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Abstract—A fundamental category of location based services
relies on predictive queries which consider the anticipated future
locations of users. Predictive queries attracted the researchers’
attention as they are widely used in several applications including
traffic management, routing, location-based advertising,and ride
sharing. This paper aims to present a generic and scalable system
for predictive query processing on moving objects, e.g, vehicles.
Inside the proposed system, two frameworks are provided to
work on two different environments, (1) Panda framework for
Euclidean space, and (2)iRoad framework for road network.
Unlike previous work in supporting predictive queries, the target
of the proposed system is to: (a) support long-term query
prediction as well as short term prediction, (b) scale up to large
number of moving objects, and (c) efficiently support different
types of predictive queries, e.g., predictive range,KNN, and
aggregate queries.

I. I NTRODUCTION

The fact that there are more than one billion smart
phones [4] triggered the massive explosion of location based
services [5], [9], [14], [18]. An important category of these
services offers facilities based on the future location of auser
rather than his/her location in the present time. Spatial queries
in this categories come under the umbrella of predictive
queries [8], [10], [11], where a service is supplied according to
the predicted location of a user after some time in the future.
Common types of predictive spatial queries includepredictive
range query, e.g., “find all hotels that will be located within
two miles of a user’s anticipated location after 30 minutes“,
predictive KNN query, e.g., “find the three taxis that most
likely to pass by my location in the next 10 minutes“, and
predictive aggregate query, e.g., “how many cars expected to
be around the stadium during the next 20 minutes“.

In fact, Predictive queries can be employed in various types
of real applications such as (1) traffic management, to predict
areas with high traffic in the next half hour, so appropriate
decisions can be taken before congestion appears, (2) location-
aware advertising, to distribute coupons and sales promotions
to customers more likely to show up around a certain store
during the sale time in the next hour, (3) routing services, that
take into consideration the predicted traffic on each road to
find the shortest path for a user trip starting after 15 minutes
from the present time, (4) ride sharing systems, to get the
drivers that mostly will pass by a rider’s location within few
minutes, (5) store finders, to predict the closest restaurants to
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a user’s route after half hour, (6) emergency response, to alert
the three police cars expected to be the nearest to a stolen car
in a couple of minutes.

The goal of this PhD thesis is to enable the practical real-
ization of location-based services such that they can support
common types of predictive queries on spatio-temporal data,
i.e., moving objects. Therefore, this thesis proposes a generic
and scalable predictive spatial query processing system. Inside
this system, two different frameworks are introduced, namely,
Panda framework [7] andiRoad framework [6]. Each one is
customized according to the underlying work environment,
euclidean space and road network graph, respectively.

Specifically, this thesis handles the following core chal-
lenges in processing of spatial predictive queries:

• Prediction. Unlike most of the existing related work [11],
[19] that supports short-term prediction only, the pro-
posed frameworks have the ability to evaluate long-term
as well as short-term predictive queries. In addition, the
employed prediction models do not rely on the historical
data, as in many cases it is hard to obtain the historical
data of the moving objects. For example, in new systems
that there is no historical data or in confidential systems
where the data are top secrets or at least private so it can
not be released to the prediction model.

• Salability. The proposed frameworks can scale up to
support heavy query workloads on a space with a large
number of moving objects. The scalability ofPanda is
resulted from adjusting the underlying prediction function
to be employed to filter out the objects having no possi-
bility to show up in the query region at the specified time.
This filtering saves a lot of the processing time for each
single query. While the scalability ofiRoad comes from
introducing a novel data structure namedreachability
tree to prune the space around each object. Yet, it holds
only those nodes, road intersections, reachable within a
specified time period from the object current location.

• Efficiency. The goal here is to introduce an efficient
query processing engine that utilizes the prediction of
each object in the underlying space to answer the pre-
dictive queries in very fast response time. Thus, users do
not have to wait to get the answer to their queries.

• Generality. The introduced solution can support the
processing of many kinds of predictive queries including
predictive range query,predictive KNN query,predictive
aggregate query, andpredictive point query. This is done



inside the running framework and using the same data
structures and algorithms.

The main idea of the introduced system is to monitor those
space areas that are highly accessed using predictive queries.
For such areas, the system precomputes the prediction of
objects being in these areas beforehand. Whenever a predictive
query is received, the system checks if parts of this predictive
query are included in those precomputed space areas. If this
is the case, the system retrieves parts of its answer from the
precomputed areas with a very low response time. For other
parts of the incoming predictive query that are not included
in the precomputed areas, the system has to dispatch the full
prediction module to find out the answer, which will take more
time to compute. It is important to note here that the aim is
predict the answer for certain areas of the space rather thanthe
whole space. Then, the overlap between the incoming query
and the precomputed areas controls how efficient the query
would be. This isolation between the precomputed area and
the query area presents the main reason behind the generic
nature of the proposed system as any type of predictive queries
(e.g., range andkNN) can use the same precomputed areas to
serve its own purpose.

The rest of this paper is organized as follows. Section II
studies the related work. Section III gives an overview of
the system architecture. ThePanda and theiRoad frameworks
are discussed in Section IV and Section V respectively. The
system prototype and the experimental evaluation is provided
in Section VI and Section VII. Finally, Section VIII concludes
the paper.

II. RELATED WORK

In this section, we review the existing work for predictive
query processing on moving objects. Existing techniques for
predictive query processing can be classified according to the
supported query type into the following categories:

(1) Predictive range queries, i.e., [11], [17], [20]. A pre-
dictive range query has a query regionR and a future timet,
and asks about the objects expected to be inside theR after
time t. For example, a network mobility model [11] is used
to predict the coming path of each of the underlying objects
and employ the prediction results to evaluate predictive range
queries.

(2) Predictive k-nearest-neighbor queries, i.e., [2], [15],
[20]. A predictiveK-nearest-neighbor query has point location
P , a future timet, and asks about theK objects expected to
be closest toP after time t. For example, two algorithms,
RangeSearch, KNNSearchBF, [20] are introduced to traverse
spatio-temporal index tree (TPR/TPR∗-tree) to find the nodes
that intersect with the query circular region for Range and
KNN queries respectively.

(3) Predictive aggregate queries, i.e., [1], [7], [16]. A
predictive aggregate query has a query regionR and a future
time t, and asks about the number of objectsN predicted
to be insideR after time t. For example, a comprehensive
technique [16] provides an approximate answer for aggregate
spatio-temporal queries for the future addition to the past,

Fig. 1. The System Architecture

and the present. An integrated system [1] is used to perform
predictive analysis on aviation data for air traffic management
system. For more comprehensive study on the existing work
in predictive spatio-temporal queries in general, we referthe
reader to [8].

To summarize, the proposed system differentiates itself from
existing related work is that it is the only work that can support
predictive spatio-temporal query processing for both euclidean
space and road networks. In addition, within its infrastructures
including algorithms and data structures, the common typesof
predictive query, e.g., predictiverange, KNN, andaggregate,
can be efficiently evaluated. Further, the embedded prediction
models do not depend on historical data to perform the
prediction of objects future locations. Moreover, it provides
a smooth scalable behavior to harmonize the realistic needsof
large number of moving objects and massive query workloads.

III. SYSTEM ARCHITECTURE

This section give the overall system overview for our pro-
posed predictive query processing system. We briefly describe
its main idea, and outline the system architecture and the key
modules.

Figure 1 gives the system architecture which includes three
main modules, namely, answer maintenance, statistics main-
tenance, and query processing. Each module is dispatched by
an event, namely, an object movement, a trigger for statistic
maintenance, and a query arrival, respectively. The system
maintains a storage for precomputed answers, which is updated
according to the objects movements and used to construct
the final query answer for arriving queries. Below is a brief
overview of the actions taken by the system for each event.
Object movement. Whenever the system receives an object
movement, it dispatches the answer maintenance module to
check if this movement affects any of the precomputed an-
swers. If this is the case, the affected precomputed answers
are updated accordingly.
Maintenance trigger. Based on a tunable threshold, a trigger
may be fired to alert the system that the current set of statistics
that judge on which answers to precompute need to be reset.
The updated statistics affect which parts of query answers will
be precomputed.
Query arrival. Once a query is received, the query processor
divides the query area into two parts based on the answer
precomputation. The first part is already precomputed where



Fig. 2. Data Structures inPanda

its answer is just retrieved from the precomputed storage. The
second part is not precomputed and needs to be evaluated from
scratch through the computation of the prediction function
against a candidate set of moving objects.

IV. PANDA : PREDICTIVE QUERY PROCESSINGIN

EUCLIDIAN SPACE

This section introduces of thePanda framework for predic-
tive query processing for moving objects in euclidean space.
We briefly overview the system and describe its basic data
structures and explain how to handle each event. objects
movements to precompute the predicted answer.

A. Data Structure

Figure 2 depicts the underlying data structure used by
Panda. A brief overview of each data structure is outlined
as follows.Space GirdSG. Panda partitions the whole space
into N × N grid cells. For each cellCi ∈ SG, we maintain:
(1) CellID as an identifier, (2)Current Objects as the list of
moving objects located insideCi, (3) Query List as the list
of predictive queries issued onCi. (4) Frequent Cells as the
list of cells that one of their precomputed answers should be
updated with the movement of an object inCi. Object List
OL. This is a list of all moving objects in the system.Travel
Time Grid TTG. This is a two-dimensional array ofN2 ×
N2 cells where each cellTTG[i, j] has the average travel time
between space cellsCi andCj , whereCi andCj ∈ SG.

B. Object movement

Basically, when an object moves,Panda checks if this move-
ment has any effect on any of the precomputed answers. If this
is the case, thenPanda computes this effect by applying the
prediction function to this object, Equation 1, then propagates
it to precomputed answers in the all affected cells. By doing
this, we either add this object along with its probability tothe
list of predicted objects at possible destination cells or remove
it from the cells no longer possible destination to that object.

(a) Road Network (b) Tree of Node F

Fig. 3. Reachability Tree and Probability Assignment in iRoad

The long-term prediction function deployed inPanda is
mainly an adaptation of the one introduced by Krumm [3],
[12] to predict the final destination of a single object. Yet,
the prediction model insidePanda is able to compute the
probability that objectO will be passing by the given cell
Ci after time t, wheret is specified in the predictive query.
The numerator is the output of the original prediction function,
and the denominator is the summations of the probabilities of
all grid cells Dt that could be a possible destination of an
objectO after timet. Dt is the set of possible destinations of
objectO after timet.

P (Ci|So, t) =
P (Ci|So)∑

d∈Dt
P (Cd|So)

(1)

C. Maintenance trigger

This module runs periodically eacht units to sweep over
current statistics that decide which parts to precompute be-
forehand and update it. For a queryQ to be considered for
precomputation, it has to appear at least a number of times
above a certain threshold in the last time periodt. Otherwise,
it will be computed at the time it is received.

D. Query arrival

Upon the arrival of a new predictive spatio-temporal query
Q, with an area of interestR, requesting a prediction about
future timet, Panda first dividesQ into a sets of grid cellsCf

that overlap with the query region of interestR. For each cell
c ∈ Cf , Panda does the following. Initially, it gets the query
result from cellc, if it is already precomputed, otherwise it
computes the result from scratch. Then, it maintains a set of
statistics that help in deciding whether the answer of cellc,
for a future timet, should be precomputed or not.

V. IROAD: PREDICTIVE QUERY PROCESSINGIN ROAD

NETWORKS

This section shortly presents theiRoad framework for
processing predictive queries for objects traveling on road
networks.

A. Data Structures

In iRoad, there are three basic data structures to main-
tain: Road Network Graph. The given road network graph
contains a set of nodesN and edgesE, and the weightsW
of the edges represent the travel time. For each noden in
the road network, we store additional information including:
(1) list of current objects, to hold the moving objects that are
currently aroundn, (2) list of predicted objects to carry the



(a) User View (Queries) (b) Internal View (Trees)

Fig. 4. The System User Interface

precomputed results. For each object at a noden in the road
network graph we maintain thecurrent trip list which holds the
visited nodes by the object in its ongoing trip.Reachability
Tree. A reachability tree uses a noden in the road network
as a root, and stores all the reachable destinations, i.e., other
nodes, based on the shortest paths fromn within a determined
time limit T , i.e., 15 minutes, Figure 3(b). Yet, reachability
tree is employed to handle objects movements such that we
precompute and update the list of predicted objects at each
node in the road network beforehand.

B. Object movement

The iRoad framework employs a novel data structure,
namedreachability tree, to hold the nodes reachable within
a certain time frameT from an object current location.
According to the movements of the underlying objectso, we
leverage thereachability trees to precompute and store the
predicted answer at each node in the underlying road network
graph.

The prediction model employed byiRoad framework is
based on the assumption that objects follow the shortest paths
in their trips. The intuitions behind this assumption is based
on the fact that in the most cases, the objects moving on road
networks, e.g., vehicles, travel through shortest routes to their
destinations [12], [13]. A probability value is assigned toeach
node in the object reachability tree, Equation 2, such that,
nodes closer to object current node have higher probabilities
than the far away ones. The probability of a nodeni being
a destination to the objecto, where ni is a node in the
reachability tree of o based on its current locationno, is equal
to the probability ofnj , parent node ofni, being a destination
to o divided by the number of children ofnj , Figure 3.

P (ni|no) =
∏ P (nj |no)

fanout(nj)
(2)

C. Maintenance trigger

This event does not apply in theiRoad framework, as there
is no partial precomputation in it.

D. Query arrival

The idea of processing predictive queries iniRoad is to
have the list predicted objects at each node precomputed and
maintained in advance as a res by the movement handler
module, so for coming queries, the query processor module
fetches those results, adapts them according to the type of
received query and returns the answer in a very fast response
time.
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Fig. 5. System Efficiency and Scalability

VI. SYSTEM PROTOTYPE

A nice graphical user interface is developed to allow end
users to issue queries and visually inspect the results. As
shown in Figure 4(a), users can issue different types of
predictive queries including predictive point, range,KNN, and
aggregate queries. Then the system responds by the list of
objects predicted to show up at the query location after the
specified future time along with objects probabilities. Also
users will have an eye on the system inside by seeing how
reachability trees are constructed and dynamically change
according the objects movements, Figure 4(b).

VII. E XPERIMENTAL PERFORMANCEEVALUATION

This section illustrates the performance evaluation for the
Panda framework, while the experimental evaluation for the
iRoad is still under completion. The experiments given here
focuses on the study of the scalability of the proposed system
with large query sizes. In this set of experiments, Figure 5.(a),
we notice that when the size increases, our system still behaves
efficiently without significant increase in the total processing
cost, for example when the query size increased by 16 times,
from 0.01 to 0.16 of the total space, the average processing
time per query increases only by three times, from 0.11
to 0.34 milliseconds/query. In our second set of scalability
experiments, Figure 5.(b) depicts the behavior of the main
components of the system when the number of moving objects
increases from 5K to 80K. As noticed from the average
CPU cost per query when the number of objects increases
by 16 times, from 5K to 80K, the average cost per query
increases only by less than four times, i.e., from 0.7 to 2.7
milliseconds/query.

VIII. C ONCLUSION

This paper outlines a PhD thesis that proposes frameworks
for predictive query processing for moving objects in two dif-
ferent environments,Panda for objects in euclidean space, and
iRoad for objects on road networks. For each framework, we
presented its main idea, architecture, and the embedded data
structures. Three core challenges, necessary to realizingthe
introduced frameworks, along with the proposed approaches
to solving these challenges were presented. These challenges
include (1) Supporting long-term query prediction, many steps
in the future, as well as short term prediction, next destination
or step, (2) Scaling up to large number of moving objects, and



large number of outsized predictive queries, (3) Supporting
common types of predictive spatio-temporal queries including
range, aggregate, andk-nearest-neighbor queries. Experimen-
tal evidence was given to prove the scalability and efficiency of
the presented frameworks. As a future work, we plan to study
how to deal with uncertainty in the underlying moving objects
locations and directions, and to support different prediction
models within the proposed framework.
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