
Road Network Compression Techniques in  

Spatiotemporal Embedded Systems: A Survey 
Amruta Khot 

Center for Data Science 
University of Washington, Tacoma 

1907 South Jefferson, Tacoma WA,  
akhot@uw.edu 

 

Raj Katti  
Center for Data Science 

University of Washington, Tacoma 
1907 South Jefferson, Tacoma WA,  

rajkatti@uw.edu 
 

Abdeltawab Hendawi 
Center for Data Science 

University of Washington, Tacoma 
hendawi@uw.edu 

CSE, University of Minnesota 
hendawi@cs.umn.edu  

 

Ankur Teredesai 
Center for Data Science 

University of Washington, Tacoma 
1907 South Jefferson, Tacoma WA,  

ankurt@uw.edu 

Anderson Nascimento 
Center for Data Science 

University of Washington, Tacoma 
1907 South Jefferson, Tacoma WA,  

andclay@uw.edu 
 

Mohamed Ali 
Center for Data Science 

University of Washington, Tacoma 
1907 South Jefferson, Tacoma WA,  

mhali@uw.edu 

 

ABSTRACT 

The storage and manipulation of road network graphs are critical 

to navigational and location-based services. The widespread use 

of GPS devices combined with low-cost storage  has enabled 

portable and embedded systems to handle several spatiotemporal 

operations against a natively-stored version of the road network 

graph. However, the increase in  amount of map detail data over 

the years poses several challenges for such systems. In this paper, 

we highlight the  need for adoption of road network compression 

techniques in embedded geographic information systems. We also 

provide a technical overview of proposed road network 

compression techniques. 
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1. INTRODUCTION 
The emerging popularity of GPS-enabled portable and embedded 

devices has prompted increased usage of navigational and 

location-based services. Moreover, the quality, and the amount of 

details a map carries have increased significantly over the past 

years thereby increasing the payload across devices and servers 

for GIS applications. At first glance, it may appear that,  state of 

the art storage devices and most portable and embedded systems 

may afford storing high quality maps.  In spite of this, there are 

many reasons that have triggered researchers to propose solutions 

for road network compression [6] tailored for such systems.  

First, the power and cost constraints on embedded devices limit 

the storage capacity that embedded devices may have. Meanwhile, 

the amount of geospatial and non-geospatial 

information/annotations on a map is growing tremendously. 

Hence, storing a compressed version of the map and its road 

network graph reduces the storage cost and enables the storage of 

larger regions as long as the trade-off with power can be balanced. 

Second, web-based geographical information systems need to give 

instantaneous responses to user requests for location based 

services. However, low data bandwidths and big sizes of maps 

pose a challenge to such responsiveness. Hence, transmitting 

compressed and/or reduced map sizes can help lower 

communication costs [4] and enhance responsiveness at the same 

time. Third, we believe that due to the limited processing 

capabilities of embedded devices, their computational power 

needs to be wisely managed. We propose that performing various 

spatiotemporal operations on top of a reduced size version of the 

original map would actually lower the computational cost and 

would lead to near real-time responses. Hence, a geo-streaming 

flavor of the spatiotemporal operations is achievable.   

A road network is represented in the form of a graph structure that 

has a collection of nodes and edges. The curvature of a road 

segment is approximated by line segments (or edges) connecting 

the nodes. The edge weight represents the travel distance or time 

over the road segment represented by that edge. Road network 

maps are stored in data files which contain topological and 

geometrical information. Some compression techniques take into 

consideration only geometrical information while others consider 

both topological and geometrical information.  

In this paper, we survey various compression techniques for 

digital maps. We focus on compression techniques that target the 

road network graphs. One common way of categorizing 

compression techniques is in two main groups: (1) lossy 

compression and (2) lossless compression techniques. In lossy 

compression, certain spatial data is lost permanently as a result of 

the compression. Lossy compression techniques are acceptable, or 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from 

Permissions@acm.org. 

 

IWGS'14, November 04-07 2014, Dallas/Fort Worth, TX, USA 

Copyright 2014 ACM 978-1-4503-3139-5/14/11…$15.00 

http://dx.doi.org/10.1145/2676552.2676645 

 

 



even desired, in cases where not all the details of objects are 

required to perform the spatiotemporal operation in question [2]. 

Alternatively, in lossless compression technique, every single data 

element is recovered when the given map is decompressed. 

Lossless compression techniques are very important in terms of 

preserving the topological properties of a map. 

The remainder of this paper is organized as follows. Section 2 and 

Section 3 discuss the lossy and lossless compression techniques 

for road networks data, respectively. The technical overview 

concludes with some ideas for use of these compression 

techniques  in section 4.  

2. LOSSY COMPRESSION  
This section covers the lossy compression techniques for road 

network map data. Examples of the approaches that fall under the 

umbrella of lossy compression are: (a) clustering, (b) reference 

line, (c) map generalization, and (d) a hybrid approach of 

aggregation and compression. In general, lossy compression 

techniques discover “similar” chunks of data, create dictionaries 

on frequently referenced data chunks, and then refer to items in 

these dictionaries to encode the data. The higher the redundancy 

in the input data is, the higher the compression ratio is. In this 

category of approaches some spatial data is lost in the compressed 

version of the input map and cannot be recovered during the 

decompression phase.  

 

2.1 The Clustering Approach 
The authors in [4] propose a dictionary based compression 

technique. In dictionary based compression, dictionary entries 

represent frequent “shapes” of line segments on the map. During 

data compression, line segments of similar shapes are extracted 

and represented by a single “representative” line segment. This 

representative line segment is inserted in the dictionary. Every 

line segment (among the set of similar line segments) will now 

point to this representative entry in the dictionary. Upon data 

decompression, the dictionary is looked up and decompression is 

done by reverting each line segment back to its representative line 

segment from the dictionary. Since a set of similarly-shaped line 

segments are represented by a single entry (i.e., the representative 

line segment), approximation errors are inevitable between each 

line segment and the representative line segment.   

This algorithm separates the topological and geometrical data and 

the compression is applied only to geometrical data as follows. 

First, co-ordinates of the uncompressed line segment are 

considered. The absolute value of the start node is declared as the 

base point. Then, each subsequent point is represented by a 

differential vector. A differential vector for point (xi, yi) is 

determined by taking differences (or deltas) between the current 

point (xi, yi) and its previous point on the line segment (xi-1, yi-1) 

[5].  

For example, consider a line with coordinates (1, 1), (2, 3), (3, 2) 

and (5, 4). The line is encoded using differential vectors as 

follows: (1,1) , (1,2) , (1,-1) and (2,2) using the formula of 

Delta(x) = Xi – X(i-1) and Delta(y) = Yi – Y(i-1). Notice that the 

differential vectors (after the first point, which is base point) 

represent the relative shape of the line segment and not the exact 

location of the line segment. Now, these vectors along with other 

similar vectors are encoded into the dictionary.   

In [4], two approaches for the design of the dictionary are 

discussed. First, FHM (Fibonacci, Huffman, and Markov) [15] is 

mainly used for compressing signatures. A static dictionary is 

built by using Fibonacci series to determine the set of squares for 

a group of line segments. Each co-ordinate on the line is then 

encoded by the dictionary entry which lies nearest to the value of 

the coordinate. Second, a clustering technique is applied to design 

the dictionary based on the input data. This approach makes use 

of k-means clustering, for example, to create clusters based on the 

input data. Then the centroids form the dictionary entries. Each 

line segment is allocated to a particular cluster and each point 

references the centroid of the cluster as its base point. The 

clustering approach for the construction of the dictionary tends to 

result in lower error boundaries than static dictionary based 

compression techniques like FHM (Fibonacci, Huffman, and 

Markov) method. 

The delta values that are calculated based on the previous point is 

helpful for curves having a small number of nodes because the 

error increases as the number of nodes increase. For longer 

curves, the following reference line methods seems helpful. 

 

2.2 The Reference Line Approach 

 
(a) Prediction of node n3      (b) Prediction of node n3 

 

Figure 1:  Node Prediction during Decompression 

 

A lossy compression algorithm is proposed in [3, 16]. The basic 

steps of the algorithm can be described as follows.  

(1) For each polyline in the original map space, a reference line 

is identified, (usually produced from connecting the two ends 

of the polyline).  

(2) The coordinates of that reference line along with its angle 

from the original coordinate system is used to apply an affine 

transformation on the points on that polyline.  

(3) The delta distances in the vertical direction between the 

intermediate points and the reference line in the new 

coordinate system are bounded by a predefined error 

threshold e. The selected reference line should keep these 

deltas within e, otherwise, a more representative reference 

line is selected. 

(4) In this step, we discuss two modes: (i) In the aggressive 

mode of the reference line approach [3], which achieves 

higher compression ratio but less accurate recovery, the 

original coordinate values for the two ends of the line are 

stored, along with the number of intermediate points and the 

error tolerance e.  At the decompression phase, the algorithm 

runs two threads of equations to predict the intermediate 

points of the original curve. The first to restore points closest 

to the left side of the reference line and the second for the 

points closest to the right end point of the line. Initially, the 

two ends of the reference line are leveraged to recover the 

first point nearest to the left side, e.g., predicting coordinates 

of n3 using n1 and n2 in Figure 1(a). Then, the two most 

recent restored points, (from left and right), are used to 

predict the next point, e.g., restoring n4 using n3 and n2 in 

Figure 1(b).  



(ii) In the less aggressive one [16], (less lossy and less 

compression ratio), the algorithm stores two vectors of delta 

distances between each point coordinates P(xi,yi), from the 

origin of the reference line (xo, yo) or from its left point, in 

addition to the two ends of the reference line themselves.   

 

2.3 Map Generalization 
Map generalization is a process of reducing the complexity of the 

map without hampering the topological and structural features 

[7,12,13]. Generalization operators include simplification and 

smoothing. One of the most known line generalization and 

simplification technique is Douglas-Peucker algorithm [10,14].  

Douglas-Peucker algorithm is a simple and efficient algorithm. To 

simplify a polyline, the algorithm starts initially by connecting the 

first and last vertices of the polyline to form an initial edge. Then, 

all the vertices between the start and end of the polyline are tested 

to see whether they are closer to the edge than a certain tolerance 

factor or not.  If all vertices are close enough to the initial edge, 

the edge in hand is accepted as the approximation of the polyline. 

If this is not the case, then, the vertex farther away from the initial 

edge is added to the new approximate polyline and then the 

algorithm is applied recursively on each edge of the new polyline.  

Note that when this approximation is not sufficiently fine, the 

resulting map can have self-intersecting simplified lines which 

can affect the topological information of the data. Hence, several 

other techniques have been proposed to eliminate the self-

intersecting problem. Authors in [9] utilize an improved Douglas-

Peucker algorithm to avoid self-intersections for any specified 

tolerance. This improved algorithm keeps the same time 

complexity of O(mn) where n is the number of input nodes and m 

the number of output edges as the original algorithm. Saalfeld [8] 

uses a convex hull to efficiently detect and correct the topological 

inconsistencies of the polyline with itself and with other polyline 

characteristics.  

2.4 The hybrid aggregation and compression 

technique 
The compression technique in [1,11] has been proposed and 

integrated with the query processing pipeline of a road network 

database. Basically, the number of data records is reduced using a 

line aggregation technique. Then, Huffman compression is 

applied to achieve a compression ratio on the road network map. 

In this approach, a map object is a grouping of segments and 

attributes like the name of the street, e.g., Obj1 = <’Bell st’, 

Seg1>. All these objects are stored in a database D, e.g., D1 = 

<Obj1,Obj2,Obj3>. This algorithm uses two operators, one for 

line aggregation and another for compression.  

The line aggregation operator combines multiple map objects into 

a single map object by concatenating the line segments and by 

applying an aggregation function over the characters of the street 

names. An aggregate of D = <Obj1, Obj2, Obj3> is created which 

is represented by D’ = <Obj1’, Obj3’>. Here, the Obj1 is 

combined with Obj2 to create Obj1’.  

The compression of the data is done using Huffman coding. In 

Huffman coding, the frequency fi of symbol ai is calculated. These 

symbols are the coordinates of the line segment. The coordinates 

of the line segment are mapped to their corresponding binary 

representation and Huffman coding yields a highly compressed 

representation of road network map. 

When a user asks a query from client machine, results are 

calculated by the server and returned back to the client. The 

author discussed two ways in which compression takes place at 

the server side. In the first technique, line aggregation process is 

carried out on the “entire” database and the query from the user is 

passed to the aggregated. Then, the query result is compressed 

using the compression operator and send back to the client. In the 

second technique, the query is fed to the original database and 

then the query result is aggregated, compressed (using the line 

aggregation and compression operators, respectively) and returned 

to the user. In the first technique the whole database is aggregated 

while in the second approach aggregation is only performed on 

the query result.  

 

3. LOSSLESS COMPRESSION  
In lossless compression technique, every single data element is 

recovered when the given map is decompressed. Lossless 

compression techniques are very important in terms of preserving 

the topological properties of a map after decompression. In this 

paper, we discuss the most common two categories of lossless 

compression, namely, predictive approaches and topological and 

geometrical approach.  

 

 

 

Figure 2: Steps of Predictive Compression Approach 

 

3.1 Predictive approach for road network 

compression 
The proposed approach in [2] accomplishes a lossless 

compression technique taking into consideration the topology of 

the map. The basic idea is to navigate through the given road 

network map edge by edge and predict the next node by using a 

prediction model. The errors produced by this prediction model 

will then be compressed using entropy coding methods. This 

compression scheme encodes a node using less number of bits 

than originally required.  

The steps to compress a map are shown in Figure 2. This 

algorithm starts with organizing the road network map data into 

three tables. One table records the edge Id, start node of the edge 

and end node of the edge. The second table contains the edge Id 

and the intermediate nodes belonging to that edge. The third table 

maintains the information of the co-ordinates of each node. This 

algorithm does not separate the topological data from the 

geometrical data during compression.  

The algorithm navigates through the spanning tree of the road 

network graph. A start edges is selected if it satisfies the minimum 

number of nodes required by the predictor to predict the next 



vertex. The edges having less number of vertices than required for 

the prediction are not compressed.  

The algorithm defines two prediction models: (a) a node based 

linear prediction model and (b) an angle-length based prediction 

model. The node based linear prediction model predicts the next 

node based on the previous two nodes, hence the minimum 

requirement of each edge is two nodes. The angle-length based 

prediction model requires a minimum of four nodes. It predicts 

two turn angles and the length of the next turn for the next node.  

 

3.2 Topological and Geometrical information 

compression 
The authors in [6] propose an approach which considers the 

compression of road network nodes as well as the shapes. The 

basic idea is to divide the space into a number of small cells using 

an efficient partition spatial index such as Quadtree, KD-tree, or 

R-tee. Then, for the portion of the road network graph in a cell c, 

the algorithm finds a reference point from which the location 

differences to other nodes will be computed and stored in less 

number of bits. For example, the road network graph in Figure 3 

is partitioned into three parts {P1, P2, P3}. In P1, the node n1 can 

be the reference point for the remaining nodes n2, n3, n4. For all 

shapes in the cell c, they are clustered into different group of 

similar patterns. Then a reference shape is computed, or picked up 

from existing ones, to represent the common theme in each 

cluster. After that, each shape is stored as delta values to the 

reference shape. This road network compression approach 

achieves more than 30 percent of reduction compared to other 

compression techniques available for the European road networks. 

 
 

Figure 3: Partitioning of Road Network Space 

4. CONCLUSION 
In this paper, we highlighted the importance of storing a 

“compressed” version of the road network map inside 

spatiotemporal embedded systems. More specifically, 

compression achieves higher storage utilization, reduced 

communication cost and lower response times.  Hence, portable 

and embedded devices can natively implement a geostreaming 

flavor of spatiotemporal operations that achieve near real time 

output. We overviewed various lossy and lossless compression 

techniques for road networks and highlighted future challenges. 
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