
Karel++ Summary

Steps

1. Create a World by choosing new from the file menu and then using the pallet to add walls
and beepers to the World.

2. Run Notepad and type in a program using the Karel++ language.
3. Save program as a .kpp file.
4. Open your Karel++ program using open from the Karel++ file menu and choosing the file

type as “Karel++ Source”, and then choosing your .kpp file.
5. Hit the play button (see above diagram).
6. Karel++ will report syntax errors. Fix the errors in Notepad then save the changes.
7. Repeat Steps 4, 5 and 6 until the program runs.

Stop –
temporarily
stops program

Kill – stops
program and
rewinds to
original world

Play – runs
program that is
currently opened.

Single Step –
execute program
one step at a time.

Single Step Skip – executes
program one step at a time,
but skips new instructions.

Fast Forward –
execute program as
fast as possible.

Add horizontal
wall –to World

Add vertical wall
– to World

Add single
beeper – to
World at
junction

Add infinite
beepers – to
World at
junction

Primitive Operations

class ur_Robot
 {
 void move(); // robot moves forward one block

 void turnOff(); // robot turns itself off

 void turnLeft(); // robot pivots in place 90 degrees

 void pickBeeper(); // robot picks up beep and puts
it into a bag

 void putBeeper(); // robot takes beeper out of bag
and places on corner
 }

Conditions (tests)
 class Robot: ur_Robot
 {
 Boolean frontIsClear();

 Boolean nextToABeeper();

 Boolean nextToARobot();

 Boolean facingNorth();

 Boolean facingSouth();

 Boolean facingEast();

 Boolean facingWest();

 Boolean anyBeepersInBeeperBag();
 }

Robot Initialization

ur_Robot
<name>(<street>,<avenue>,<direction>,<numBeepers>);

Robot
<name>(<street>,<avenue>,<direction>,<numBeepers>);

Program Form
task
 {
 <robotInitialization>;
 ...
 <robotInitialization>;
 <instruction>;
 ...
 <instruction>;
 }

Conditional Instructions
if (<test>)
 {
 <instruction>;
 ...
 <instruction>;
 }
--
 if (<test>)
 {
 <instruction>;
 ...
 <instruction>;
 }
 else
 {
 <instruction>;
 ...
 <instruction>;
 }

Repetitive (loop) Instructions

while (<test>)
 {
 <instruction>;
 ...
 <instruction>;
 }

 loop (<positiveNumber>)
 {
 <instruction>;
 ...
 <instruction>;
 }

Defining New Classes
class <new-class-name>: <old -class-name>
 {
 <list-of-instruction names>
 }

 <definition-of-new-instructions>

Defining New Instructions
void <instructions-class> :: <instruction-name>()
 {
 <instruction>;
 ...
 <instruction>;
 }

Errors
§ A robot executes a move instruction when a wall blocks the path to the immediate next corner.
§ A robot executes a pickBeeper when it is on a corner with no beepers.
§ A robot executes a putBeeper when it has no beepers in its bag

