th, 4th and
3rd elements are equal to their respective limit and that 37 is not equal to 45, the combination
to be registered with the line 1711513 is f1; 38; 39; 40;41; 42g, and for the line 1711514 the
combination is f1; 38; 39; 40; 41; 43g.

Example 4.

The combination registered in line 1712304 is f1; 45; 46; 47;48;49g. Since the 6th, 5th, 4th, 3rd
and 2nd elements are equal to their respective limit, the combination with the line 1712305 is
f2; 3; 4; 5;6; 7g.

4. The combination registered on the last line is faig
n
i=1 such as ai = (m�n+i); for example, with

the 6/49 lottery (n = 6 and m = 49), the last combination in the list is f44; 45; 46;47;48;49g.

Here is a complete example.

For a lottery of the type 3/7 the number of combinations would be 35. By using the criteria of
classi�cation given by the algorithm, the 35 combinations would be ordered as in table 3.1

Your work consists in writing a program that:

� will instantaneously �nd the index corresponding to a given 6/49 combination.

� moreover, your program will also have to do the opposite work, i.e. for any index read in entry,
it must �nd the corresponding combination instantaneously.

Last detail, for this problem, there is no complementary number (as in the actual 6/49 lottery).

Input File

The �le that your program must read is �P03.ENT�. This �le will contain at most 50 000 lines.

The �rst line of this �le contains a code which indicates in which direction, for all this �le, your
program must carry its work.

The number 1 indicates that each following line contains a combination for which you must
calculate the index.

The number 2 indicates that each following line contains an index for which you must �nd the
corresponding combination.

The format of all the remaining lines depends on the code of the �rst line

If the code is 1, then a line consists of 6 integers separated by a space.

If the code is 2, then a line consists of a single integer.

.

18 SPECIFICATION 3. THE LOTTERY

Index Combination

1 1, 2, 3

2 1, 2, 4

3 1, 2, 5

4 1, 2, 6

5 1, 2, 7

6 1, 3, 4

7 1, 3, 5

8 1, 3, 6

9 1, 3, 7

10 1, 4, 5

11 1, 4, 6

12 1, 4, 7

13 1, 5, 6

14 1, 5, 7

15 1, 6, 7

16 2, 3, 4

17 2, 3, 5

18 2, 3, 6

19 2, 3, 7

20 2, 4, 5

21 2, 4, 6

22 2, 4, 7

23 2, 5, 6

24 2, 5, 7

25 2, 6, 7

26 3, 4, 5

27 3, 4, 6

28 3, 4, 7

29 3, 5, 6

30 3, 5, 7

31 3, 6, 7

32 4, 5, 6

33 4, 5, 7

34 4, 6, 7

35 5, 6, 7

Table 3.1: Index and combinations

19

1

1 2 3 4 5 6

1 2 3 4 5 49

1 37 46 47 48 49

1 45 46 47 48 49

2 3 4 5 6 7

2 4 20 32 39 41

2 9 10 15 48 49

2 16 26 42 43 47

3 5 19 21 24 41

3 10 16 36 41 43

3 21 22 29 42 43

4 8 10 14 15 48

4 14 24 28 32 41

5 7 11 37 38 43

6 7 17 32 39 40

7 9 11 15 28 36

8 12 15 17 29 44

9 19 32 34 35 45

11 17 21 29 32 41

44 45 46 47 48 49

/

Output �le

You must write the �le �P03.SOR�. This �le will have the same format whatever the format of the
input �le. It will contain the same number of lines as the input �le less one line. On each line, you
will write index of the combination followed by a space and then the 6 numbers of the corresponding
combination separated by spaces.

.

1 1 2 3 4 5 6

44 1 2 3 4 5 49

1711512 1 37 46 47 48 49

1712304 1 45 46 47 48 49

1712305 2 3 4 5 6 7

2000000 2 4 20 32 39 41

2500000 2 9 10 15 48 49

3000000 2 16 26 42 43 47

3500000 3 5 19 21 24 41

4000000 3 10 16 36 41 43

4500000 3 21 22 29 42 43

5000000 4 8 10 14 15 48

5500000 4 14 24 28 32 41

20 SPECIFICATION 3. THE LOTTERY

6000000 5 7 11 37 38 43

7000000 6 7 17 32 39 40

8000000 7 9 11 15 28 36

9000000 8 12 15 17 29 44

10000000 9 19 32 34 35 45

11000000 11 17 21 29 32 41

13983816 44 45 46 47 48 49

/

Points

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 120

2 180

3 240

4 300

Maximum time of execution of your program : 20 seconds.

Speci�cation 4

Latin Square

Guillaume Coté

The great mathematician Leonhard Euler (1707-1783) introduced latin squares as a "nouvelle espèce
de carrés magiques" (a new kind of magic squares). A latin square of order n is an n by n array of
symbols in which every symbol occurs exactly once in each row and only once in each column.

The problem

In the following we consider a latin square of order 9 with one more restriction: in each of the 9
small 3� 3 squares it is also required that the numbers 1 to 9 appears once and only once.

For this problem you will be given an incompleted latin square.

6 4 9 5

4 3 7 6

8 1 3 9

1 7 5 2

8 4 3 6

5 9 8 1

7 8 5 4

6 2 7 8

5 2 4 7

It is the job of your program to �nd a number into each box so that each row across, each column
down, and each small 3� 3 square within the larger square (there are 9 of these) will contain each
number 1 through 9.

21

22 SPECIFICATION 4. LATIN SQUARE

2 6 1 4 3 9 8 5 7

4 9 3 7 8 5 6 1 2

5 7 8 6 1 2 3 4 9

1 4 7 8 5 6 2 9 3

9 8 2 1 4 3 7 6 5

3 5 6 9 2 7 4 8 1

7 1 9 3 6 8 5 2 4

6 2 4 5 7 1 9 3 8

8 3 5 2 9 4 1 7 6

The input �le

The �le that you must read is �P04.ENT�. The empty boxes to �ll are indicates by a _. The numbers
(from 1 to 9) and the empty boxes are sperated by a blank space. An input �le will contains exactly
nine (9) lines, each of them having 9 symbols.

.

_ 6 _ 4 _ 9 _ 5 _

4 _ 3 7 _ _ 6 _ _

_ _ 8 _ 1 _ 3 _ 9

1 _ 7 _ 5 _ 2 _ _

_ 8 _ _ 4 3 _ 6 _

_ 5 _ 9 _ _ _ 8 1

7 _ _ _ _ 8 5 _ 4

6 2 _ _ 7 _ _ _ 8

_ _ 5 2 _ 4 _ 7 _

/

The output �le

You must write in the �le �P04.SOR�. It is a table of integers separated by blanks, 9 integers for each
line and obviously with 9 lines.

Following is the output �le corresponding to the input �le above.

.

2 6 1 4 3 9 8 5 7

4 9 3 7 8 5 6 1 2

5 7 8 6 1 2 3 4 9

1 4 7 8 5 6 2 9 3

9 8 2 1 4 3 7 6 5

3 5 6 9 2 7 4 8 1

7 1 9 3 6 8 5 2 4

23

6 2 4 5 7 1 9 3 8

8 3 5 2 9 4 1 7 6

/

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program returns the proper result.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 120

2 180

3 240

4 300

Maximum time of execution of your program : 20 seconds.

24 SPECIFICATION 4. LATIN SQUARE

Speci�cation 5

Links

Martine Bellaïche, Jean-Yves Hervé

File to be produced containing your source code: P05_EQ##.*

In the operating system Unix or Linux, there is an important command which makes it possible to
create symbolic links to a �le. These links make it possible to save memory space on a hard disk.
For simpli�cation, the name of a �le represents a certain region of the memory space on the disk
where the data contained in the �le are saved. Starting from this �le, one can create a link which
points to the same region of memory on the hard disk. One can then starting from this link establish
another one; and starting from this other link one can create another one, and so on in order to
obtain a list of links starting from the source �le.

The Problem

Example of only one list of links.

The pair fortran cobol identi�es a link between the source element fortran and the destination
element cobol, i.e. starting from the element cobol, one �nds the element fortran. One enumerates
in order the elements of a list of pairs so to identify the links between these elements:

fortran cobol

cobol modula

modula eiffel

eiffel c

One thus manages to identify the list c eiffel modula cobol fortran. It is necessary to
enumerate the pairs in order i.e. the pair cobol modula must be provided before the pair modula
eiffel.

25

26 SPECIFICATION 5. LINKS

Example of two lists whose links are merged. In each one of these lists, the pairs are given in
order. The program must �nd the two lists.

italy brazil

fortran cobol

brazil mexico

mexico france

cobol modula

france united-states

modula eiffel

eiffel c

united-states canada

One obtains the list c eiffel modula cobol fortran and canada united-states france

mexico brazil italy.

To this problem, one adds the following additional considerations (each one related to a particular
situation):

� One or more lists of links are being partially constructed and that a new pair is added. For
one (or more) of these lists, suppose that the source element of this pair is already in the list,
other than the �rst element, and the destination element is a new one. In this case, for each
of such lists, a new list is added.

For example:

fortran cobol

cobol modula

modula eiffel

eiffel c

cobol java

One then obtains the list c eiffel modula cobol fortran and the list java cobol fortran.

� One started to form two distinct lists of links whose links are merged. One wants to add in
these lists a pair whose source element is the �rst element of one of the list and the destination
element is an element of the other list. The destination element can only belong to one list.
In that case second list must be rupture.

Example

italy brazil

fortran cobol

brazil mexico

mexico france

cobol modula

france united-states

27

modula eiffel

eiffel c

united-states canada

canada modula

Notice that before the insertion of the last pair canada modula, one has the list canada

united-states france mexico brazil italy and c eiffel modula cobol fortran. At
the time of the addition of the pair canada modula, the two lists are modi�ed and one ob-
tains the list c eiffel modula canada united-states france mexico brazil italy and
the list cobol fortran.

� Suppose that one or more lists of links are partially constructed and that a new pair is added.
For one (or more) of these lists, suppose that the source element of this pair is already in the
list, other than the �rst element. Suppose also that the destination element belongs to exactly
one of the lists. Then in this case, for each of such lists, a new list is added and the initial list
that contains the destination element is ruptured.

italy brazil

fortran cobol

brazil mexico

mexico france

cobol modula

france united-states

modula eiffel

eiffel c

united-states canada

modula france

Before adding the last pair, we have the list canada united-states france mexico brazil

italy and the list c eiffel modula cobol fortran. After inserting the last pair, we get
the following: the list mexico brazil italy, the list c eiffel modula cobol fortran and
a new list canada united-states france modula cobol fortran.

Input �le

The �le that you must read is �P05.ENT�. On the �rst line, there is the number of pairs representing
a link, and on each following line, one �nds the pair: �source element� and �destination element�
which will form the one or several lists of links. The maximum number of pairs is 100. There is at
least one pair. The following input �le is in french (remember that the name of the links are only
strings).

.

14

italie bresil

manitoba ontario

28 SPECIFICATION 5. LINKS

fortran cobol

bresil mexique

ontario quebec

mexique france

quebec alberta

cobol modula

france cobol

france etats-unis

modula eiffel

etats-unis canada

etats-unis ontario

fortran c

/

Output �le

You must write in the �le �P05.SOR� which will contain on each line a list of links.

.

eiffel modula cobol france mexique bresil italie

manitoba

c fortran

canada etats-unis france mexique bresil italie

alberta quebec ontario etats-unis france mexique bresil italie

/

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 120

2 180

3 240

4 300

Maximum time of execution of your program : 20 seconds.

Speci�cation 6

Queue Simulation

Martine Bellaïche et Jean-Yves Hervé

File to be produced containing your source code: P06_EQ##.*

Simulation plays an important role in several �elds: transport, communication, networking, �ight
simulators, games, etc. The principal goal of a simulation is to obtain statistics, in order to measure
the performance of an existing system or to predict the performance of a proposed system. Before
building a new system, it is preferable to simulate its behavior in order to measure its e�ectiveness.
Generally simulation will be done on computers, rather than using a prototype. The principal
advantages are reduced cost and time of evaluation.

The problem

For our problem, we are interested in the simulation of a queueing system. The queueing system
comprises clients, a queue and a server. The clients arrive at random in the system, await their turn
in the queue if necessary and are served by the server.

To simulate the behavior of a system, it is necessary to know the inter-arrival time, the service
time as well as the duration of the simulation. The inter-arrival time is the time between two
consecutive arrivals of clients. The time of service is the time taken by the server to achieve its
work. These two times are represented by random numbers. The duration of simulation is the total
time of simulation. In the following example, the time is indicated only when a client arrives or
when a client is served. Moreover, the contents of the queue are modi�ed with each event.

Example of a simulation:

29

30 SPECIFICATION 6. QUEUE SIMULATION

- &%
'$

-

Arrivée
des clients

Customer
arrivals

File
Queue

Serveur
Server

Départ
des clients

Customer
departures

Figure 6.1: A queue

Random inter-arrival times: 6; 6; 9; 6; 7;10;7; 12; 14; 8.

Random service times: 13; 15; 16; 13; 14; 17; 19; 21; 15; 20.

Duration of simulation: 85

Notation: (Cn, TI,TS): C client n , inter-arrival time TI, service time TS.

Time Event queue

0 system opening

6 client arrival (C1, 6, 13)
service starting time C1

12 client arrival (C2 ,6,15) (C2)

19 service ending time C1

service starting time C2

21 client arrival (C3, 9, 16) (C3)

27 client arrival (C4, 6, 13) (C3)(C4)

34 service ending time C2

service starting time C3 (C4) (C5)
client arrival (C5,7,14)

44 client arrival (C6,10, 17) (C4)(C5) (C6)

50 service ending time C3

service starting time C4 (C5) (C6)

51 client arrival (C7 ,7, 19) (C5) (C6) (C7)

63 service ending time C4

service starting time C5 (C6) (C7) (C8)
client arrival (C8,12,21)

77 service ending time C5

service starting time C6 (C7) (C8) (C9)
client arrival (C9, 14, 15)

85 End of the simulation (C7) (C8) (C9)

94 service ending time C6

Your work consists of writing a program that will simulate of the queuing system and calculates
its statistics.

31

During simulation, it is possible that the server is not serving any clients. This is possible when:

1. At a given time, there is no more client in the queue and none has arrived yet.

2. All the client have arrived and have been served before the end of the simulation.

Input �le

The name of the input �le is �P06.ENT�.

On the �rst lines, there is two (2) integers separated by one or more blank spaces. The �rst integer
indicates the number of lines to be treated and the second one the duration of the simulation. Each
following line correspond to a client. On such a line there is 2 integers separated by one or more
blank spaces. The �rst integer indicates the inter-arrival time. The second integer indicates the
service time for this client. The maximum number of clients 500 and their is at least one client.

Here

.

10 150

6 1

6 1

9 16

6 13

7 14

10 17

7 19

12 2

14 5

8 4

/

Output �le

You must output your results in the �le �P06.SOR� must contain on each line the following statistics:

The maximum length of the queue.

The total number of entries carried out in the queue (one refuses a clients who arrives at the
same time as the end of simulation).

The total number clients who did not wait in the queue.

The sum of the waiting time in the queue of the clients that have been served.

The number of clients who wait in the queue at the end of simulation.

The number of services carried out by the server.

32 SPECIFICATION 6. QUEUE SIMULATION

The total service time carried out by the server (at the end of the simulation, the server must
�nish its service).

Here the output �le corresponding the input �le above:

.

3

10

3

160

0

10

92

/

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program returns the proper statistics of the simulation.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 120

2 180

3 240

4 300

Maximum time of execution of your program : 20 seconds.

Speci�cation 7

Bridges on the Internet

Alex Boisvert

File to be produced containing your source code: P07_EQ##.*

Internet is a complex communication digital network to which millions of computers are con-
nected. The quantity of information conveyed simultaneously over the network is phenomenal.
Nevertheless, the transmission capacity on Internet is limited and, for this reason, the information
transmitted by a computer must be conveyed judiciously to the receiver if one wishes to maximize
the quantity of exchanged information and to avoid congestion in the network.

The Internet is composed of sub-networks. For example, a computer is connected to a local
area network, which in turn is connected with another network and so on. The various networks are
inter-connected by devices which distribute the information so that it goes quickly to its destination.

To allow the simultaneous use of the network by several computers, the messages which circulate
on the network are generally divided into small packets of information. Each packet of information
contains the identity of the transmitter, that of the receiver and a certain quantity of information
that in theory, only the receiver can interpret. Individually, each packet can be conveyed in an
independent way.

Among the various devices which direct information through the network, the basic functional
unit is called a bridge1. In a simplistic way, the bridges decide which path a packet will follow

1Not to be confused with a router. Routers are more complex and �intelligents� than the bridges.

33

34 SPECIFICATION 7. BRIDGES ON THE INTERNET

between the transmitting computer and the receiver.

The Problem

You must write a program which simulates an inter-connected network in which computers exchange
packets of information and in which the bridges switch the packets of information between the
computers.

7

Pont 1

Réseau 3

Réseau 2

Réseau 1

Pont 2

4

21

3

5

6

98

Figure 7.1: Interconnected network composed of 3 networks, 9 computers and 2 bridges. (Réseau =
Network, Pont = Bridge).

From now until the end of this problem, we will assume that a bridge links two di�erent networks.
We will also assume that when a packet of information is transmitted on a local area network, all
the devices connected with this network receive the packet simultaneously. The propagation time of
the packets and the time required by the bridges to process a packet are assume to be constant.

Now let us describe the operation of a bridge. A bridge knows only the two networks directly

connected to it. It maintains a table of origin of each packets it receives. For each received packet,
the bridge records in a table the identity of the transmitter and from which of the two networks
the packet was received. By doing this, if later this same bridge receives a packet of information
intended for this transmitter, it knows where to send the packet.

The decision to allow a packet to go on the other network to which the bridge is connected
depends on the identity of the transmitter and the receiver. If the identity of the receiver (say
computer A) is already in the bridge's table which means that the bridge has processed before a
packet sent by computer A, then the bridge knows on which side is computer A. If the receiver
(computer A) is on the same side from which comes the actual packet to convey, then the bridge
disregards the packet. If not, the bridge re-transmits the packet to the other network.

When the bridge re-transmits a packet , it re-transmits it in its original form, without adding
information to it.

Notes:

35

� For this problem, only computers transmit packets . A bridge does not transmit a packet by
itself. It merely transfers packets coming from computers.

� A computer is connected to only one network.

� It is possible to have more than one bridge between two networks for reasons of robustness at
the event of breakdown of a bridge or a network link.

� An inter-connected network may have loops. This means that it is possible to have di�erent
paths between two computers and through di�erent local area networks. This would be the
case if a bridge was put between Network 1 and Network 3 in Figure 7.1.

� If a bridge receives simultaneously the same packet from both the networks to which it is
connected, then both copies of the packet are disregarded. After that any packet sent by the
same transmitter will also be disregard by this bridge.

See Figure 7.1 for an example of the structure of a network.

The input

The input is made up of two principal elements: a speci�cation of the structure of the global network
and a list of transmitted packets. The structure of the network is subdivided into two parts: a list
of computers connected with networks and a list of bridges connecting the networks. These two lists
are preceded by the number of entries which compose them.

For the list of computers, one �nds a single computer identi�cation number followed by the
number of the network to which it is connected. For the list of the bridges, there is a bridge
identi�cation number followed by the numbers of the two networks to which it is connected. There
are always at least a computer and at least a bridge in these lists.

The list of packets transmitted is preceded by the number of packets transmitted during the
simulation. Each transmission includes the identity of the transmitting computer followed by the
receiver's identity. There is always at least a packet to transmit.

It will be assumed that a packet is necessarily conveyed to its destination before a new packet is
transmitted on the network.

The input �le contains a maximum of 25 bridges, a maximum of 25 local area networks, a
maximum of 100 computers and a maximum of 100 packets.

.

9

1 1

2 1

3 1

4 1

5 2

6 2

7 3

36 SPECIFICATION 7. BRIDGES ON THE INTERNET

8 3

9 3

2

1 1 2

2 2 3

6

1 4

4 1

9 4

4 9

5 9

9 5

/

The output �le

You must create and write in the �le �P07.SOR� which will contain the list of all the bridges which
convey the transmitted packet for each packet sent. For a particular packet, the list of the bridges
must appear on the same line. The order of appearance of the lines in the output �le must correspond
to the order of appearance of the packets in the input �le. However, the order of enumeration of the
bridges on the same line is free for you to choose and does not represent necessarily the chronological
order of routing of a given packet.

If, for an transmitted packet, no bridge re-transmits its, you must leave an empty line in your
output �le.

Moreover, a bridge appears only once on a line even if it receives the same packet more than one
time.

.

1 2

2 1

1 2

2

2

/

Example

This example use the network layout of Figure 7.1:

1. Computer 1 transmits a packet to Computer 4. In that case this is how the packet is processed:

37

(a) Computer 4 and Bridge 1 receive the packet (so are Computers 2 and 3, but it is not
important here).

(b) Brigde 1 puts in its table that Computer 1 is on the same side of Network 1.

(c) Bridge 1 transmits the packet on Network 2 since it doesn't have any information on
Computer 4.

(d) Bridge 2 receives the packet.

(e) Bridge 2 puts in its table that Computer 1 is on the same side of Network 2.

(f) Bridge 2 transmits the packet on Network 3 since it doesn't have Computer 4 in its table.

2. Computer 4 transmits a packet to Computer 1. This is how the packet is processed:

(a) Computer 4 and Bridge 1 receive the packet.

(b) Bridge 1 puts in its table that Computer 4 is on the same side of Network 1.

(c) Bridge 1 does not transmit the packet since, from its table, its knows that Computer 1 is
not the other side.

3. Computer 9 transmits a packet to Computer 4.

(a) Bridge 2 receives the packet.

(b) Bridge 2 puts in its table that Computer 9 is on the same side of Network 3.

(c) Bridge 2 transmits the packet since it does not have any information on Computer 4.

(d) Bridge 1 receives the packet.

(e) Bridge 1 puts in its table that Computer 9 is on the same side of Network 2.

(f) Bridge 1 transmits the packet since it knows that Computer 4 is on the same side as
Network 1.

(g) Computer 4 receives the packet.

4. Computer 4 transmits a packet to Computer 9.

(a) Bridge 1 receives the packet.

(b) Bridge 1 notice that it already has Computer 4 in its table so it does not update its table
(see 2b).

(c) Bridge 1 transmits the packet since it knows that Computer 9 is on the other side.

(d) Bridge 2 receives the packet.

(e) Bridge 2 puts in its table that Computer 4 is on the same side of Network 2.

(f) Bridge 2 transmits the packet since it knows that Computer 9 is on the same side of
Network 3.

38 SPECIFICATION 7. BRIDGES ON THE INTERNET

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 160

2 240

3 320

4 400

Maximum time of execution of your program : 20 seconds.

Speci�cation 8

Honey, I blow my fuse!

Benoît Parent et Ruben Gonzalez-Rubio

File to be produced containing your source code: P08_EQ##.*

Everyone knows that components of an electrical circuit can be damaged if a short-circuit occurs.
The fuse was invented to protect expensive components or even the user of an electrical device.

Figure 8.1 shows an industrial electric circuit. For simpli�cation, we put only one alternative
current source AC, 3 fuses (F1; F2; F3) and loads (C1; C2). The electrical current on the branches
of the circuit is a function of the tension (voltage) of the source and the loads. If the loads are
constant the current remains also constant, but if the load changes, more current may be needed.
For example, when using an electrical saw, more current (more amps) is needed to cut harder
wood than less harder wood. Common sense says that if the consumed current exceeds the current
threshold of the fuse then it melts and the power is shuto� from the circuit. In other words, the fuse

is blown!

Let us look in detail at an electrical installation (see Figure 8.1)

Case 1 Let F1 = F2 = 100A and F3 = 200A. The loads C1 consumes 35A and C2 consumes 40A.
The current which passes by F3 is the sum of the currents of the loads 35 + 40 = 75A. Here
in this case everything is �ne and it can be so for a very long time. If the load C1 consumes
more current (more amps A) say 250A, then the fuse F1 blows.

Case 2 Now, suppose that we have the following values: F1 = F2 = 100A, F3 = 120A and the
loads C1 consumes 35A and C2 consumes 40A. The current which passes by F3 is the sum of
the currents of the loads 35 + 40 = 75A. Still, everything is �ne, but if the load C1 consumes
more current (more amps A), let us say 250A, then the fuses F1 and F3 blow, stopping the
current in all the installation, which in general is the last thing you want.

39

40 SPECIFICATION 8. HONEY, I BLOW MY FUSE!

��������
AC ����F3

����F1

����F2

C1

C2

Figure 8.1: Electrical circuit with fuses

You wonder why? Here the reasons: a fast fuse1 is characterized by a rated maximum current
In. This rated maximumcurrent indicates the maximum current the fuse can hold during an in�nite
time. The characteristic curve of the rupture time of a fuse is related to In and i the current going
through the fuse. Figure 8.2 shows the curve of a 100A fuse. For any other fuse the shape of the
curve is similar, it is just �shifted� according to the value In.

The curve is divided into two parts given by the equations:

t1 =
0:5
i
In
� 1

+ 0:5 (8.1)

and

t2 =
2
i
In

(8.2)

The two curves intersect each other when i = 2In thus t = 1(sec). One observes that the more
the current through the fuse, the less longer it lasts. Equation 8.1 is to be used when the current
going through the fuse is lower than 2In. If i > 2In then Equation 8.2 is used.

The characteristic curves are de�ned by the rated current In. For this problem, a 200A fuse will
blow in one second if a current of 400A is going through it. A 150A fuse blows in one second if a
current of 300A is going through it, etc...

Let us look at Case 1 and calculate times of rupture when a current of 250A is applied on C1.

Fuse In i Equation t

F1 100A 250 8.2 0:8sec

F2 100A 40 8.1 1

F3 200A 290 8.1 1:61sec

1We consider in this problem only fast fuses. The other type of fuses are the delayed one.

41

0

2

4

6

8

10

0 200 400 600 800 1000

Time - temps - t

Current - Courant - i

t = 0:5
i
In
�1

+ 0:5

t = 2
i
In

fuse - fusible In = 100A

100

r

Figure 8.2: Electrical circuit with fuses

If the current remains on longer than 0:8sec the fuse F1 blows but F3 remains intact, because
the relation

tf3
tf1
� 2 is true2. The time of rupture calculated for the fuse F1 is represented by tF1 ,

and that of the fuse F3 is represented by tF3 .

One sees that tF1 and tF3 are very close to each other. If the current remains longer than 0:8sec,

we determine that the fuses F1 and F3 blow because the relation
tf3
tf1
� 2 is false; therefore the

relation
tf3
tf1

< 2 is true.

In this problem, the model we use is very close to reality even if we made some simpli�cations.
Some details have been left out as the aging of a fuse.

Problem

We ask you to write a simulator of an electric installations to know which fuses will blow in the case
of an overload.

The diagram of an electric installation with fuses always take a tree like shape as in �gure 8.3.
The loads are the leaves of the tree. All the points g (ground) are connected together.

The principal fuse F101 is at the entry of the installation (at the root of the tree) and then several
branches develop. On each one, one �nds a fuse with either several other branches, or a load. It is
supposed that a load is protected directly by only one fuse.

2This rule is given in more detail later in the text. We use the value 2 to simplify the problem.

42 SPECIFICATION 8. HONEY, I BLOW MY FUSE!

It will be guaranteed that a fuse in a lower level will have a rated current equal to or higher than
those which are in a higher level in the tree.

A fuse is characterized by a triplet

F = fN;Ff ; Ing

where N is an integer used as an identi�er, Ff is the identifying integer of the fuse of the immediate
lowest level3 and In the maximum current the fuse can hold, i.e. its rated current.

A load is characterized by a triplet

C = fN;Ff ; ig

where N is an integer used as an identi�er, Ff is the identifying integer of the fuse at the immediate
lower level and i indicates the current normally going through the load.

The overload is indicated by a quadruple:

SC = fN;Ff ; i; dg

where N is an integer used as an identi�er, Ff is the identifying integer of the fuse at the immediate
lowest level, i is the current required by the load, and thus the current passing through the fuse, at
the time of the overload and d the duration of the overload. This duration represents the time of
the overload if the circuit supported it. If the duration is higher than the rupture time when current
i is going through, then the fuse blows thus cutting o� the current.

We point out that the current going through a fuse of lower level must be equal to the sum of
the currents going through the fuses of immediate higher level.

The rules to determine which fuses will blow:

1. For one or more fuses to blow, the duration of the overload must be higher or equal to the time
of rupture indicated by the characteristic curve of the fuse(s). An overload of 200A during
0.5sec does not make a fuse to blow with In = 100A. The same overload applied during 1.0sec
blows the fuse. Again the same overload with a theoretical duration of 2sec blows the fuse in
one second.

2. Two adjacent fuses will blow if the relation
tFn

tFn+1
< 2 holds and if the duration of the overload

is higher than tFn+1 . Note that this rule can be applied several times to a branch, in fact on
all the adjacent fuses of the branch for which the relation holds. If on a branch a fuse does
not blow, all the fuses of lower level will not blow. To be more precise, consider an installation
including four fuses F1, F2, F3 and F4 in series. The fuse F1 is the root and F4 is connected
to the load. The following table shows which fuses blow. The duration of the overload is of
2sec. The current of the overload is 200A.

Values Fuses that blow

F1 = 100, F2 = 100, F3 = 100 et F4 = 100 F1, F2, F3 et F4

F1 = 1 000, F2 = 500, F3 = 120 and F4 = 100 F3 and F4

F1 = 1 000, F2 = 120, F3 = 100 and F4 = 80 F2, F3 and F4

3The root is a particular case, for it does not have a lower level. Therefore 0 is used as an identi�er.

43

Input �le

The �le that you must read is �P08.ENT�. The input is divided into two parts.

The �rst part that holds on one line indicates the potential overload quadruple.

The second part contains the description of the installation, a fuse or a load by line, therefore a
triplet. The fuses and the loads of the installation are given without any particular order. It is up
to you to sort whatever needed to be sorted.

The di�erent parts of the input �le are separated by an empty line. The separator in the triplets
and the quadruples is of one or more spaces.

It is guaranteed that the installation is realizable, i.e. it forms a tree of fuses and loads, such as
�gure 8.3.

There can be between 1 to 10 000 fusible. There can be between 1 to 9 999 loads, the identi�ers
of fuses go from 1 to 16 000 and those of loads from 16 001 to 32 000. Identi�er 0 is used to indicate
a fuse connected with the root of the tree (the source AC).

All the numerical values are integer except duration time d which will be of type double.

Here the �le representing the tree of the �gure 8.3. Observe that the lines characterizing the
fuses and the loads appear in the �le in no particular order and that the identi�ers are unique .

.

16082 2 120 3.5

101 0 1000

109 101 140

107 101 500

45 109 120

32 109 100

33 109 200

34 107 100

35 107 100

41 45 100

2 45 80

7 33 100

15 33 100

21000 41 50

16082 2 20

22092 32 20

16094 7 25

16014 15 25

16012 34 40

22000 35 48

/

44 SPECIFICATION 8. HONEY, I BLOW MY FUSE!

Output �le

In the output �le we must have either the identifying integer of the blown fuse(s) if any, or either
the identifying number of the load if no fuses are blown.

Youmustwrite in the �le �P08.SOR� which will contain on a line one or more integers, representing
the fuses that blow or possibly the identi�er of the load if no fuse blows. The integers must be
separated by one or more spaces.

.

2 45 109

/

Here the fuses 109, 45 and 2 are blown. The order in which the identi�er appear on a line is not
important.

In order to clarify the problem, here another example:

The input �le:

.

16082 2 120 3.5

101 0 1000

109 101 300

107 101 500

45 109 200

32 109 100

33 109 200

34 107 100

35 107 100

41 45 100

2 45 80

7 33 100

15 33 100

21000 41 50

16082 2 20

22092 32 20

16094 7 25

16014 15 25

16012 34 40

22000 35 48

/

According to this previous input �le, and up to the ordering of the integers on each lines, this is
the output �le that your program should produce:

.

2

/

45

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 160

2 240

3 320

4 400

Maximum time of execution of your program : 20 seconds.

46 SPECIFICATION 8. HONEY, I BLOW MY FUSE!

(Niveau inférieur - lower level Niveau supérieur - upper level)

g g

g

g

g

g

g

g

��������AC � �� �F101(1000A)

� �� �F107(500A)

� �� �F109(140A) � �� �F45(120A)

� �� �F32(100A)

� �� �F33(200A)

� �� �F34(100A)

� �� �F35(100A)

� �� �F41(100A)

� �� �F2(80A)

� �� �F7(100A)

� �� �F15(100A)

C21000

(50A)

C16082

(20A)

C22092

(20A)

C16094

(25A)

C16014

(25A)

C16012

(40A)

C22000

(48A)

Figure 8.3: Tree of fuses and loads

Speci�cation 9

The Powerline

Gaétan Haché, Nicolas Courtemanche et Nicolas Pelletier

File to be produced containing your source code: P09_EQ##.*

Following the ice-storm, several powerlines were out of service. Since then, Hydro-Québec wants
to add redundancy in its network in order to make it more reliable. They need you to help them to
choose the site of the pylons of new powerlines.

Problem

We want to build a powerline through a very mountainous area. Your problem consists in writing
a program which will determine the site of the pylons of this powerline according to the following
informations and rules:

1. the meter is the only measuring unit that will be used in this problem.

2. Seen from the air, the layout of the powerline is a straight line. One will agree as of now that
the problem arises and is solved in two dimensions.

3. the relief of the ground between the �rst and last pylons is the initial data of the problem. The
ground is divided by sections of �at ground so that each section has a constant slope over all
its length. The relief will be described by the length (horizontal) and the elevation (vertical)
of each section. For example, a section of 400 meters long with a 300 meters elevation as a
slope of 3=4.

4. the pylons are 30 meters high.

47

48 SPECIFICATION 9. THE POWERLINE

5. the wire must be at least 20 meters away from the ground. To simplify the problem one
measures this distance vertically (and not along a perpendicular to the ground which of course
would be more realistic).

6. To calculate the distance from the ground to wire, it will be supposed that a wire between two
pylons follows a parabolic trajectory of equation

y = ax2 + bx+ c

The coe�cient a is �xed for throughout the problem and is set to

a = 0:00016:

Your program will have to determine the coe�cients b and c according to the position of the
tops of two adjacents pylons (see Remark 1 further in the text).

7. No maximum distance is imposed between two pylons. This way, it is possible not to have
any pylon between two pylons crossing a ravine of two kilometers, as long as the ravine is
su�ciently deep.

8. The rules to determine the site of a pylon between two others are the following ones:

(a) For each section of ground between two adjacent pylons, let us say A and B, you locate
the place where the distance between the ground and the wire is minimal. The calculation
of this distance must be done between the ground and the theoretical trajectory of the
wire. In other words:

i. If the wire does not touch the ground, you must determine the place where the wire
is closer to the ground.

ii. If the wire touches the ground, then you imagine that the wire passes under ground
(so that its parabolic trajectory is not modi�ed) and you determine the place where
the wire would be farthest away from surface.

(b) The rule to follow to determine (if necessary) the site of a pylon is the following one:

i. If for each section of ground the wire is at more than 20 meters of the ground, no
pylon is added between A and B.

ii. If not, you locate the site of a new pylon, say C, at the place where the distance
between the wire and the ground is minimal. This minimum may not be unique
when the ground is composed of several sections of di�erent slopes. If the minimum
is reached at more than one place, you choose the section of ground having the
smallest slope in absolute value 1 and locate the site of the pylon C exactly at the
place where the wire is closer to the ground (while measuring vertically).

(c) Each time you determine a new site for a pylon, let us say C, between two pylons A and
B, you must determine the new trajectory of the wire between A and C and also between
C and B. Then, by using the same directives that was just applied to pylons A and B,
you must determine, if necessary, the site of a pylon between A and C then between C
and B.

1You can suppose that the slopes in absolute value of the sections of grounds are all distinct from each other.

49

(d) You stop determining new sites of pylons when the wire is at more than 20 meters of the
ground in any point located between two pylons.

Remark 1 Recall that in the equation y = ax2+bx+c, only the coe�cient a modi�es the curvature

of the parabola and that b and c locate the parabola in the plane. In other words, let (x0; y0) and
(x1; y1) be the co-ordinates of two points corresponding to the tops of two adjacent pylons. Then for

the �xed coe�cient a, there are coe�cients b and c, uniquely determined, such that the parabola of

equation y = ax2 + bx+ c passes through the points (x0; y0) and (x1; y1). In particular one has

b =
y1 � y0

x1 � x0
� a(x0 + x1):

We leave it to you to �nd c.

The input �le

The �le that you must read is �P09.ENT�.

As we already explained, the relief is described section by section, each one being described by
its length and its elevation. The �rst line of the input �le will contain the number of sections of
grounds, each following line corresponding to a section of ground. These lines contain two numbers
which are respectively the length and the elevation one of the section of ground. For example, a �le
containing the following line:

.

3

300 100

100 -200

200 0

/

represents three sections of ground as shown in Figure 9.1.

The �rst and last pylons are respectively located at the beginning and the end of the ground.
Thus in the preceding example, 600 meters separate them.

Important Remark. You can suppose the following things:

1. No more than 1 000 sections of ground will be described in an input �le.

2. No more than 1 000 pylons will be necessary for the construction of the powerline.

The output �le

You must write in the �le in �P09.SOR�. The �rst line must contain the number of pylon sites your
program has determined (excluding the site for the �rst and last pylons). Each other line of the �le

50 SPECIFICATION 9. THE POWERLINE

–100
–80
–60
–40
–20

0

20
40
60
80

100

100 200 300 400 500 600

Figure 9.1: Ground pro�le

indicates a pylon site by giving the distance that separates it from the preceding one. For example,
the output �le

.

1

300

/

indicates that a site was determined. The powerline is thus made up of 3 pylons such that 300
meters separate the �rst from the second, 300 separate the second from the third (which is also the
last one).

Important remark: All calculations must be done with variables of type double. It is only at
the end, when you have determined all the pylon sites, that you must round-up your results so that
one �nds only intgers in the output �le.

For the marking, an error of �1 meter will be tolerated.

Marking

The problem will be corrected using four di�erent input testing �les.

51

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 240

2 360

3 480

4 600

Maximum time of execution of your program : 20 seconds.

52 SPECIFICATION 9. THE POWERLINE

Speci�cation 10

The Cat and the Mouse

Rusty Deschênes

File to be produced containing your source code: P10_EQ##.*

An hungry cat must catch its dinner (a mouse). Help the cat to reach the mouse before it dies of
hunger. The mouse being alive, it will move while the cat runs after it. The mouse is however not
at all concerned with the cat; it will thus go wherever it feels like to go, no matter where is the cat.

The problem

The cat and the mouse are in a labyrinth made up of square boxes.

Here the characteristics of the labyrinth:

� There will be a maximum of 1024 boxes.

� A number n is associated with each box (1 � N � 1024).

� Two boxes cannot have the same number.

� Each box can have up to 4 passages (North, South, East, West). In certain cases, passages
will be prohibited by a wall.

� Each box has at least one exit.

� The labyrinth has no particular layout. Figure 10.1 is an example of a labyrinth. Each box
carries its number in its top-left corner, the walls are indicated by solid lines and the passages
between boxes by dotted lines. Observe that the shape of the labyrinth needs not to be square
or rectangular.

53

54 SPECIFICATION 10. THE CAT AND THE MOUSE

Here are the rules to follow:

� The cat must take the shortest way to reach the mouse.

� There is always at least one possible way for the cat to catch the mouse.

� If there are several ways, there will be of them one which will be shorter than all the others.

� The cat and the mouse move in turn, of only one box at the same time.

� the cat moves �rst.

� Valid displacements for the cat are: towards North, South, East or West, provided that such
a displacement is possible (no wall in the way).

� Valid displacements for the mouse are: towards North, South, East, or West, provided that
such a displacement is possible.

� The cat catch the mouse when both occupy the same box.

� With each displacement of the cat, the number of boxes between the cat and the mouse must
decrease.

The input �le

The �le that you must read is �P10.ENT �. The input is divided into three parts.

The �rst part is a line containing three integers indicating respectively the positions of the cat, the
position of the the mouse and the number of boxes of the labyrinth.

The second part contains the information about the layout of the labyrinth. The number of lines
in this second part of the input �le is equal to the number of boxes in the labyrinth. More precisely
there is, in the second part, one line for each boxe. Such a line contains 5 integers: the number of the
box, then the number of the adjacent box in the north direction, then the number of the adjacent
box in the east direction, then the number of the adjacent box in the south direction, and �nally
the number of the adjacent box in the west direction. A zero (0) indicates that there is no exit in
the corresponding direction.

The third part is the list of displacements of the mouse. On each line one will �nd an integer N,
where 1 � N � 4 to be interpreted the following way: North = 1, East = 2, South = 3, West = 4.

Each part is separated by an empty line, the data are separated by one or more spaces.

The number of displacements of the mouse contained in the �le will be higher or equal to the
number of displacements needed by the cat to catch the mouse.

.

1 8 11

1 0 0 4 0

2 0 3 5 0

55

3 10 0 6 2

4 1 5 0 0

5 2 6 8 4

6 3 20 9 5

7 0 8 0 0

8 5 9 0 7

9 6 0 0 8

10 0 0 3 0

20 0 0 0 6

2

1

/

Figure 10.1 shows the layout of the labyrinth according to the input �le given as example.

Chat
Cat

Souris
Mouse

7

4

1

8

5

2

9

6

3

10

20

Figure 10.1: The labyrinth, the cat and the mouse with their starting position

The ouput �le

You must write the �le �P10.SOR � which will contain the list of boxes by which the cat will pass.
The starting box and the box where the cat catches the mouse must be included. This list of boxes
by which the cat passes must be the shortest one.

.

1

4

5

6

56 SPECIFICATION 10. THE CAT AND THE MOUSE

/

The cat starts at box 1 and the mouse starts at box 8. The cat being the �rst to move, it will
move towards box 4. The mouse will carry out the �rst displacement contained in the �le: 2 (East),
which will bring it to box 9. The cat will move then to box 5. The mouse will carry out its second
displacement: 1 (North) to �nd itself in box 6. Finally, the cat will move to box 6 where it catchs
the mouse.

Marking

The problem will be corrected using four di�erent input testing �les.

A test will be regarded as successful if the program manages to �nd the solution and correctly
write it in the output �le.

Nombre de �chiers réussis Points accordés

Successful test �le Points

1 240

2 360

3 480

4 600

Maximum time of execution of your program : 20 seconds.

