
Noname manuscript No.
(will be inserted by the editor)

Panda∗: A Generic and Scalable Framework for Predictive
Spatio-temporal Queries

Abdeltawab M. Hendawi · Mohamed Ali ·
Mohamed F. Mokbel ?

Received: date / Accepted: date

Predictive spatio-temporal queries are crucial in many applications. Traffic man-
agement is an example application, where predictive spatial queries are issued to
anticipate jammed areas in advance. Also, location-aware advertising is another ex-
ample application that targets customers expected to be in the vicinity of a shopping
mall in the near future. In this paper, we introduce Panda∗, a generic framework
for supporting spatial predictive queries over moving objects in Euclidean spaces.
Panda∗ distinguishes itself from previous work in spatial predictive query processing
by the following features: (1) Panda∗ is generic in terms of supporting commonly-
used types of queries, (e.g., predictive range, KNN, aggregate queries) over stationary
points of interests as well as moving objects. (2) Panda∗ employees a prediction func-
tion that provides accurate prediction even under the absence or the scarcity of the
objects’ historical trajectories. (3) Panda∗ is customizable in the sense that it isolates
the prediction calculation from query processing. Hence, it enables the injection and
integration of user defined prediction functions within its query processing frame-

?The research of these authors is supported in part by the National Science Foundation under Grants
IIS-0952977 and IIS-1218168

A. M. Hendawi
Department of Computer Science
University of Virginia - Charlottesville
85 Engineer’s Way, Charlottesville, VA 22904-4740
E-mail: hendawi@cs.virginia.edu

M. Ali
Center for Data Science, Institute of Technology
University of Washington Tacoma
1900 Commerce Street, Tacoma, WA 98402-3100
E-mail: mhali@uw.edu

M. F. Mokbel
Department of Computer Science and Engineering
University of Minnesota - Twin Cities
200 SE Union Street, Minneapolis, MN 55455
E-mail: mokbel@cs.umn.edu

2 Abdeltawab M. Hendawi et al.

work. (4) Panda∗ deals with uncertainties and variabilities in the expected travel time
from source to destination in response to incomplete information and/or dynamic
changes in the underlying Euclidean space. (5) Panda∗ provides a controllable pa-
rameter that trades low latency responses for computational resources. Experimental
analysis proves the scalability of Panda∗ in evaluating a massive volume of predictive
queries over large numbers of moving objects.

1 INTRODUCTION

The massive proliferation of GPS devices, along with the wide usage of mobile
phones, and the easy accessability of wireless technologies have led to a number
of new-location based services applications [13, 23, 24]. These applications support
queries like “what are the five nearest restaurants”, or “give me the list of pharma-
cies within one mile of my current location”. A considerable amount of research has
been introduced to handle different types of queries on spatial data, such as range
queries [6, 8, 33], and k-NN queries [6, 26].

Another important set of location-based services focuses on predictive queries
[14, 15, 18, 21] in which a user asks the same previous queries but for a future time
instance rather than the current time instance. Examples of such services include pre-
dictive range queries in a smart advertising system, e.g., ”send e-coupons to all cus-
tomers that are expected to show up around a store location in the next 30 minutes” ,
and predictve k-NN queries in ride sharing systems, e.g., ”find the three vehicles ex-
pected to pass by a waiting rider’s location in the next 5 minutes”. Predictive queries
are crucial to many applications. In traffic management systems, predictive queries
identify the regions that are expected to be congested even before traffic builds up.
In weather alarming systems, predictive queries notify the commuters about severe
weather conditions in advance [22]. In service finding applications, predictive queries
find the taxi that is expected to be the nearest to my location within the next few
minutes. In location-based advertising, predictive queries target customers who are
expected to be nearby in the next hour with sales coupons.

Most of the existing work focuses on short-term predictive queries with a single
query type [15]. Short term predictions aims at predicting only the next turn, seg-
ment, and/or junction of the moving object’s trajectory. This short-term prediction
is not very useful in many real world applications that require prediction to be far-
ther in the future, as described in the application scenarios above. The majority of
existing techniques utilize spatio-temporal index structures to speed up the retrieval
of the object’s locations. However, these techniques suffer from a significant update
overhead [34]. The frequent movement of an object in real life generates a stream of
location updates and puts these index structures under performance pressure. Further-
more, the long-term prediction models employed by existing work are mostly based
either (1) on historical data modeling or (2) on a linearity movement assumption.
From practical experience [1, 9, 10], historical data is not always available in rural
areas and/or not available due to the users’ privacy concerns. Moreover, the linearity
movement assumption is not realistic in real world. Moving objects usually have a
complex movement pattern rather than moving in a straight line.

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 3

In this paper, we extend our previous work, Panda [11, 12]. Panda evaluates pre-
dictive spatial queries in Euclidean space with a focus on (i) handling predictive range
queries, (ii) assuming all objects are moving objects, and (iii) considering a fixed
travel time between any given two points in the space regardless of the time of the
day. In this work, we introduce the extended framework Panda∗. In this extension,
(1) We give Panda∗ the ability to process predictive KNN query and predictive ag-
gregate query in addition to the existing predictive range query capabilities. (2) We
enable Panda∗ to handle predictive queries over a mix of stationary points of inter-
ests, POIs, (e.g., restaurants) and moving data (e.g., vehicles). (3) We provide Panda∗

with the ability to handle time uncertainty by considering the dynamic change in the
travel time between points in the space. Thus, Panda∗ reacts to changes in the un-
derlying space based on the time of day. For example, travel time cost between two
locations is cheap in the morning while it is expensive in the afternoon. To achieve
that, Panda∗ introduces the travel time structure (TTS) as a multi dimensional grid
structure. The TTS stores the travel time cost between each pair of locations in the
space at various time slots of the day. (4) We conduct comprehensive experimental
evaluation based on real and synthetic data to examine the performance of Panda∗

under the newly added query types and under time uncertainty.
In more elaboration, we introduce Panda∗, a system designed to efficiently sup-

port a wide variety of predictive spatio-temporal queries that include predictive range
queries, predictive k-NN queries, and predictive aggregate queries, for stationary
and moving objects. Panda∗ distinguishes itself from previous attempts in predictive
query processing [15, 38] in the following aspects: (1) Panda∗ has ability to evalu-
ate long-term as well as short-term prediction queries. Hence, it supports prediction
up to tens of minutes, (2) Panda∗ scales up to answer heavy workloads with tens of
thousands of queries over a large number of moving objects in the order of tens of
thousands of objects. The scalability of Panda∗ is attributed to the adoption of a pre-
diction function that filters out objects with no possibility of appearing in the query
result at the a specified time window. Moreover, it prunes out the object movements
that have no effect on the result, (3) Panda∗ does not only answer current queries, but
it also precomputes the results of frequent queries and/or frequently-queried regions
in advance. This result precomputation dramatically reduces the query response time,
(4) Panda∗ is generic in the sense that it does not address a single type of predictive
queries. Instead, it provides a generic infrastructure for a wide variety of predictive
queries over both stationary and moving data, and (5) Panda∗ deals with time uncer-
tainty by modeling the travel time between different locations as a range of time with
lower and upper bounds, e.g., from 10 to 15 minutes. This time range enables Panda∗

to handle dynamic changes in the underlying space based on the time slot of the day.
The main idea of Panda∗ is to monitor those space areas that are highly accessed

using predictive queries. For such areas, Panda∗ precomputes the likelihood of ob-
jects being in these areas beforehand. Whenever Panda∗ receives a predictive query,
it checks if parts of this predictive query are included in these precomputed space
areas according to the overlap between the query region and the underlying space.
If this is the case, Panda∗ retrieves parts of the query answer from the precomputed
areas with a very low response time. For other parts of the incoming predictive query
that are not included in the precomputed areas, Panda∗ has to dispatch the full predic-

4 Abdeltawab M. Hendawi et al.

tion module to find out the answer, which will take more time to compute. Worthy to
mention here that Panda∗ does not apply the prediction module on the whole space,
instead, it limits the computation to a clipped space, since some areas are filtered out
if they are not under investigation by any standing query. This filtration is a basic key
of the scalability of Panda∗. Then, the overlap between the incoming query and the
precomputed areas controls how efficient the query would be.

The isolation between the precomputed area and the query area presents the
main reason behind the generic nature of Panda∗ as any type of predictive queries
(e.g., range, k-NN, aggregate) can use the same precomputed areas to serve its own
purpose. Another main reason for the isolation between the precomputed areas and
queries is to provide a form of shared execution environment among various queries.
If Panda∗ would go for precomputing the answer of all incoming queries in separa-
tion manner, there would be significant redundant computations among overlapped
query areas.

Panda∗ provides a tunable threshold that provides a trade-off between the predic-
tive query response time and the overhead of precomputing the answer of selected
areas. At one extreme, we may precompute the query answer for all possible areas,
which will provide a minimal response time, yet, a significant system overhead will
be consumed for the precomputation and materialization of the answer. On the other
extreme, we may not precompute any answer, which will provide a minimum system
overhead, yet, an incoming predictive query will suffer the most due to the need of
computing the query answer from scratch without any precomputations.

The underlying prediction function used in Panda∗ utilizes a long-term prediction
function, designed to predict the final destination of a single user based on the trajec-
tory [7, 20] of his current trip. Clearly, a direct deployment of such a long-term pre-
diction function does not satisfy our purpose of predictive queries that are concerned
with the moving object location after some time rather than its final destination. Ac-
cordingly, Panda∗ alters the prediction function to provide a location prediction after
a specified future time interval (e.g., after 20 minutes). This future time interval can
represent both a short-term and a long-term prediction rather than the final destina-
tion. Moreover, Panda∗ considers the travel time between two points variable over
time, probably due to the variability and uncertainty in the traffic patterns over the
day. To handle travel time variability and uncertainty, Panda∗ stores the travel time
between any pair of locations in the space as time interval rather than exact value.
The boundaries of the interval represent the minimum and maximum time it takes
from an object to move from one location to another in the space.

To evaluate the performnace of Panda∗, its query processor is implemented and
compared against two other baseline algorithms. The experiments are based on two
groups of data, a synthetic data set [5] and a real data set about GPS readings collected
by Microsoft [35,36]. The experiments results prove that Panda∗ is scalable, efficient,
and as accurate as its underlying prediction function. Panda∗ achieves a workload
that is at least four times bigger than the baseline algorithm without scarifying the
response time.

The rest of the papers is organized as follows; Section 2 reviews related work.
Section 3 gives an overview of the Panda∗ system architecture, and its prediction
function. Section 4 presents the generic framework for predictive query processing in

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 5

Panda∗ including its data structures and algorithms. Section 5 describes how Panda∗

can be extended to support common predicative spatio-temporal queries. Section 6
provides the experimental analysis and performance evaluation of Panda∗. Finally,
the paper is concluded in Section 7.

2 RELATED WORK

The work related to predictive query processing can be classified into three broad
categories based on the underlying prediction function into: (1) predictive queries
using linearity-based prediction models, (2) predictive queries using historical-based
prediction models, and (3) predictive queries using other prediction models. In this
section, we give an ovefrview of each category.

(I) Predictive queries using linearity-based prediction: [3, 25, 27, 31, 32]. The
main idea of predictive query processing in this category is that their underlying
prediction models are based on a simple assumption that objects move in a linear
function in time. So, the query processor takes into consideration the position of a
moving point at a certain time reference, its direction and the velocity, then compute
and store the future positions, (using a liner function in time), of that object in a TPR-
tree based index. When a predictive query is received the query processor retrieves the
anticipated position in the given time [27]. The work in this category concerns with
the applications of the linearity-based prediction models to answer nearest neighbor
queries [25], k nearest and reverse k nearest neighbor queries [3], or to estimate the
query selectivity [32]. Some of these applications attach the expiry time interval to
the KNN query result [31].

(II) Predictive queries using historical-based prediction: [4, 7, 15, 18, 19, 28].
The main idea of this category is that the prediction models mainly rely on ob-
jects historical trajectories. Existing work in this category is either based on mobility
model [15], or based on ordered historical routes [4, 7, 19] for predicting the object
next trajectory. The main concern of the mobility model [15] is to answer predic-
tive range query by focusing on the prediction of the object behavior in junctions. In
the ordered historical routes, the stored historical routes are ordered according to the
similarity with the current time and location of the object and the top route is con-
sidered the most possible one [4, 7, 18, 19]. In [28] the historical data is employed to
approximately answer aggregate spatio-temporal queries.

(III) Predictive queries using other predictions: [14, 29, 37, 38]. The main idea
of this category is to use more complicated functions to achieve better prediction
accuracy. Some of the existing work in this category either exploit a single func-
tion [29, 38], or mix between two or more functions to form a hybrid prediction
model [14, 37]. A Transformed Minkowski Sum [38] is used to answer circular
region range and K-NN queries. Recursive Motion Function (RMF) [29] is used to
predict a curve that best fits the recent locations of a moving object and accordingly
answer range queries. In the hybrid functions category, two methods [14, 37] are
combined to evaluate range and nearest neighbor queries in highly dynamic and
uncertain environments.

6 Abdeltawab M. Hendawi et al.

Moreover, the related work to predictive query processing can be classified in
terms of type of queries it supports. Most existing algorithms for predictive query
processing have focused only on one kind of predictive queries, or two at most. These
algorithms can be classified as follows:

(I) Predictive Range queries, i.e., [15, 29, 38]. A predictive range query has a
query region R and a future time t, and asks about the objects expected to be inside
the R after time t. For example, a mobility model [15] is used to predict the coming
path of each of the underlying objects and employ the prediction results to evaluate
predictive range queries. Most of existing work considers query region as a rect-
angle, whoever the Transformed Minkowski Sum is used to answer circular region
range [38]. This is done by determining whether a time parameterized bounding rect-
angular, as a moving object, intersects a moving circle that represents range queries.
The initial rectangle of the object and the velocity of each edge in this rectangle are
considered to compute the position and the rectangle after a certain duration of time
in the future. The transformed Minkowski sum in this method is obtained by doing
two steps: (i) a coordinate transformation based on the query region an its movement,
then (ii) the Minkowski enlargement in the transformed coordinates system.

(II) Predictive K-Nearest-Neighbor queries, i.e., [3, 16, 25, 38]. A predictive
K-nearest-neighbor query has point location P , a future time t, and asks about the
K objects expected to be closest to P after time t. For example, two algorithms,
RangeSearch, KNNSearchBF, [38] are introduced to traverse spatio-temporal index
tree (TPR/TPR∗-tree) to find the nodes that intersect with the query circular region for
Range and KNN queries respectively. Sometimes the expiry time interval is attached
to a kNN query result [30, 31]. Thus, the kNN query answer is presented in the form
of ¡result, interval¿, where the interval indicates the future interval during which the
answer is valid.

(III) Predictive Reverse-Nearest-Neighbor queries, i.e., [3,17]. Unlike the pre-
dictive KNN query which finds the objects expected to be the nearest to a given
query region, predictive reverse nearest neighbor, RNN, query finds out the objects
that expected to have the query region as their nearest neighbor. This query is use-
ful in service distribution applications such as ad-hoc networking to assign mobile
devices to the nearest communication service point. For example, the IGERN algo-
rithm [17] is used to evaluate continuous reverse nearest neighbor queries. We can
report that the area of RNN is relatively unexplored and needs more investigation.

(IV) Predictive Aggregate queries, i.e., [28]. A predictive aggregate query has
a query region R and a future time t, and asks about the number of objects N pre-
dicted to be inside R after time t. For example, a comprehensive technique [28] that
employs an adaptive multi-dimensional histogram (AMH), a historical synopsis, and
a stochastic method to provide an approximate answer for aggregate spatio-temporal
queries for the future addition to the past, and the present.

3 PANDA: SYSTEM OVERVIEW

This section define our research problem and provides an overview of the Panda∗

system by briefing the system architecture which includes the main modules and

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 7

Fig. 1 The Panda∗ System Architecture

events, explaining the long-term prediction function [7, 20] and our adaptation on it
to be employed in the Panda∗ framework.

3.1 Problem Statement

Our problem statement can be formalized as; ”Given a set of moving objects se-
quences S, in a space partitioned into a set of grid cells C, a prediction function F̂, a
predictive query defined by a region r, and a time period t, we need to find out the
objects predicted to be inside r after the time t. This version of the problem statement
is about a predictive range query where the query location is expressed as a region.
However, this problem and the proposed solution are easily customizable to include
other query types. For example, for predictive KNN queries, we consider the query
region as a point location L rather than a region and specify a number K to guide
the query processor to retrieve the K objects with highest probabilities to show up
around L after t time unites. Our objective here is to introduce an efficient predictive
query processor that reduces the computation time.

3.2 System Architecture

The Panda∗ system consists of three main modules, namely, answer maintenance,
statistics maintenance, and query processing, Figure 1. Each module is dispatched by
an event, namely, an object movement, a trigger for statistic maintenance, and a query
arrival, respectively. As a shared storage, a list of precomputed answers is maintained,
which is frequently updated offline and used to construct the final query answer for
received predictive queries. Below is a quick overview of each of these three events
along with its associated event handler module. Details of these actions are discussed
in Section3.
Object movement. Whenever Panda∗ receives an object movement, it dispatches
the answer maintenance module to check if this movement affects any of the pre-
computed answers. If this is the case, the affected precomputed answers are updated
accordingly.
Tuning trigger. This trigger consists of a tunable threshold and/or a specified time-
out interval. Whenever a change happens to the system threshold or at the end of a

8 Abdeltawab M. Hendawi et al.

timeout, the system tuning module is fired to prompt Panda∗ that the current set of
statistics that judge on which answers to precompute need to be reset. Consequently,
the updated statistics affect which parts of query answers will be precomputed which
in turns control the whole performance of Panda∗.
Query arrival. Once a query is received by Panda∗, the query processor divides
the query area into two parts based on the answer precomputation. The first part is
already precomputed where its answer is just retrieved from the precomputed storage.
The second part is not precomputed and needs to be evaluated from scratch through
the computation of the prediction function against a candidate set of moving objects.

3.3 Prediction Function

The long-term prediction function deployed in Panda∗ is mainly an adaptation of the
one introduced by Microsoft Researchers [7, 20] to predict the final destination of a
single object.

F is applied to any space that is partitioned into a set of grid cells C. It takes two
inputs, namely, a cell Ci ∈ C and a sequence of cells Os = {C1, C2, · · · , Ck} that
represents the current trip of an object O. Then, F returns the probability that Ci will
be the final destination of O, Equation 1.

F ← P (Ci|Os) =
P (Os|Ci)P (Ci)∑N

j=1 P (Os|Cj)P (Cj)
(1)

The term P(Os|Ci) in the numerator is the possibility of the sequence Os of the
current traversed cells by the object O given the destination cell Ci. This term can
be computed using the traveling efficiency parameter E, Equation 2 which measures
to what extend objects on the space follow the shortest path in its movements from
sources to destinations.

P (Os|Ci) =

n∏
k=2


E if cell Ck in Os is closer to

Ci than the cell Ck − 1

1− E otherwise

(2)

This parameter E varies from object to another and it can be obtained by exam-
ining the most recent bunch of trajectories of each object. It is also possible to get
one value for the system as whole. This is done by taking the average of traveling
efficiency of all objects on the space. For example, the analysis performed by John
Krumm in [20] found that E is around 0.68. In our set of experiments, we set one E
value for the Panda∗ system. P(Ci), the second term in the numerator, is the previous
probability of Ci to be a destination for Os. Initially this term is set to 1/n, where n
is the number of cells in the grid. The denominator is a normalization factor to sum
up all probabilities for all cells in the grid to one, given the recent rout of an object.

The way the prediction function works is demonstrated in Figure 2, where the
given space in which the objects move is partitioned into 6 × 6 squared cells num-
bered from 1 to 36. The current trajectory of the moving object O1 is drawn as a line

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 9

Fig. 2 Destinations Probabilities Based on Object Sequence

started at cell C15 and headed to cell C18. The sequence of cells representing O1 in
its current trip is SO1 = {C15, C16, C22, C23, C18}. The color of a cell indicates its
probability of being a destination to the object O1 given its sequence SO1

, the darker
the cell color, the higher the probability. As the object moves toward its final trip des-
tination, the prediction function updates its computation. So, some of the grid cells
become more probable destination (e.g. C24), and others become less probability,
(e.g. C31).

As F only predicts the destination of an object, it does not have the sense of time.
In other words, F cannot predict where an object will be after time period t. Since
this is a core requirement in Panda∗, we adapt F to be able to compute the probability
that object O will be passing by the given cell Ci after time t, where t is specified in
the predictive query. The adaptation results in the function F̂ , Equation 3, which is a
normalization of the results from the original prediction function F using the set of
cells Dt that could be a possible destination of an object O after time t.

F̂ ← P (Ci|Os, t) =
P (Ci|Os)∑

d∈Dt
P (Cd|Os)

(3)

Here, the numerator is the output of the original prediction function F, and the de-
nominator is the summations of the probabilities of all grid cells in Dt, also computed
from F .

4 Panda∗: A Predictive Spatio-Temporal Query Processing

A salient feature of Panda∗ is that it is a generic framework that supports a wide
variety of predicative spatio-temporal queries. Panda∗’s query processor can sup-
port range queries, aggregate queries, and k-nearest-neighbor queries within the same
framework. In addition, Panda∗’s query processor can support stationary as well as
moving data. Finally, Panda∗ is easily extensible to support continuous queires. This
generic feature of Panda∗ make it more appealing to industry and easier to realize in

10 Abdeltawab M. Hendawi et al.

(a) Grid Index Structure

(b) Travel Time Structure

Fig. 3 Data Structures in Panda∗

real commercial systems. This is in contrast to all previous work in predictive spatio-
temporal queries that focus on only one kind of spatio-temporal queries. As described
in Figure 1, Panda∗ reacts to three main events, namely, query arrival, object move-
ment, and a trigger for statistics maintenance. Each event prompts Panda∗ to call one
of its three main modules to take the appropriate response. This section discusses the
details of each main module. The section first starts by describing the underlying data
structure of Panda∗ (Section 4.1). Then, the generic query processor, answer main-
tenance, and system tuning are described in Section 4.2, 4.3, and 4.4, respectively.

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 11

Following the spirit of Panda∗, the discussion in this section is made generic without
referring to a particular predictive query type, except when giving examples. The ex-
tensibility of Panada∗ to support various predictive query types will be described in
next section (Section 5).

4.1 Data Structure

Figure 3 depicts the underlying data structure used by Panda∗. A brief overview of
each data structure is outlined below:
Space Grid SG. Panda∗ partitions the whole space into N × N grid cells. For each
cell Ci ∈ SG, we maintain: (1) CellID as an identifier, (2) Current Objects as the list
of moving objects located inside Ci, (3) Query List as the list of predictive queries
issued on Ci. Each query Q in this list is presented by the tuple (Time, Counter,
Answer), where Time is the future time included in Q, Counter is the number of
times that Q is issued to Panda∗, Answer is the precomputed answer for Q which
may have different format based on the type of Q, e.g., for predictive range query, it
carries the list of objects expected to compose the answer, while in predictive K-NN,
it contains the k objects anticipated to satisfy the query conditions., (4) Frequent Cells
as the list of cells that one of their precomputed answers should be updated with the
movement of an object in Ci. For example, as provided in Figure 3, the cell C3 has a
precomputed answer for the future time t = 20 minutes, while the answer for t = 30
is not be precomputed, and hence, it should be computed from scratch when a query
with the same future time is received. It is important to notice here that N is tuned
based on the application requirements. When N is large, this means the application
requires the prediction to be more precise as the cells size will be smaller, and vice
versa. For example, an advertising application would choose a bigger N to make
sure to allocate the user’s future location around a store area. In a severe weather
management application, the N could be smaller as it will be enough to forecast the
tornado , as a moving object, future location at the level of a city.
Object List OL. This is a list of all moving objects in the system. For each object O
∈ OL, we keep track of an object identifier and the sequence of cells traversed by O
in its current trip. For example, as illustrated in Figure 3, O2 in its current trip, has
passed through the sequence of cells {C13, C7, C2, C3} that means it started at C13

and it is currently moving inside C3.
Travel Time Structure TTS. This is a three-dimensional array of N2 × N2 × TS
cells where each cell TTS[i, j, k] has the travel time interval between space cells
Ci and Cj , at time slot TSk where Ci and Cj ∈ SG and TS is the time slots of
the day. TTS is fully pre-loaded into Panda∗ and is a read-only data structure. For
example, as illustrated in Figure 3(b), the travel time from C1 to C36 takes from 35 to
45 minutes while it takes 22 to 30 minutes to travel from C2 and C35 at time slot TS1.
According to the underlying set of moving objects, the value inside a cell in the TTS
might be stored as an exact value, e.g., average, or interval of time, e.g., [min,max].
By visiting this travel time structure, we find out the set of possible destination cells
Dt, mentioned in Section 3.3, to a specific cell C after time t. This is done by reading
the array of time intervals corresponding to the current cell C in the present time slot

12 Abdeltawab M. Hendawi et al.

TS. Then, we check if the future time t intersects with any of these time intervals,
the cell of this interval will be added to the possible destinations Dt.

4.2 Generic Query Processing in Panda

The generic query processing of Panda∗ does not only predict the query answer, but it
also prepares partial results of the incoming queries before hand. In general, Panda∗

does not aim to predict the whole query answer, instead, it predicts the answer for
certain areas of the space. Then, the overlap between the incoming query and the
precomputed areas controls how efficient the query would be. If all the query is pre-
computed, the query will have best performance in terms of lower latency, however,
the Panda∗ system will encounter high overhead of maintaining the precomputed an-
swer. This isolation between the precomputed area and the query area presents the
main reason behind the generic nature of Panda∗ as any type of predictive queries
(e.g., range and k-nearest-neighbor) can use the same precomputed areas to serve
its own purpose. Another main reason for the isolation between the precomputed ar-
eas and queries is to provide a form of shared execution environment among various
queries. If Panda∗ would go for precomputing the answer of incoming queries, there
would be significant redundant computations among overlapped query areas.

The Panda∗ query processor utilizes its grid structure G to decide on precomuting
the answer for some specific cells of the G. Upon the arrival of a new predictive
spatio-temporal query Q, with an area of interest R, requesting a prediction about
future time t, Panda∗ first divides Q into a sets of grid cells Cf that overlap with
the query region of interest R. For each cell c ∈ Cf , Panda∗ goes through two main
phases, namely, result computation and statistic maintenance.

The result computation phase (Section 4.2.1) is responsible on getting the query
result from cell c either as a precomputed result or by computing the result from
scratch. The statistic maintenance phase (Section 4.2.2) is responsible on maintaining
a set of statistics that help in deciding whether the answer of cell c, for a future time
t, should be precomputed or not.

The precomputation at cell c will significantly help for the next query that asks for
prediction on c with the same future time t, yet, precomputation will cause a system
overhead in continuously maintaining the answer at c. Throughout this section, Al-
gorithm 1 gives the pseudo code of the Panda∗ query processor where the first three
lines in the algorithm finds out the set of cells Cf that overlaps with the query region
R, and start the iterations over these cells.

4.2.1 Phase I: Result Computation.

Phase I, result computation, receives a predictive query Q, either as range, aggregate,
or k-nearest-neighbor, asking about future time t and a cell ci that overlaps with
the query region of interest R. The output of this phase is the partial answer of Q
computed from ci. The following describes the main idea, algorithm, and an example
of Phase I.

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 13

Algorithm 1 Panda∗ Predictive Query Processor
Input: query region R, future time t

1: QueryResult← null, CellResult← null
2: Cf ← the set of grid cells intersecting with (R)
3: for each cell ci ∈ Cf do
4: /* Phase I: Result Computation */
5: if there is an answer in ci at time t then
6: CellResult← read answer from ci
7: else
8: CR← the set of grid cells reachable to ci in time t at the current time slot
9: for each cell cj ∈ CR do

10: for each object O ∈ current objects in cj do
11: ObjectPrediction← Compute F̂ = P (ci|O, t)
12: UpdateResults (CellResult, ObjectPrediction)
13: end for
14: end for
15: end if
16: UpdateResults (QueryResult, CellResult)
17: /* Phase II: Statistics Maintenance */
18: e← the entry in the query list of ci at time t
19: if e is NULL then
20: e← Insert a new blank entry e to the query list of ci with e.Counter=0 and e.Answer is Null
21: end if
22: e.Counter← e.Counter + 1
23: if e.Counter ≥ System threshold T AND e.Answer is NULL then
24: e.Answer← CellResult
25: CR← the set of grid cells reachable to ci in time t at the current time slot
26: Add ci to the list of frequent cells in all cells in CR

27: end if
28: end for
29: Return QueryResult

Main idea. The main idea of Phase I is to start by checking if the query answer at
the input cell ci is already computed. If this is the case, then Phase I is immediately
concluded by updating the query result Q by the precomputed answer of ci. If the
answer at ci is not precomputed, then, Phase I will proceed by computing the answer
of ci from scratch. Phase I avoids the trivial way of computing the prediction function
of all objects in the system to find which objects can make it to the query answer at
future time t. Instead, Phase I applies a smart time filter to limit its search to only those
objects that can possibly reach to cell ci within the future time t. Basically, Phase I
utilizes the Travel Time Structure (TTS) to find the set of cells CR that may include
objects reachable to ci within time t. Then, we calculate the prediction function for
only those objects that lie within any of the cells in CR. The result of these prediction
functions pile up to build the answer result produced from ci.

Algorithm. The pseudo code of Phase I is depicted in Lines 4 to 16 in algorithm 1.
Phase I starts by checking if the answer of ci at time t is already precomputed in its
own Query List entry in the grid data structure G. If this is the case, we just retrieve
the precomputed answer as the complete cell answer (Line 6 in Algorithm 1), and
conclude the phase by using the cell result to update the final query result (Line 16 in
Algorithm 1). Updating the result is done through the generic function UpdateResults

14 Abdeltawab M. Hendawi et al.

that takes two parameters, the first is the result to be updated, and the second is the
value to be used to update the result. The operations inside this functions depend
on the underlying query type, e.g., aggregate, range, or k-nearest-neighbor queries.
Details of this generic function will be described in Section 5.1. In case that the
answer of cell ci is not precomputed, we start by computing this answer from scratch
(Lines 8 to 14 in algorithm 1). To do so, we apply a time filter by retrieving only the
set of cells CR that can be reachable to ci within the future time t by checking the
Travel Time Structure (TTS) and find out which cells have the potential to send objects
to ci within time t at the current time slot TSk of the day. We visit just the slice for the
current time slot of the day in the TTS. Only those objects that lie within any of the
cells of CR may contribute to the final cell answer, and hence the query answer. For
each object O in any of the cell of CR, we utilize our underlying prediction function,
described in Section 3.3, to calculate the predicted value of having O in ci within time
t (Line 11 in Algorithm 1). We then use this predicted value to update the result of
cell ci using the generic UpdateResults function. Once we are done with computing
all the predicted values of all objects in any of the cell of CR, we again utilize the
generic function UpdateResults to update the final query result by the result coming
from cell ci (Line 16 in Algorithm 1).

Example. Figure 4 gives a running example of Phase I in Panda∗ where there
are 19 objects, O1 to O19 laid on a 6 × 6 grid structure of 36 cells. Figure 4(a)
indicates the arrival of a new predictive range query Q30, a shaded rectangle in cell
C19, that asks about the set of objects that will be in the area of Q30 after 30 minutes.
Though we are using a range query as a running example, all ideas here are applied to
aggregate and k-nearest-neighbor queries as well. In Figures 4(b), we find out all the
cells that overlap the area of query Q30. For ease of illustration, we intentionally have
Q30 covering only one cell, C19, in which we are going to carry on for the next steps.
If Q30 covers more than one cell, then, the next steps will be repeated for each single
cell covered by Q30. Figure 4(b) also gives the Query List structure of C19, where
two previous predictive queries came at this cell before; a query that asks about 30
minutes in future, and it came only one time before (counter = 1) and another query
that asks about 20 minutes in the future and were issued 10 times before. By looking
at this data structure, we find that the answer of the future time t is set to null, i.e.,
it is not precomputed. In this case, we need to compute the answer for this cell from
scratch. Note that if this query was asking about the set of objects after 20 minutes, we
would just report the answer as {O1, O8} as it is already precomputed. Unfortunately,
for the case of t = 30, we need to proceed for more computations.

Figure 4(c) starts the process of computing the answer of cell C19. As a first step,
we utilize the Travel Time Structure (TTS) to find out the set of cells that are reachable
to C19 within 30 minutes. We find that there is only three cells that can contribute to
the answer of C19, namely, C9, C16, C33. This means that objects that are not located
in any of these cells are not going to make any contribution to C19 within 30 minutes.
For example, an object O3 in C25 is likely to be far away from C19 in 30 minutes, (i.e.,
assuming it keeps moving), and thus there is no need to consider it in computation
at all. The travel time filter plays an important role in filtering out large number of
objects that are not going to contribute to the query result. Then, we can only focus on
the objects located in C9, C16, C33, where there are only four objects O5, O9, O18,

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 15

and O19. For each of these four objects, we calculate the prediction function F̂ to find
out the probability that these objects can be in C19 in 30 minutes. With probability
calculation, we find out that O19 has a zero probability of being in C19 in 30 minutes,
while the other three objects have a non-zero probability. We finally report the answer
in Figure 4(d) as {O5, O9 O18} along with the probabilities of these objects being in
C19 in 30 minutes.

4.2.2 Phase II: Statistics Maintenance

Phase II, statistics maintenance, does not add anything to the query answer. Instead,
Phase II updates a set of statistics that help in deciding what parts of the space and
queries need to be precomputed. The input to this phase is the cell ci and its answer
list, computed in Phase I. Then, Phase II uses this information to update the statistics
maintained by Panda∗.

Main idea. The main idea of Phase II is to employ a tunable threshold, 0 ≤
T ≤ ∞, that provides a trade-off between the predictive query response time and
the overhead for precomputing the answer of selected areas. At one extreme, T is set
to 0, which means that all queries will be precomputed beforehand. Though this will
provide a minimal response time for any incoming query, yet, a significant system
overhead will be consumed for the precomputation and materialization of the answer.
On the other extreme, T is set to∞, which means that nothing will be precomputed
at all and all incoming queries need to be computed from scratch. This will provide a
minimum system overhead, yet, an incoming predictive query will suffer from high
latency. Given a fixed value of T , Panda∗ smartly decides which parts of the space
should be precomputed. To efficiently utilize the tunable threshold T , Phase II keeps a
counter for each kind of predictive query arriving at each cell. If this counter exceeds
the threshold value T , then, this query is considered frequent, and the answer of this
query in cell ci is precomputed. In addition, we add cell ci to the list of frequent
cells in all cells that are reachable to ci within time t. This is mainly to say that any
object movement in any of these reachable cells will affect the result computed (and
maintained) at cell ci. This list of reachable cells to ci within time t can be directly
obtained from the Travel Time Structure (TTS). It is worthy to mention here that there
are two things to consider when visiting the travel time structure. (1) We need to read
the slice of the data related to the current time slot of the day. (2) We do not search
for those cells that are exactly reachable within the specified time slot, rather, their
travel time intervals just need to contain the future time in the query. For example, if
the travel time between the ci and the query cell cq at the current time slot is [8,12]
minutes and the query future time is 10 minutes, this means ci is reachable to cq .

Algorithm. The pseudo code of Phase II is depicted in Lines 18 to 27 in algo-
rithm 1. Phase II starts by retrieving the entry e from the query list of ci that corre-
sponds to the querying time t. If there is no such prior entry, i.e., e is NULL, we just
add a new blank entry in the query list of ci for time t, with counter set to zero, and
answer set to null (Lines 18 to 21 in algorithm 1). Then, we just increase the counter
of e by one to update the number of times that a query arrives at cell ci with time t.
Then, we check the counter of this incoming query against the system threshold and
the value of the current cell Answer. This check may result in three difference cases

16 Abdeltawab M. Hendawi et al.

(a) Affected Cells

(b) Precomputed Parts

(c) Travel Time Filter

(d) Result Formulation
Fig. 4 Phase I Example.

as follows: (1) e.counter < T , i.e., the counter is less than the system threshold T .
In this case, Phase II decides that it is not important to precompute the result of this
query, as it is not considered as a frequent query yet. So, Phase II is just concluded.
(2) e.Answer 6= NULL. In this case, the query time t is already considered frequent
and the answer is already precomputed. In this case, Phase II will also just conclude
as there is no change in status here. (3) e.counter ≥ T AND e.Answer is NULL. This

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 17

(a) Statistics Update

(b) Reachable Cells

Fig. 5 Phase II Example.

case means that the query time t has just become a frequent one, and we need to start
precomputing the result for t at cell ci. In this case, we first add the computed cell
result from Phase I to the the answer of e. Then, we find out the set of cells CR that
are reachable to cell ci within time t. For these cells, we add cell ci to their list of
frequent cells. This is mainly to say that any object movement of any cell cj ∈ CR

will affect the result computed at cell ci (Lines 18 to 23 in algorithm 1).

Example. Figure 5 gives a running example of Phase II continuing the computa-
tions of Phase I on the example of Figure 4. Figure 5(a) shows that the counter of the
time entry 30 is updated to be 2. Assuming the time threshold T is set to 2. Then, the
time t is now considered frequent. Figure 5(b) depicts the actions taken by Phase II
upon the consideration that the incoming query with time t becomes frequent. First,
the query list of C19 is updated to be the computed answer from Phase I. Second, the
cell C19 is added to the list of frequent cells for C9, C19, and C33 to indicate that any
movement in these three cells may trigger a change of answer for cell C19.

18 Abdeltawab M. Hendawi et al.

Algorithm 2 Answer Maintenance
Input: Object O, Cell Cold, Cell Cnew

1: if Cold =Cnew then
2: Return
3: end if
4: Add O to the set of current objects of Cnew

5: ts← current time slot of the day
6: C ← The set of frequent cells of Cnew

7: for each cell Ci ∈ C do
8: t← travel time from Cnew to Ci from TTS[new, i] at ts
9: ObjectPrediction← Compute F̂ = P (Cnew|O, t)

10: UpdateResults (CellResult, ObjectPrediction)
11: end for
12: Remove O from the set of current objects of Cold

13: C ← The set of frequent cells of Cold

14: for each cell Ci ∈ C do
15: UpdateResults (CellResult, O)
16: end for
17: Return

4.3 Answer Maintenance

As has been discussed in the previous section, the efficiency of the Panda∗ generic
query processor relies mainly on how much of the query answer is precomputed.
Though we have discussed how Panda∗ takes advantage of the precomputed answers,
we did not discuss how Panda∗ maintains those precomputed answers, given the un-
derlying dynamic environment of moving objects. This section discusses the answer
maintenance module in Panda∗, depicted in Figure 1, which basically triggered with
every single object movement.

Main idea. The main idea behind the answer maintenance module is to check if
this object movement has any effect on any of the precomputed answers. If this is the
case, then Panda∗ computes this effect and propagates it to all affected precomputed
answers. If Panda∗ figures out that this object movement has no effect on any of
the precomputed answers, then, it just does nothing for this object movement. As
our underlying prediction function F̂ mainly relies on the sequence of prior visited
cells for a moving object, an object that moves within its grid cell will have no effect
on any of the precomputed answers. Basically, movement within the cell does not
change the object predication function, and hence will not have any effect on any
of the precomputed answers. It is important to note that the answer maintenance
module does not decide upon which parts of the queries/space to be precomputed, as
this decision is already taken by the statistics collected in the generic query processor
module. Instead, the answer maintenance module just ensures efficient and accurate
maintenance of existing precomputed answers.

Algorithm. Algorithm 2 gives the pseudo code of the Panda∗ answer mainte-
nance module. The algorithm takes three input parameters, the moved object O, its
old cell Cold before movement, and its new cell after movement Cnew. The first thing
we do is to check if the new cell is the same as the old cell. If this is the case, the
algorithm immediately terminates as this object movement will not have any effect

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 19

on any of the precomputed cells. On the other side if the new cell is different form
the old one, the algorithm proceeds in two parts. In the first part (Lines 5 to 11 in
Algorithm 2), we first add O to the set of current objects of Cnew. Then, we retrieve
the set of frequent cells of Cnew, i.e., those cells that have precomputed answers and
may be affected by any change of objects in Cnew. For each cell Ci in the set of
frequent cells, we do: (a) retrieve the travel time t from the new cell to Ci from the
Travel Time Structure, (b) compute the predicted value of O being in Ci after t time
units, and (c) update the precomputed result at cell Ci by the predicated value, us-
ing the generic function Update Results. The second part of the algorithm (Lines 12
to 16 in Algorithm 2) is very similar to the first part, except we are working with
Cold instead of Cnew, where we remove O form the set of objects of Cold, we update
all the precomputed frequent cells of Cold. A major difference here is that we update
the precomputed result by removing O and its probability from it. It is important to
notice here that we do not need to compute the object prediction as it is already stored
in the precomputed answer at Ci.

Example. Back to our running example in Figure 5(b) that illustrates the precom-
puted answer for the query Q30 in cell C19. Assume that object O9 moves out from
its cell C16 to C17. So, we add O9 to the list of current objects in C17, and get its list
of frequent cells, only C1 is there. Then, we obtain the time t between C1 and C17 as
40. We then compute F̂ = P (C1|O9, 40) which gives the probability that O9 will be
in C1 after 40 time units. We then incrementally update the answer at C1 by the value
of F̂ . We do the same for C16, the cell that O9 has just departed. We delete O9 from
the list of current objects in C16 as this object is no longer inside it. Then, we read the
list of frequent cells of C16 which returns C19, and we get the time t between C16 and
C19 as 30. At this point, we do not need to compute F̂ = P (C19|O9, 30) because it is
already stored in the query list of C19. All what we do here is updating the answer in
C19 by removing O9 and its probability.

4.4 System Tuning

In the previous two sections, we discussed the first two modules in the Panda∗ system,
the query processor and the answer maintenance. As provided, the query processor is
responsible for processing the incoming predictive queries and deciding which parts
to precompute in advance based on the collected statistics and a system threshold T .
The answer maintenance concerns with maintaining the answers in those precom-
puted parts such that it always fresh and ready for retrieval.

At this point, if we leave Panda∗ to run forever and to precompute a query answer
when its frequency exceeds a threshold T , we will end up to precompute the answer
for all queries in advance. In this situation, a significant computational overhead will
be added as every single object movement will cause updates to all query lists in all
grid cells which makes Panda∗ having the worst possible efficiency. Another problem
is that some queries show up with high frequency rate during a certain time duration
(i.e. one hour) then disappear or come rarely for long period (i.e. hours or days).
Accordingly, it is meaningless to keep precomputing and updating the answer for
queries with this behavior for long time. Obviously, it will be better to stop this pre-

20 Abdeltawab M. Hendawi et al.

Algorithm 3 System Tuning
Input: Threshold T
1: for each cell ci ∈ the Grid G do
2: for each entry e ∈ ci.’Query List’ do
3: if e.Counter ≥ T AND e.Answer is NULL then
4: e.Answer← Compute the predicted answer for ci after t = e.Time
5: Add ci to the list of frequent cells in each of its reachable cells
6: else if e.Counter < T AND e.Answer 6= NULL then
7: e.Answer← NULL
8: Remove ci from the list of frequent cells in each of its reachable cells
9: end if

10: if e.Answer is NULL then
11: Delete e from ci.’Query List’
12: else
13: e.Counter← 0
14: end if
15: end for
16: end for
17: Return;

computation and even forget about those queries and when they come, just compute
their answers. A third reason behind the need for the system tuning module is that it
is infeasible to have an accurate, and a detailed workload information before putting
Panda∗ in real execution environment. Consequently, it must own a mechanism to
be sensitive to the changes in the workload patterns. For these reasons, this section
introduces the system tuning module that allows Panda∗ to periodically analyze the
queries behavior during a recent timeout (i.e. one hour) to predict the coming queries
for the next timeout, and yet refine its decision about which parts to precompute and
which to stop their precomputing.

Idea. The idea of the system tuning module is that it periodically prompts Panda∗

to adapt its decision toward the precomputed parts by examining the collected statis-
tics about the received queries during the past timeout (i.e. hour or day). If a query
had high frequency rate , then we predict it will be frequent during the next timeout
too. Intuitively, Panda∗ keeps precomputing its answer and makes it fresh for queries
in the coming timeout. On the other side, if a query was initially precomputed and the
collected statistics during the previous timeout indicate that it became non frequent,
we anticipate that it will show up rarely during the next timeout. Yet, Panda∗ must
refines its decision and stops the precomputation for this query. Actually, we can use
more intensive analysis and prediction model here to predict the coming queries for
the next timeout, however, we want to keep it simple to avoid adding extra overhead
which will downgrade the whole system efficiency.

Algorithm. Algorithm 3 gives the pseudo code for the system tuning module used
to control the system efficiency by sustaining the used statistics to reflect the recent
picture of the system. The counter and the answer fields are the most important
ones that need to be kept up to date instantly. Thus, they identify which space areas
will be precomputed and which will not be during the next query processing timeout
period Tout. The algorithm takes the recent value of the threshold T as an input. This
value is used to control the efficiency during the coming timeout Tout. The algorithm

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 21

navigates through the grid data structure G and examines the entries in the query list
in each grid cell ci. For each entry e that represent a query future time value t in the
e.time field, we check both the e.counter and the e.answer fields (Lines 2 to 9 in
algorithm 3). This check has four possible alternatives.

(1) e.counter < T and e.answer is NULL. In this case, the null value in the
answer filed means that the query with time t was not frequent (has no precom-
puted answer) during the ended timeout Tout, while the counter value less than the
threshold means that it is predicted not be a frequent query in the next Tout too. Ac-
cordingly, it will not be useful any more to keep the entry for t, yet, this entry e is
deleted from the query list of ci (Lines 10 to 12 in algorithm 3).

(2) e.counter ≥ T and e.answer 6= NULL. In this case, the query with the time
t is already considered frequent and the answer is already precomputed, and it will
remain frequent during the coming timeout Tout. Consequently, no action is required
rather than resetting its counter to zero (Line 13 in algorithm 3).

(3) e.counter ≥ T and e.answer is NULL. This case means that the query time
t has switched its status to be a frequent one during the next timeout Tout. Instantly,
we precompute the result for t at cell ci and store it in the answer field.Then, we
populate the cell ci to the list of frequent cells in its reachable cells within time t
(Lines 3 to 5 in algorithm 3).

(4) e.counter < T and e.answer 6= NULL. This case is the opposite to the
previous which means that the query time t has switched its status to be non frequent
during the next timeout Tout. Yet, we empty its answer field by setting it to NULL,
and delete the cell ci from the list of frequent cells in its reachable cells within time
t.

In all cases, the e.counter fields of the remaining frequent queries are set to zero
such that the decision at the end of each timeout Tout is affected only by the number
of queries received during that recent Tout (Line 13 in algorithm 3).

Example. After running Panda∗ for one hour, we had the precomputed answer in
the cell C19 in our example in Figure 5(b). Assuming the used threshold T value is
three, then we check the entries in the query list in the cell C19. The counter value in
the first record (where time = 30) is less than 3 and its answer is 6= NULL, then we
set this precomputed answer to NULL and remove C19 from the list of frequent cells
of of its reachable cells, ({C9, C16, and C33}), then the counter is set to zero. For the
second record (where time= 20), the counter is greater than T and the answer has
a non NULL value, therefore, we keep everything as it is except the counter which
will reset to zero too. For the next timeout, the query list of C19 will not contain the
record for t = 30 since it is not frequent.

5 Extensibility of Panda∗

In the previous section, we have discussed the generic framework of Panda∗ as a
predictive spatio-temporal query processor, and we have elaborated its main mod-
ules that compose its core. In this section, we illustrate how Panda∗ can be extended
to support a wide variety of predicative spatio-temporal queries and how it can be
harmonized according to the nature of the underlying data. Basically, this is accom-

22 Abdeltawab M. Hendawi et al.

(a) PKNN Query Location

(b) Initial Query Cell, C17

(c) Reachable Cells To
C17

(d) Prediction For C9, O5 (e) Prediction For C9, O18 (f) Prediction For C9, O19

(g) Prediction For C14, O4 (h) Prediction For C35,
O12

(i) Expanding Query Cells

(j) Reachable Cells To C11

(k) Prediction For C3, O2 (l) Prediction For C3, O13

Fig. 6 Predictive KNN Query Illustrative Example

plished through the optimized implementation of the generic function UpdateResults
to serve the needs of the underlying query type, e.g., aggregate, range, or k-nearest-
neighbor queries, and the underlying data nature, e.g., moving data, or stationary
data.

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 23

5.1 Query Type

In this section we study the extensibility of Panda∗ to support the evaluation of three
main predictive query types, namely range, K-NN, and aggregate query. However,
this extensibility is not limited to these types only because the universal nature of
the aforementioned data structures and algorithms that can be easily tailored to other
feasible predictive spatio-temporal queries.

5.1.1 Range Query Processing

Idea. A predictive range query is defined by two elements, a rectangular query region
R and a future time t, and asks about the objects expected to be inside the determined
query region after the specified future time. Panda∗ starts the range query processing
by getting the grid cells that overlap the query region. Those cells are divided into
two groups. The first one contains the cells that already have precomputed answers
that we need to retrieve them only without further processing, while the second group
contains the overlapped cells that their answers have to be computed from scratch.
For each cell ci in the second group, Panda∗ visits the travel data structure TTS and
gets the list of the reachable cells CR to the cell in hand ci. For each object in a
reachable cell, Panda∗ applies the prediction function and checks if that object is
predicted to arrive at ci after the desired future time, if this is the case, this object
with its probability is appended the result of ci. To do that, the UpdateResult function
is implemented to precisely serve the predictive range query processing such that
it is able to build up the result of the cell in hand as well as the final query result
by continue appending the objects identifiers and with their probabilities. Also, the
UpdateResult function is used to form the final result of a range query by merging
the objects in the precomputed cells and those that have just been computed. Yet, the
returned answer encompasses the list of objects expected to be inside the overlapped
cells after the desired time unites in the future.

Example.The illustrated example in the two phases in Section 4.2 is sufficient to
explain the processing of predictive range query.

5.1.2 K-NN Query Processing

Idea. A predictive K-NN query has two parameters, a specified location point and
a future time, and enquires about the K objects expected to be the nearest to that
location after the given time. Initially, Panda∗ locates that point into a corresponding
grid cell which will be checked if having a precomputed answer for the K or more
objects expected to appear at this cell after the determined future time. If this is the
case, the precomputed answer is simply returned without extra computation. Other-
wise, in the case that there is no precomputed answer, Panda∗ computes it in similar
way to range query in order to find the satisfactory K objects. In the case that the
precomputed answer or the yet computed answer has objects less than the desired K,
Panda∗ expands the query location by adding the nearest adjacent cell and recall the
original computation steps on this recently added cell. This process is repeated un-
til the query is satisfied. Definitely, Panda∗ has a different interpretation of the term

24 Abdeltawab M. Hendawi et al.

nearest here, which reflected as the objects with the highest probability to be within
the nearest cell(s) of the query point. This interpretation inherited from the nature of
the underlying prediction function which locates the anticipated location of an ob-
ject in a cell size area rather than predicting its exact future point. The UpdateResult
function is exactly implemented as in the range query without difference. The results
for both queries are lists of objects.

Example. If we consider a predictive K-NN query with K = 5, t = 20, and lo-
cation point = L which is represented by a star in Figure 6(a), Panda∗ will start by
locating L in C17, Figure 6(b). Since C17 has no precomputed answer for t = 20, as
shown in the query list in Figure 6(b), then Panda∗ has to prepare the answer from
the ground. Accordingly, we find out the set of cells reachable to C17 in 20 minutes.
By examining the travel time grid, we get {C5, C35} are within [18,22] minutes, and
{C9, C14, C26, C35} are within [15,25] minutes, based on the current status of the
space. Other cells have travel time either completely smaller than 20 minutes or larger
than 20 minutes. For example, cells with travel time [25,35] to C17 will not contribute
in the query answer as they do not intersect with the query time, 20 minutes. This
means those five cells might contribute to the predicted results at C17, Figure 6(c). It
is easily noticeable that C5 and C26 do not have objects moving inside their bound-
aries, thus, no need to call the prediction function here. For each object in the other
three cells, {C9, C14, C35}, we need to predict their possible destinations. For C9,
Figures 6(d)(e)(f) give the predicted destinations for objects O5, O18, and O19, re-
spectively. This leads to, objects O5 and O18 are likely to show up at the query cell
C17, but O19 will not as C17 is not among its future destinations. By performing the
prediction for objects in C14 and C35, we infer that both will contribute by objects
O4 and O12, Figures 6(g)(h), respectively. At this moment, we are done with the five
reachable cells to the query initial region. But what in-hand as a predicted result is
just four objects, {O5, O18, O4, O12} along with their probabilities, which is less
than the desired K. So, this is not sufficient as a final query result. Therefore, we
need expand the initial query region by adding one of its neighbor cells. To do so, we
measure the distance from the query location L, (the star symbol), to the center of
the eight vicinity cells, Figure 6(i). This results in adding C11, the nearest cell, to the
query region, Figure 6(j). Nothing is precomputed for predictive queries in this C11,
yet, another round of prediction is required. The set of reachable cells to C11 includes
{C3, C30}, with travel time [20,22] and [15,21] minutes, respectively, Figure 6(j). As
the later has no objects at the present time, we predict the future destinations of the
former cell’s objects. Fortunately, O2 is likely reach the new query cell C11 in 20
minutes, Figure 6(k). Finally, we have five objects predicted to show up around the
query location L in 20 minutes from the present time. That fulfills the query require-
ments and the returned answer will be {O5, O18, O4, O12, O2}. In the case that we
find more than K objects, we sort them based on their computed probabilities and
pick up the highest K ones.

5.1.3 Aggregate Query Processing

Idea. A predictive aggregate query consists of a query region R and a future time t,
and it finds out the number of objects N predicted to be inside that region after the

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 25

(a) Candidate destinations of O11

(b) Query Results

Fig. 7 Query processing on (Stationary vs Moving) Data

given time. Clearly, it looks similar to the range query, hence, it follows the same
exact steps. However the format of the final result is different where the aggregate
query wants the number of objects N rather than the objects themselves. Therefore
the UpdateResult function is customized to sum up the number of objects instead of
appending objects to the result list. So it is employed to compute the the expected
number objects to be inside each single cell in R after time t, and also aggregate
those numbers to obtain the final query result.

Example. Considering Q30 as an aggregate query, Panda∗ will apply the same
steps in Figures 4 and Figures 5, and the final result will give the number of objects
expected to arrive at the query region after 30 minutes which will be {3}.

5.2 Data Nature

The shared data structure, the isolation between the precomputed areas and the query
region, and the generic query processor frame the infrastructure that allows Panda∗

to support a wide variety of predictive queries including range queries, k-NN queries
, and aggregate queries. Apparently, each query type can operate the same data struc-
ture in a different way to compute its own answer. As described in the mentioned
algorithms, to handle the case of predictive range or K-NN queries, the precomputed
answer in the query list (QL) maintains a list of objects expected to be inside a query
region R after future time t, while in the case of predictive aggregate queries, the
same list is used to carry a number.

In this section, we explain the ability of Panda∗ to act suitably according to the
nature the underlying data whether it represents stationary or moving objects. We
provide some examples to illustrate this flexibility feature.

26 Abdeltawab M. Hendawi et al.

5.2.1 Stationary Data

In this class of data, the points of interest that a user query questions about are static
objects that almost do not have mobility nature. Examples for stationary data include
gas stations, restaurants, theaters, cinemas,...etc. We refer to a stationary object i by
Si. Basically, Panda∗ can preserve information about the underlying stationary ob-
jects in addition to the moving objects using its grid data structure where each object
is linked to its corresponding cell. The predictive query in this case is tight to a certain
moving object not to any of the stationary objects. For example, as illustrated in Fig-
ure 7, a moving object O11 sends a range query to find out the gas stations within half
mile of its future location after 40 minutes, of course without releasing its intension.
To process this query, Panda∗ initially finds the current cell, C28, in which O11 is
currently moving. Thus, C28 is added to the current trajectory of O11. Then it obtains
the list of its candidate destination cells after 40 minutes which will include {C2, C6,
C13}. This is achieved by accessing the travel time structure under the column of C28.
After that, it determines the highly anticipated destination in a granularity equivalent
to a grid cell area. That is accomplished by calling our prediction function feeded
with the current trajectory of O11, Figure 7(a). Since C2 is the predicted destination,
a half mile query region is placed starting from its center. Therefore, the set of the
stationary objects that intersect with that region is returned as the query results which
will be {S4, S5}, Figure 7(b).

5.2.2 Moving Data

This class of data has both the spatial and temporal features, so they dynamically
change their locations. Predictive query on this class of data has two options. The
first option, is to be connected to a specified moving object which imposes Panda∗ to
do a preprocessing step by calling our prediction function F̂ to identify the possible
destination cell cd for that object at the given time t. Accordingly, the query is located
at that destination cell cd. Then it ordains a customized version of the predictive
query processor according to the query type as explained in the previous section.
For example a moving object O11 asks about the moving objects, (i.e., friends with
mobile phones, some moving service like police cars), expected to show up within
half mile of its future location after 40 minutes. To process this query, we find that
C2 is the most predicted target cell after 40 minutes based on the recent trajectory
of O11. After that, we dispatch Panda∗ query processor to evaluate a range query
positioned at the center of C2. The expected answer will be {O3, O7}, Figure 7(b).

The second option for predictive query on moving data, is to be connected a
static area or location in the given space, for example a store wants to notify the
cars expected to be within two miles of its location about offers after 3o minutes. In
this situation, the query processor is fired directly without any additional preparation
steps. The example illustrated in Section 4.2 fits in this class of data.

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 27

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency and the scalability of our proposed sys-
tem Panda∗ for processing predictive queries. We compare Panda∗ with two other
baseline algorithms namely Precomputed and Instant, introduced for performance
comparison.

In the first baseline algorithm, Precomputed, all possible queries results are pre-
computed before they are issued in a behavior likes a kind of brute force algorithm.
Once a snapshot query is received, the answer is read and returned to the user without
any further computation. It is obvious here that this baseline algorithm will be having
the faster response time, since no computation happens after receiving a query. Just
the precomputed result is accessed and returned directly as a final query answer.

The second baseline algorithm, Instant, stands at the opposite side of the previous
one in terms of precompuation for the query answer. In the Instant algorithm, there is
no precompuation at all for any query answer. Instead, all results are instantly com-
puted from scratch once the query arrives for processing. Clearly, queries evaluated
using this algorithm will wait the longest time until getting their results ready. How-
ever, it will save the computation overhead required by the Precomputed algorithm
for keeping all queries answers up-to-date.

In all experiments, the evaluation and comparison are in terms of, (a) average
response time per query, which means the average CPU time it takes to return the
answer to the issued query since the query is received by the underlying algorithm,
(b) average updating cost, which is the average system overhead measured by the
CPU time consumed for updating the precomputed results according to the objects
movements between different cells, and (c) total processing time, which is equivalent
to the sum of the CPU time consumed for preparing the precomputed parts of a query
beforehand and the CPU time to complete and the rest of computation after the query
arrival.

Since Panda∗ and the other two baseline algorithms employ the same prediction
function to compute the probability of an object being in a certain query region after
some time duration, we will not compare the accuracy among them. Worth to remind
here that we discussed the overall idea of our adjusted prediction function F̂ with
respect to its underlying base prediction function F in section 3. The accuracy of the
employed prediction function is examined and reported here in section 6.5.

6.1 Experiment Setup

In our performance evaluation experiments, we use two data sets.
Synthetic Data. We use the Network-based Generator of Moving Objects [5] to gen-
erate large sets of synthetic data of moving objects. A real road network map is used
for our experiment setting and for the generator as an input. The road map is extracted
from the shape files of Hennepin County in Minnesota, USA. Then, the shape file are
converted to network files as required by the moving objects generator. The output of
the generator contains different sets of moving objects that move on the given road

28 Abdeltawab M. Hendawi et al.

network map. The generated objects are assumed to be uniformly distributed over the
spatial space.
Real Data. This is also a real data containing the GPS trajectories for more than
10,000 taxis within Beijing [35, 36]. In this data, each taxi has an identifier taxi id,
and its movements that are defined by three fields namely, date time, longitude, and
latitude.

Both real data sets require some data preprocessing to remove the outliers caused
by GPS reading errors, and to partition these readings into realistic objects trajecto-
ries. The space in which objects move is virtually partitioned into N × N squared
grid cells of width relative to the minimum and the maximum step taken by any of the
underlying moving objects. Our space grid data structure mirrors the space partitions
by storing an identifier for each cell Ci and updatable list of objects moving within
that cell Ci. To have the travel time data structure TTS filled before starting the ex-
periment, the travel time between any pair of cells, Ci and Cj , is obtained by taking
the average minimum and the average maximum time it takes from the underlying
set of objects to move from Ci to Cj at time slot TSk.

In fact, it might be more practical to store the travel time between various cells
as a range of time rather than an exact value. Therefore, a user can issue predictive
queries on objects anticipated to be inside a query region after a future time specified
as an interval. At the query processing, to deal with this kind of time uncertainty,
we use the weighted probability that varies according to the size of the intersection
between the travel time interval from a cell to the query region and the query future
time interval. For example, if a query asks about predicted number of moving objects
in Rq after [10,20] time unites as the future time interval, and if the cell Ci is far from
Rq by a travel time interval [19, 28], then we weigh the participation of Ci by 20
percent of the number of objects predicted to come from it to Rq .

To have the algorithms tested against different workload rather than single
queries, a query workload generator is built to obtain workloads of predictive queries
that vary in the number of queries, the query region size, and the query future time.
The number of queries in the generated workloads starts at 1K queries per batch, and
increases by 10K until reaches 100K queries in a batch file. The generated queries
regions are squares and their locations are uniformly distributed over the space. The
size of the generated queries vary from 0.01 to 0.06 of the total space size.

All experiments are based on an actual implementation of Panda∗ and the two
baseline algorithms, Instant and Precomputed. All the behaviors of the generated
objects, query workload generator, and query processing algorithms are implemented
on a Core(TM) i3 4GB RAM PC running Windows 7 with C++.

As the Panda∗ system deals with moving objects, the objects movements are
supposed to be streamed to the system directly. So, data is handled in the memory
as it comes. Therefore, we focus on the performance from the I/O perspective. For
the purpose of the experiments, normally, the data is stored on files. However, we
upload all in the memory at the warming up phase of the experiments. Then, we start
measuring our performance parameters after we make sure everything is in memory.

In the following sections, we study the effect of threshold value on the perfor-
mance of Panda∗. Then we compare the efficiency of Panda∗ to the other two ap-
proaches and provide their evaluation with different query workloads. After that, we

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 29

 0

 10

 20

 30

 40

 50

 60

0 2 5 7 10

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Threshold Value

Reponse Time
Update Cost

Processing Time

(a) 5K

 0

 10

 20

 30

 40

 50

 60

0 2 5 7 10

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Threshold Value

Reponse Time
Update Cost

Processing Time

(b) 10K

 0

 10

 20

 30

 40

 50

 60

0 2 5 7 10

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Threshold Value

Reponse Time
Update Cost

Processing Time

(c) 20K

Fig. 8 Effect of Threshold Tuning

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Queries (K)

Panda*
Precompute

Instant

(a) Update Cost

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Queries (K)

Panda*
Precompute

Instant

(b) Response Time

 0

 5

 10

 15

 20

 20 30 40 50 60 70 80 90 100

T
o

ta
l
C

P
U

 T
im

e
 (

s
)

Queries (K)

Panda*
Precompute

Instant

(c) Processing Time

Fig. 9 Efficiency of Panda∗ vs Precompute, Instant

explain how Panda∗ can scale up with large number of objects and with outsized
queries.

6.2 Impact of Threshold Tuning

In the first set of experiments, we study the impact of different threshold T values on
the performance of Panda∗ with different data sets. The minimum value that the T
can take in this experiment is 0 which means any query on cell Ci with time t that
appears at least one time on Ci will be precomputed in advance, and the maximum
is set to 10 which means any query with reappearance rate less than 10 times will
not be precomputed at all. The maximum threshold value is decided based on the
number of queries in a workload, and the number of different sizes and the number of
different future times for the generated queries. Tmax ≥ NQueries / (NDistinctSizes

* NDistinctT imes), while Tmin is always zero.
As given in Figure 8, in all data sets, Panda∗ gives its best response time when T

= 0 and the lowest update cost when T = 10, while it gives its worst response at T =
10 and highest update cost at T = 0. Between the minimum T and the maximum T ,
the threshold value can be tuned to provide the required balance between the time a
user has to wait to receive a query result and the overhead cost used to prepare this
answer in advance.

The effect of the threshold value on the overall performance of Panda∗ varies
according to the underlying data set. For example, in the first data set, Figure 8(a),
the lowest processing time required to evaluate a query is achieved when T = 0 and
the highest is at T = 10, and the trend of the curve is to increase when the threshold
values increases. The matter is different in the second and the third data sets, where
the lowest processing cost is at T = 5 and the highest is at T = 10 in the second data

30 Abdeltawab M. Hendawi et al.

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Queries (K)

Panda*
Precompute

Instant

(a) Update Cost

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Queries (K)

Panda*
Precompute

Instant

(b) Response Time

 0

 5

 10

 15

 20

 20 30 40 50 60 70 80 90 100

T
o

ta
l
C

P
U

 T
im

e
 (

s
)

Queries (K)

Panda*
Precompute

Instant

(c) Processing Time

Fig. 10 Efficiency of Panda∗ at T = 2

 0

 50

 100

 150

 200

 250

5K 10K 15K 20K

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Objects

Panda*
Precompute

Instant

(a) Update Cost

 0

 50

 100

 150

 200

5K 10K 15K 20K

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Objects

Panda*
Precompute

Instant

(b) Response Time

 0

 2

 4

 6

 8

 10

 12

 14

5K 10K 15K 20K

A
V

G
 C

P
U

 T
im

e
 (

s
)

Objects

Panda*
Precompute

Instant

(c) Processing Time

Fig. 11 Scalability with Number of Objects

set, Figure 8(b), while at T = 5 and T = 0 Panda∗ achieves its lowest and highest
processing time respectively in the third data set with a decreasing trend of curve,
Figure 8(c). To sum up, it is noticeable that the effect of the threshold depends on
the behavior of the moving objects in the underlying data set. So, when the overall
objects movements can trigger the answer maintenance module frequently, the update
cost increases. In this case, large threshold values help Panda∗ to achieve better
performance.

6.3 Efficiency Evaluation

To evaluate the efficiency of Panda∗, we processed workloads of predictive queries
with varying the number of received queries from 20K to 100K. Figures 9 provides a
comparison between Panda∗ and the other two algorithms w.r.t number of queries in
terms of update cost, Figure 9(a), response time, Figure 9(b), and processing time per
query, Figure 9(c), with the average CPU time as a measure. Panda∗ and Precompute
provide the best possible response time which almost equals to zero waiting, while the
Instant gives the worst response time with a significant difference, Figure 9(b).

As explained earlier and as depicted in Figure 9(a), the Instant requires no update
cost as it does not prepare any answers in advance, while the Precompute does, thus,
it costs the most update time. On the Panda∗ side, it consumes some of the CPU time
for precomputation during the early phases of the experiment then decreases to a low
update cost when the number of queries equals 100K. In Figure 9, the efficiency of
Panda∗ is recorded when the threshold is set to 0, however, it still obtains the best
overall performance when T equals 2, Figure 10. In a nutshell, those figures provide

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 31

 0

 20

 40

 60

 80

 100

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Query Size

Precompute
Instant
Panda*

(a) Update Cost

 0

 50

 100

 150

 200

 250

 300

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G
 C

P
U

 T
im

e
 (

m
s
)

Query Size

Precompute
Instant
Panda*

(b) Response Time

 0

 5

 10

 15

 20

 25

0.01 0.02 0.03 0.04 0.05 0.06

T
o

ta
l
C

P
U

 T
im

e
 (

s
)

Query Size

Precompute
Instant
Panda*

(c) Processing Time

Fig. 12 Scalability with Query Size

that Panda∗ achieves a dramatic high performance which is up to four orders better
than the Precompute algorithm and even much better when compared to the Instant
algorithm.

6.4 Scalability Evaluation

We proceed to study the scalability of Panda∗ with large number of moving objects
and large query sizes. In the first set of experiments, Figure 11, we evaluate the scal-
ability of the Panda∗ query processing performance when the number of moving ob-
jects increases from 1k to 25k. With respect to the query processing time, Figure
11(c), Panda∗ performs the best, regardless the increasing in the number of objects.
In addition to its high performance in terms of the average query processing time,
Panda∗ also gives a response time as low as the one in the Precompute algorithm
which guaranteed to give the lowest query response, Figure 11(b), while saving a lot
of the required update cost consumed by the Precompute algorithm, Figure 11(a).
The next set of experiments, Figure 12, illustrates that Panda∗ can save about 50%
of the CPU time required to answer a user query while preserving its response to be
almost equals to the fastest one with a vast dropping in the update cost. The last set of
experiments, Figure 13, evaluates the influence of the threshold tweaking on the scal-
ability of Panda∗ with respect to the query size in three different query workloads.
The used workloads are 20K queries, 40K queries, and 80K queries. The provided
figures suggest the use of a large threshold value with small sized queries and a small
threshold value with the ones with larger query size.

In one word, we can establish that the main reason behind the capability of
Panda∗ to achieve smooth scalability comes from its ability to adapt according to
the nature of the moving objects behavior and the heaviness of the query workload.

6.5 Accuracy Test

To examine the quality of the underline prediction function, we employed a another
real data set of GPS trajectories collected by Microsoft researchers around the area
of Seattle, Washington, USA [2]. The area is divided in 1 KM of squares to form
our grid area. Then, we compute the accuracy based on the probability given by the

32 Abdeltawab M. Hendawi et al.

 0

 50

 100

 150

 200

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G
 C

P
U

 T
im

e
 (

m
s

)

Query Size

T = 0
T = 2
T = 5

T = 10

(a) 20 Queries

 0

 50

 100

 150

 200

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G
 C

P
U

 T
im

e
 (

m
s

)

Query Size

T = 0
T = 2
T = 5

T = 10

(b) 40 Queries

 0

 50

 100

 150

 200

0.01 0.02 0.03 0.04 0.05 0.06

A
V

G
 C

P
U

 T
im

e
 (

m
s

)

Query Size

T = 0
T = 2
T = 5

T = 10

(c) 80 Queries

Fig. 13 Effect of Threshold Tuning on Scalability w.r.t Query Size in Different Workloads

prediction function for the prediction of the next cell. As shown in Figure 14, we
vary the percentage of trip completion on x axis, and we measure the accuracy of
the prediction on y-axis. Rationally, the quality of the prediction improves while the
object moves forward. It is obviously provided that we can achieve between 70% to
90% for next destination prediction.

7 CONCLUSION

This paper introduces Panda∗; a system for evaluating predictive spatio-temporal
queries. Panda∗ enables users to request a location-based service using the predicted
locations of moving objects in a future time instance. Panda∗ has three main modules
that are tasked with query processing, system performance tuning, and query answer
maintenance. Each module is triggered by a firing event; a query arrival, a trigger for
system tuning, and an object movement, respectively. The query processing compo-
nent is responsible for computing the query results or accessing the precomputed ones
from previous query processing cycles. The task of the answer maintenance compo-
nent is to update the materialized precomputed answers according to the effect of an
object movement. The third component, system tuning, is dispatched to periodically
adapt the performance of Panda∗ according to the nature of the given workload.

Panda∗ supports a variety of predictive queries including predictive range
queries, predictive aggregate queries, and predictive k-NN queries, on both station-
ary and moving objects. Panda∗ also supports dealing with time uncertainty by mod-
eling the travel time between different locations in the space as intervals. Panda∗

introduces the Travel Time Structure (TTS), a time varying multidimensional grid,
coupled with a long term prediction function to achieve its prediction goals. Exten-
sive experimental evaluation using large groups of real and synthetic data proves the
efficiency and scalability of Panda∗. Panda∗ has reduced the processing time by up to
42% compared to its precomputed baseline algorithm and by up to 17% compared to
the instant baseline algorithm (at 100K queries).

While this paper addressed time uncertainty, location uncertainty is another in-
teresting dimension of uncertainty. Location uncertainty comes up due to the noisy
acquisition of a GPS reading and/or due to a privacy preserving layer that dilutes
the user’s location from a point into a region. We expect future research directions to
expand Panda∗ along the location uncertainty direction.

Panda∗: A Generic and Scalable Framework for Predictive Spatio-temporal Queries 33

 0

 20

 40

 60

 80

 100

0.1 0.3 0.5 0.7 0.9

A
c
c
u

ra
c
y

Trip Completion (%)

Panda*

Fig. 14 Accuracy of Destination Prediction

References

1. M. Ali and A. M. Hendawi. Spatial Predictive Queries. In MDM, Pennsylvania, USA, June 2015.
2. M. Ali, J. Krumm, and A. Teredesai. ACM SIGSPATIAL GIS Cup 2012. In ACM SIGSPATIAL GIS,

pages 597–600, California, USA, Nov. 2012.
3. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest and Reverse Nearest Neighbor

Queries for Moving Objects. VLDB Journal, 15(3):229–249, 2006.
4. A. Brillingaite and C. S. Jensen. Online Route Prediction for Automotive Applications. In ITS,

London, United Kingdom, Oct. 2006.
5. T. Brinkhoff. A Framework for Generating Network-Based Moving Objects. GeoInformatica,

6(2):153–180, 2002.
6. H. D. Chon, D. Agrawal, and A. E. Abbadi. Range and kNN Query Processing for Moving Objects in

Grid Model. MONET, 8(4):401–412, 2003.
7. J. Froehlich and J. Krumm. Route Prediction from Trip Observations. In Society of Automotive

Engineers (SAE) World Congress, Michigan, USA, Apr. 2008.
8. Y. Gu, G. Yu, N. Guo, and Y. Chen. Probabilistic Moving Range Query over RFID Spatio-temporal

Data Streams. In CIKM, pages 1413–1416, Hong Kong, China, Nov. 2009.
9. A. Hendawi. Scalable Spatial Predictive Query Processing for Moving Objects. PhD thesis, University

of Minnesota, Twin-Cities, 2015.
10. A. M. Hendawi. Predictive query processing on moving objects. In In proceedings of the Data

Engineering Workshops (ICDEW), Illinoi, USA, Apr. 2014.
11. A. M. Hendawi, M. Ali, and M. F. Mokbel. A Framework for Spatial Predictive Query Processing and

Visualization. In MDM, pages 327–330, Pennsylvania, USA, June 2015.
12. A. M. Hendawi and M. F. Mokbel. Panda: A Predictive Spatio-Temporal Query Processor. In ACM

SIGSPATIAL GIS, California, USA, Nov. 2012.
13. H. Hu, J. Xu, and D. L. Lee. A Generic Framework for Monitoring Continuous Spatial Queries over

Moving Objects. In SIGMOD, pages 479–490, Maryland, USA, June 2005.
14. H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A Hybrid Prediction Model for Moving Objects. In ICDE,

pages 70–79, Cancn, Mxico, Apr. 2008.
15. H. Jeung, M. L. Yiu, X. Zhou, and C. S. Jensen. Path Prediction and Predictive Range Querying in

Road Network Databases. VLDB Journal, 19(4):585–602, Aug. 2010.
16. Z. Jinghua, W. Xue, and L. Yingshu. Predictive Nearest Neighbor Queries over Uncertain Spatial-

Temporal Data. In WASA, pages 424–4359, Harbin, China, June 2014.
17. J. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang. Continuous Evaluation of Monochromatic

and Bichromatic Reverse Nearest Neighbors. In ICDE, pages 806–815, Istanbul, Turkey, Apr. 2007.
18. H. A. Karimi and X. Liu. A Predictive Location Model for Location-Based Services. In GIS, pages

126–133, Louisiana, USA, Nov. 2003.
19. S.-W. Kim, J.-I. Won, J.-D. Kim, M. Shin, J. Lee, and H. Kim. Path Prediction of Moving Objects on

Road Networks Through Analyzing Past Trajectories. In KES, pages 379–389, Vietri sul Mare, Italy,
Sept. 2007.

20. J. Krumm. Real Time Destination Prediction Based on Efficient Routes. In SAE, Michigan, USA, Apr.
2006.

21. K. C. K. Lee, H. V. Leong, J. Zhou, and A. Si. An Efficient Algorithm for Predictive Continuous Nearest
Neighbor Query Processing and Result Maintenance. In MDM, pages 178–182, Ayia Napa, Cyprus,
May 2005.

34 Abdeltawab M. Hendawi et al.

22. Y. Li, S. George, C. Apfelbeck, A. M. Hendawi, D. Hazel, A. Teredesai, and M. Ali. Routing Service
With Real World Severe Weather. In ACM SIGSPATIAL GIS, pages 585–588, Texas, USA, Nov. 2014.

23. M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Processing of Continuous
Queries in Spatio-temporal Databases. In SIGMOD, pages 443–454, Paris, France, June 2004.

24. M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous Query Processing of Spatio-
temporal Data Streams in PLACE. In STDBM, pages 57–64, Toronto, Canada, Aug. 2004.

25. K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos. Fast Nearest-Neighbor Query Processing
in Moving-Object Databases. GeoInformatica, 7(2):113–137, June 2003.

26. C. Shahabi, L.-A. Tang, and S. Xing. Indexing Land Surface for Efficient kNN Query. In VLDB, pages
1020–1031, Aucklan, New Zealand, Aug. 2008.

27. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In
ICDE, pages 422–432, Birmingham U.K, Apr. 1997.

28. J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the Past, the Present, and the Future in
Spatio-Temporal. In ICDE, pages 202–213, MASSACHUSETTS, USA, Mar. 2004.

29. Y. Tao, C. Faloutsos, D. Papadias, and B. L. 0002. Prediction and Indexing of Moving Objects with
Unknown Motion Patterns. In SIGMOD, pages 611–622, Paris, France, June 2004.

30. Y. Tao and D. Papadias. Time-parameterized Queries in Spatio-temporal Databases. In SIGMOD,
pages 334–345, Wisconsin, USA, June 2002.

31. Y. Tao and D. Papadias. Spatial queries in dynamic environments. TODS, 28(2):101–139, 2003.
32. Y. Tao, J. Sun, and D. Papadias. Analysis of predictive spatio-temporal queries. TODS, 28(4):295–

336, Dec. 2003.
33. H. Wang, R. Zimmermann, and W.-S. Ku. Distributed Continuous Range Query Processing on Moving

Objects. In DEXA, pages 655–665, Krakow, Poland, Sept. 2006.
34. M. L. Yiu, Y. Tao, and N. Mamoulis. The Bdual -tree: Indexing Moving Objects by Space Filling Curves

in the Dual Space. VLDB Journal, 17(3):379–400, May 2008.
35. J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical world. In KDD,

pages 316–324, California, USA, Aug. 2011.
36. J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive: driving directions based

on taxi trajectories. In GIS, pages 99–108, California, USA, Nov. 2010.
37. M. Zhang, S. Chen, C. S. Jensen, B. C. Ooi, and Z. Zhang. Effectively Indexing Uncertain Moving

Objects for Predictive Queries. PVLDB, 2(1):1198–1209, 2009.
38. R. Zhang, H. V. Jagadish, B. T. Dai, and K. Ramamohanarao. Optimized Algorithms for Predictive

Range and KNN Queries on Moving Objects. Information Systems, 35(8):911–932, Dec. 2010.

