
The Design of Real-Time Extensions To The Open

Object-Oriented Database System�

V. F. Wolfe, L. C. DiPippo,

J.J. Prichard, and J. Peckham

Computer Science Department

University of Rhode Island

LastName@cs.uri.edu

P. J. Fortier

Dept. of Computer Engineering

U. Of Massachusetts at Dartmouth

pfortier@umassd.edu

Abstract

This paper describes real-time extensions to the
Open Object-Oriented Database system using the RT-
SORAC data model. This model combines an object-
oriented data model, real-time requirements, exible
transactions, semantic relationships among objects,
and active database features. Several extensions to the
Open Object-Oriented Database system, including de-
velopment of interfaces for real-time objects and real-
time transactions, use of a real-time operating system,
incorporation of real-time object management, and in-
corporation of real-time transaction management, are
also described.

1 Introduction

Many applications such as military command and
control, multi-media, and medical patient monitoring,
need support for large volumes of complex data that
must be manipulated under timing constraints. For
instance, a submarine's command and control system
relies on complex data representing the position of
external contacts that are being tracked. Some ca-
pabilities required by such applications can be found
in database management systems that provide struc-
tured support for large volumes of persistent and
shared data. Further support is provided by real-
time database management systems [1], which extend
traditional database management systems with time-
constrained transactions, such as transactions that
must retrieve the position of each enemy submarine
||||||||||||||-

* This material is based upon work supported by the U.S. Naval
Undersea Warfare Center and the U.S. National Science Foun-
dation under grant IRI-9308517.

in a combat scenario. Real-time databases also add
support for managing time-constrained data that is
only valid for a certain interval of time, such as data
representing the \current" position of each submarine
being tracked. However, the vast majority of real-time
database management system research and design has
been based on the relational data model, which only
supports simple types and is therefore not suitable for
complex data types found in applications such as com-
mand and control and multi-media.

Fortunately, there has also been a signi�cant
amount of research done to develop object-oriented
databases. These databases possess rich typing ca-
pabilities that can potentially support management
of complex data types. The Open Object-Oriented
Database (Open OODB) system is a recent project
initiated by the U.S. Advanced Research Projects
Agency (ARPA) that is under development by Texas
Instruments and several other research institutions.
The project's goal is to establish a common, modular,
modi�able, object-oriented database system suitable
to be used by a wide range of researchers and devel-
opers [2]. Open OODB is designed so that features
such as transaction management, query interface, per-
sistence, etc. are modules that can be individually
\unplugged" and replaced by other modules. We de-
scribe the architecture and features of Open OODB in
Section 2. Unfortunately, Open OODB has failed to
provide support for real-time database management.

The University of Rhode Island is an alpha site
for the current release of Open OODB. In this ca-
pacity, we have designed real-time extensions to Open
OODB. We have taken advantage of its open, modular
structure to modify and add modules to incorporate
support required by real-time applications. We have
implemented a real-time object policy manager that
performs a new form of semantic object-based real-
time concurrency control [3]. We describe the design



of this part of the system, and other modi�cations, in
Section 3. Section 4 summarizes our experiences with
synthesizing real-time and object-oriented technology
in database systems.

2 The Open Object-Oriented

Database System

The Open OODB project seeks to provide an
open, modular framework for common object-oriented
database development. It has a well developed set of
requirements including the use of the object-oriented
data model, a full range of typical database re-
quirements, distribution, change management (allow-
ing replication), openness, seamlessness, performance,
and industrial strength [2]. An alpha version that
meets some of these requirements has been released.
Many universities and companies are participating by
developing modules to satisfy unmet requirements.

Open OODB's computational model strives to
transparently extend the behavior of objects that are
found in application programming languages [2]. To
accomplish this goal, Open OODB wishes to avoid
making programmers use embedded system calls. In-
stead, the computational model in the current alpha
release is a transparent extension to C++. In the
model, objects can exist in one of many address spaces.
Currently there are two address spaces supported:
transient, which resides in main memory, and persis-
tent, which resides remotely in the Exodus [4] storage
manager. Open OODB provides communication and
translation facilities to allow transfers between di�er-
ent address spaces. There are extensions to C++ that
specify this and other database functionality.

The basic conceptual system architecture of Open
OODB is shown in Figure 1 (along with the proposed
real-time extensions that we have added as indicated).
The support managers are modules that are currently
implemented as library routines which get linked into
the user's C++ program to (transparently) provide
the extended database capabilities. The Address Space
Manager supports mappings between global identi-
�ers and object identi�ers used in the local address
space. The Communication Manager provides sup-
port for interfacing to one or more underlying com-
munications mechanisms. The Translation Manager
translates an object stored in one format to a target
format. For instance, it translates objects stored in
Exodus into objects suitable for a C++ application
program. The Data Dictionary is a globally known
repository of the data model and type information,

instance information, name mappings (of application
names to instances) and possibly system con�guration
and resource utilization information.

Policy managers (PMs) provide extenders to the
behavior of programs by coordinating the support
managers just described. The Persistence Pol-
icy Manager provides applications with an interface
through which they can create, access, and manipu-
late persistent objects in various address spaces. The
Transaction Policy Manager enables concurrent access
to persistent and transient data; its implementation in
the current alpha release is a trivial mapping to Exo-
dus write locks on all objects. Other policy managers
include those for distribution, change management, in-
dexing, and query processing.

The query interface is in two forms: an extended
version of C++ and an SQL-like language called OQL,
which must be embedded in C++ code [2]. The C++
interface is C++ code extended with methods that
invoke capabilities of the managers. OQL has a very
basic set of SQL-like commands that work on sets of
objects. Although the current version is skeletal, ac-
tual examples can be executed.

The current alpha release contains partial imple-
mentations of many of the managers. It relies heavily
on Exodus as it persistent storage and for concurrency
control and recovery. Eventually, as Open OODB de-
velopment progresses, many of the manager capabili-
ties will be incorporated into the Open OODB archi-
tecture.

3 Real-Time Extensions to Open

OODB

The current version of Open OODB does not sup-
port real-time data management requirements. How-
ever, its open, modular design and use of the object-
oriented paradigm facilitate real-time extensions. As
a basis for real-time extensions, we have designed a
model of a real-time object-oriented database, called
the RTSORAC model 1 [5], which synthesizes aspects
of real-time databases, object-oriented databases, se-
mantic databases, and active databases. We have in-
corporated the RTSORACmodel into the architecture
of Open OODB.

In this section we �rst summarize the RTSO-
RAC model and then describe our extensions to
Open OODB. These extensions include porting Open
OODB to an operating system that is consistent with

1RTSORAC = Real-Time Semantic Objects Relationships
And Constraints.



Application

OQL RTSQL

key:

Existing Open OODB

Real-Time Extensions

Persistence
PM

Distribution
PM

Object
PM

RT Trans.
PM

...

Meta Architecture Support (Policy Managers)

Support Modules (Managers)

Address
Space Communication Transaction

Data
Dictionary

Thread-Based Real-Time POSIX-Compliant 
Operating System

Real-Time
Persistent

Store

im
pl

ic
it 

in
te

rf
ac

e

Query
PM

Network

C++ API

Exodus

Figure 1: Open OODB Architecture With Real-Time Extensions

the real-time POSIX standards [10], incorporating a
real-time persistent address space (as an alternative to
Exodus as the only persistent address space), adding
several policy managers, and developing a real-time
query language interface. We summarize each of these
extensions and then describe the design of a real-time
Object Policy Manager (OPM) in detail.

3.1 The RTSORAC Object Model

RTSORAC has three components which model the
properties of a real-time object-oriented database: ob-
jects, relationships and transactions. Objects represent
database entities. Relationships represent associations
among the database objects. Transactions are time
constrained executable entities that access the objects
and relationships in the database. We summarize the
RTSORAC object model here; a complete description
of all model components can be found in [5].

An object consists of �ve
components, hN;A;M;C;CF i, where N is a unique
name or identi�er, A is a set of attributes, M is a
set of methods, C is a set of constraints, and CF is a
compatibility function. Attributes are similar to those
found in most object models in that they have a name

and a value �eld. In the RTSORAC model, they have
additional �elds for storing a timestamp value, and
an imprecision value. The timestamp value is neces-
sary for determining the temporal consistency2 of the
attribute. The imprecision �eld is used to accumu-
late how far \o�" the actual value might be, due to
non-serializable concurrent access of the object, as de-
scribed in Section 3.2.3.

Methods are also similar to those found in most
object models in that they have a name, a set of ar-
guments, and a set of operations to be performed.
The set of arguments are of the same form as the at-
tributes, and hence have additional �elds for a times-
tamp value and an imprecision value. The RTSORAC
model de�nes two additional components for meth-
ods: a set of exceptions that may be raised by the
method to signal that the method has terminated ab-
normally, and a set of operation constraints. Opera-
tion constraints can be used to express precedence con-
straints, execution constraints, and timing constraints
[6]. An operation constraint also includes an action to
be taken if the constraint is violated.

2Data temporal consistency constraints specify the time in-
terval of data validity



The next component of an object is a is a set of
data constraints which permit the speci�cation of cor-
rect object state. Each data constraint consists of a
name, a set of attributes from the object, a predicate,
and an enforcement rule. The predicate is a boolean
expression that is speci�ed using attributes from the
attribute set. The predicate can be used to express
the logical and temporal consistency requirements of
the data stored in the object by referring to the value,
time, and imprecision �elds of the attributes in the
set. The enforcement rule is executed when the predi-
cate evaluates to false, and is similar to a method with
a null argument list, and with a name which can be
derived from the name of the constraint. Thus, an
enforcement rule consists of a set of operations, a set
of exceptions that may be signaled, and a set of op-
eration constraints. The combination of the predicate
and the enforcement rule in constraints can be used
to specify a trigger, a feature proposed for constraint
maintenance in databases.

The last component of an object is a compatibil-
ity function that expresses, for each ordered pair of
methods, under what conditions the methods can ex-
ecute concurrently while preserving system require-
ments. These conditions can include timing consider-
ation, other currently active methods, a�ected sets of
methods, and method arguments [3]. The use of the
compatibility function in real-time concurrency con-
trol is discussed in Section 3.2.3.

3.2 Real-Time Extensions

Our real-time extensions to Open OODB a�ect its
interface, basic underlying architecture, and its policy
managers. These extensions are designed within Open
OODB's original framework, and are shown as shaded
components in Figure 1.

3.2.1 Extensions to the Open OODB Inter-

face

In the alpha release of Open OODB, the schema is
speci�ed as a collection of C++ classes and trans-
actions are speci�ed as C++ programs, or as OQL
programs that are compiled to C++ programs. Re-
call that objects and transactions in the RTSORAC
model have additional features beyond those supplied
by C++ classes and programs. To support these ad-
ditional capabilities, we have added two additional in-
terfaces to Open OODB: a graphic interface to specify
classes for RTSORAC objects, and real-time exten-
sions to the standard SQL query language to specify
RTSORAC transactions.

Schema Speci�cation. A schema in our extended
Open OODB prototype is speci�ed as classes for RT-
SORAC objects. The interface translates these classes
to C++ code suitable to execute on the extended
Open OODB system. Speci�cation of these classes
is done with a graphic interface programmed with X-
windows and Motif. This interface produces a C++
class speci�cation with certain \meta members", in-
cluding a wait queue, compatibility function, POSIX
mutual exclusion locks (mutexes) and condition vari-
ables, and member functions to lock and release the
object. These meta members are used by the con-
currency control mechanism described later in Section
3.2.2. The compatibility function de�ned by the in-
terface tool is structured with a case for each pair-
wise combination of the class's methods. Each case
is boolean expression involving the components of the
compatibility function (Section 3.1). The case deter-
mines whether the methods may execute concurrently.

Transaction Speci�cation. RTSORAC transac-
tions are speci�ed using extensions for real-time trans-
actions that we have designed for the standard SQL
query language. The extended language is called
SQL/RT [7, 8]. The SQL/RT transaction structure is
designed to allow decomposition of transactions into
subtransactions that support more complex commit
and abort semantics. SQL/RT provides three con-
structs for transactions that can be used to support
the RTSORAC transaction model: one for de�ning
transactions, a second for modifying characteristics of
previously de�ned transactions, and a third for initiat-
ing transactions. Each of these constructs is discussed
below.

3.2.2 Underlying Architecture Modi�cations

As shown in Figure 1, our prototyping uses a real-time
operating system that is consistent with the POSIX
standards and a real-time persistent storage manager.
Both of these are changes to the original Open OODB
underlying architecture.

Real-Time Operating System. The alpha release
of Open OODB executes on a Sun Sparc architec-
ture with the SunOS Unix operating system. Unfor-
tunately, Unix has many well-known de�ciencies for
supporting real-time applications[9]. Fortunately, the
next release of Open OODB executes on the Solaris 2.3
operating system which contains many of the real-time
operating system features speci�ed in the IEEE/ISO
POSIX real-time operating system standards [10].



These features include shared memory, priority-based
scheduling and priority-based semaphores. Our ap-
proach has been to implement Open OODB modules
with real-time capabilities on a Solaris 2.3 operating
system while maintaining an interface to the existing
modules of the alpha release of Open OODB. Integra-
tion of our real-time modules with Open OODB will
occur once the Solaris 2.3 version of Open OODB is
available.

Real-time Persistent Store. Our second basic ar-
chitecture modi�cation is the addition of a real-time
persistent store. The current Open OODB alpha ver-
sion relies heavily on the Exodus storage manager
as its persistent store. Exodus's unpredictable exe-
cution times, handling of requests in �rst-come-�rst-
serve order rather than priority order, and conserva-
tive locking capabilities, render it unacceptable for a
real-time data management system. Instead of rely-
ing on Exodus, we are incorporating another address
space to Open OODB: a real-time persistent address
space. Our current design uses this address space
as checkpointed permanent storage for shared main
memory RTSORAC objects (see Section 3.2.3) and
for swap space if all objects can not �t into shared
memory. This capability relies on the Zip Real-Time
Database Management System (RTDBMS) from DBx
Inc, which provides predictable execution times and
bounded resource utilizations. In a joint e�ort with
DBx Inc we have ported Zip RTDBMS to Solaris 2.3
operating system for use in our Open OODB proto-
type.

3.2.3 Object Management

RTSORAC database objects are designed to be kept
in shared main memory for fast, predictable access.
That is, instead of keeping objects in one of the cur-
rent Open OODB address spaces, where they must be
copied into a transaction's local address space for use,
we keep objects in shared main memory. The Object
Policy Manager (OPM) that we have added to Open
OODB manages this shared memoryand provides con-
currency control for the objects. Figure 2 shows the
implementation of object management.

Shared Main Memory Management. In our ex-
tended system, an object keeper process creates a
shared main memory segment at system startup. This
keeper process may load the shared segment with ob-
ject instances, either by restoring old (persistent) ob-
jects, or by instantiating new objects. Transaction

processes map the shared segment into their own vir-
tual address spaces (see Figure 2), thereby gaining di-
rect access to object instances. Transactions use an
overloaded C++ new operator operator to dynami-
cally place objects in the shared segment or to lo-
cate existing objects by name. To do this, part of
the shared segment is reserved at a well-known o�set
for use by the system as an object table. The table
associates each object's name with the object's o�-
set from the shared segment's base address. The ta-
ble also stores object type information. The special
new operator automatically manages the object table
and uses it to translate object names to o�sets. From
this o�set, the new operator creates a properly typed
pointer to the object in the shared memory segment
and returns this pointer to the transaction. There is
also an overloaded C++ delete operator for removing
objects.

Semantic Locking Object Concurrency Con-

trol. Since each transaction may concurrently map
objects in the shared memory segment into its own
virtual address space, we must provide a concurrency
control mechanism. Open OODB's current policy en-
forces serializability through exclusive locking of ob-
jects by transactions before a transaction makes a
copy in it's own address space. Such techniques are
inexible and ignore transaction and data timing con-
straints.

We have developed a concurrency control technique
called semantic locking for RTSORAC object manage-
ment [3]. The semantic locking technique is capable of
supporting logical consistency, temporal consistency,
and the trade-o�s between them as well as bounding
any resulting imprecision. The technique utilizes the
user-de�ned compatibility function (Section 3.1) of a
RTSORAC object to determine the tradeo� and to
de�ne correctness for that particular object. In this
technique, a transaction requests a semantic lock to
invoke a method on an object. Semantic locks are
granted based on the evaluation of a set of conditions
and on the evaluation the compatibility function of
the object.

When a transaction requests a semantic lock for
a method invocation, it calls the meta member func-
tion SLM lock() of the object specifying the method
and the arguments for the requested invocation. The
meta member function acquires the POSIX mutex for
access to the object's meta data. When the mutex
is granted, the SLM lock meta member function at-
tempts to acquire a semantic lock for the transaction.
There are two possible outcomes when a transaction



Method
Invocation

Check
Preconditions

Compatibilities 

Add Lock 
to 

Active Locks Set

Enqueue
Request

Restore
ImpAmts

Done

YESNO

YESNO

Update
Imprecision

B

C

FE

G

D

Initial
Imprecision

A

Figure 3: SLM lock Meta Member Function Outline

process requests a semantic lock for a method invo-
cation: the SLM lock meta member function either
grants permission to the transaction process to ex-
ecute the requested method, or it suspends the re-
questing transaction. A suspended transaction will
be awakened and will retry its lock request whenever
a lock is released (discussed later). In either case,
the transaction releases the mutex at the end of the
SLM lock meta member function. Note that the OPM
uses mutexes to ensure mutual exclusion only for each
object's meta members during the semantic locking
mechanism execution; transaction access to object at-
tributes is controlled with semantic locks.

Figure 3 shows the semantic locking mechanism
that the SLM lock meta member function performs
when a transaction requests a semantic lock for a
method invocation mreq. First, SLM lock computes
the maximum amount of imprecision that mreq could
introduce into each of the attributes that it writes and
into each of its own return arguments (Step A). It com-
putes these values by using the amount of imprecision
already in the attribute or return argument and calcu-
lating how mreq may update this imprecision through
operations that it performs.

Next, the meta member function evaluates a set

of conditional statements that determine if granting
the lock would violate temporal or imprecision con-
straints. The �rst condition ensures that if a trans-
action requires temporally valid data, then mreq will
not execute if any of the data that it reads will be-
come temporally invalid during its execution time.
The other two conditions test that mreq will not in-
troduce too much imprecision into the attributes that
it writes and into its return arguments.

If all of the above conditions hold, the SLM lock

meta member function updates the imprecision
amounts computed in Step A and saves the old
amounts in a data structure, in case the request is not
granted (Step C). The meta member function then
loops to evaluate the compatibility function for mreq

with each currently locked method invocation and
with each lock request in the wait queue for a method
invocation with higher priority than mreq (Step D). If
all tests in the loop succeed, the meta member func-
tion grants the lock formreq , adds it to the active locks
set and gives the transaction permission to execute
the method. If any of the conditions or any compat-
ibility test fails, the SLM lock meta member function
restores the original values of any changed imprecision
amounts (Step E), places the lock request in the pri-
ority queue, and suspends the requesting transaction
(Step G).

A transaction must explicitly release the locks that
it is granted by calling the SLM release meta mem-
ber function on the object. This meta member func-
tion removes the method invocation from the object's
active locks set. It then broadcasts on a real-time
POSIX condition variable to awaken all of the sus-
pended transactions in the object so they may retry
their lock requests. Due to the newly-released lock, it
may now be possible to grant some of these previously-
denied locks. The use of a the real-time POSIX sched-
uler, discussed next, assures that the awakened trans-
actions make their lock requests in priority order.

3.2.4 Transaction Management

Our Open OODB Transaction Policy Manager (TPM)
provides for real-time scheduling of transaction pro-
cesses, transaction timing constraint enforcement, and
for maintenance of information about transaction pro-
cesses.

The real-time transaction scheduling performed by
the TPM is essentially a mapping of timing constraints
expressed in RTSORAC transactions into real-time
POSIX priorities for transaction processes. This map-
ping is designed so that the transaction process pri-
orities realize Earliest-Deadline-First (EDF) schedul-



Transaction
process 0831 Object Keeper

Information

Object table

Shared Memory

Object 1003

Attributes

Meta members

Real-time POSIX Compliant Operating System

C++ 
Specification

Compile
Link

Preprocess

OPM TPM

  SLM_lock();
  SLM_release();

Graphic 
Interface

SQL/RT

Object Keeper
process

RT OOODB Library

Execute

shared

local

main
thread

Object 0730

Attributes

Meta members

Transaction
process 6959

shared

local

main
thread

process
address space

shared

local

main
thread

process
address space

process
address space

Figure 2: Object Management Implementation in Open OODB

ing. EDF scheduling has been shown to be e�ective
in real-time databases [11], but implementing EDF
scheduling using the capabilities speci�ed by the real-
time POSIX interface is non-trivial. The problem is
that optimal EDF scheduling requires in�nite prior-
ities (one for each possible deadline), while POSIX
mandates a minimum of only 32 priorities. Further-
more, real-time POSIX mandates a form of First-In-
First-Out (FIFO) scheduling for processes of the same
priority3. FIFO scheduling can adversely a�ect EDF
scheduling since a later deadline may execute before
an earlier deadline within same priority. Our TPM
is designed to minimize the violation of EDF trans-
action scheduling order while using the capabilities of
real-time POSIX. It does this by �rst mapping the
deadline to a priority, then shu�ing processes within
the same priority to EDF order, and �nally by increas-
ing process priorities as their deadlines near [12].

In addition to EDF scheduling on the processor,
the TPM is also responsible for mapping RTSORAC
transaction timing constraints to real-time POSIX
primitives for enforcing timing constraints. In par-

3There are two other POSIX policies: round robin which is
FIFO with a time quantum, and other, which is non-standard.

ticular, the TPM maps expressed earliest start times,
deadlines, and periods into appropriate POSIX timer
primitives.

4 Summary of Real-Time and Object-

Oriented Synthesis

This paper has shown, through the actual extension
of an object-oriented system, how the object-oriented
paradigm and the requirements of real-time systems
can be combined to support data-intensive real-time
applications. The object-oriented features are pro-
vided by the basic Open OODB system, which extends
C++ with database capabilities so that objects can be
persistent and concurrently shared.

The real-time features are provided by our enhance-
ments to Open OODB. Our port of Open OODB
to a real-time operating system allows for preemp-
tive priority scheduling based on timing constraints
of transactions. The new operating system also pro-
vides the ability to keep objects in shared memory for
fast, predictable access. Our incorporation of a real-
time persistent data store into Open OODB provides
predictable storage and retrieval times for persistent



objects. Our extensions to SQL as the data de�ni-
tion and data manipulation language provide capabili-
ties to express transaction decomposition, transaction
timing constraints, and object temporal consistency
constraints, among other things. Our Object Pol-
icy Manager provides the potential for increased data
availability through the use of semantic concurrency
control on the �ner grained level of object methods,
instead of on entire objects. This concurrency control
technique is capable of expressing and enforcing the
trade-o� between temporal consistency of object data
and traditional logical consistency of the data.

References

[1] P. S. Yu, K.-L. Wu, K.-J. Lin, and S. H. Son,
\On real-time databases: Concurrency control
and scheduling," Proceedings of the IEEE, vol. 82,
pp. 140{157, January 1994.

[2] D. L. Wells, J. A. Blakely, and C. W. Thomp-
son, \Architecture of an open object-oriented
database management system," IEEE Computer,
vol. 25, pp. 74{82, October 1992.

[3] L. B. C. DiPippo and V. F. Wolfe, \Object-based
semantic real-time concurrency control," in Pro-
ceedings of IEEE Real-Time Systems Symposium,
December 1993.

[4] M. Carey, D. J. DeWitt, J. E. Richardson,
and E. J. Shekita, Object-Oriented Concepts,
Databases and Applications. Addison-Wesley
Publishing Company, 1989.

[5] J. Prichard, L. C. DiPippo, J. Peckham, and V. F.
Wolfe, \RTSORAC: A real-time object-oriented
database model," in Proceedings of the Interna-
tional Conference on Database and Expert Sys-
tems Applications, Sept 1994.

[6] V. Wolfe, S. Davidson, and I. Lee, \RTC: Lan-
guage support for real-time concurrency," Real-
Time Systems, vol. 5, pp. 63{87, March 1993.

[7] P. Fortier, V. F. Wolfe, and J. Prichard, \Flexible
real-time SQL transactions," in IEEE Real-Time
Systems Symposium (to appear), Dec. 1994.

[8] P. Fortier, J. Prichard, and V. F. Wolfe,
\SQL/RT: Real-time database extensions to the
sql standard," 1994. To appear in Standards and
Interface Journal.

[9] B. Gallmestier and C. Lanier, \Early experi-
ence with POSIX 1003.4 and POSIX 1003.4a," in
IEEE Real-Time Systems Symposium, Dec. 1991.

[10] IEEE, Portable Operating System Interface
(POSIX); Part 1: System API; Amendment 1:
Real-time Extension. IEEE, 1994.

[11] R. Abbott and H. Garcia-Molina, \Scheduling
real-time transactions: A performance evalua-
tion," in 14th VLDB Conference, Aug. 1988.

[12] J. Senerchia, \A dynamic real-time scheduler for
POSIX 1003.4a compliant operating systems,"
1993. Master's Thesis. Dept. of Computer Sci-
ence, The University of Rhode Island.


