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Abstract—A fundamental category of location based services
relies on predictive queries which consider the anticipate future
locations of users. Predictive queries attracted the reseehers’
attention as they are widely used in several applications itluding
traffic management, routing, location-based advertisingand ride
sharing. This paper aims to present a generic and scalable stem
for predictive query processing on moving objects, e.g, veties.
Inside the proposed system, two frameworks are provided to
work on two different environments, (1) Panda framework for
Euclidean space, and (2)iRoad framework for road network.
Unlike previous work in supporting predictive queries, thetarget
of the proposed system is to: (a) support long-term query
prediction as well as short term prediction, (b) scale up to &rge
number of moving objects, and (c) efficiently support diffeent
types of predictive queries, e.g., predictive range, K NN, and
aggregate queries.

|I. INTRODUCTION

The fact that there are more than one billion smart
phones [4] triggered the massive explosion of location thase

services [5], [9], [14], [18]. An important category of thees
services offers facilities based on the future location ofar
rather than his/her location in the present time. Spatialigs

in this categories come under the umbrella of predictive

queries [8], [10], [11], where a service is supplied acaogdd

the predicted location of a user after some time in the future

Common types of predictive spatial queries inclyedictive
range query, e.g., “find all hotels that will be located within
two miles of a user’s anticipated location after 30 minutes

predictive KNN query, e.g., “find the three taxis that most
likely to pass by my location in the next 10 minutes®, and
predictive aggregate query, e.g., “how many cars expected to

be around the stadium during the next 20 minutes".
In fact, Predictive queries can be employed in various type

of real applications such as (1) traffic management, to ptedi
areas with high traffic in the next half hour, so appropriate

decisions can be taken before congestion appears, (2idpneat
aware advertising, to distribute coupons and sales promsti

to customers more likely to show up around a certain store

during the sale time in the next hour, (3) routing servickat t
take into consideration the predicted traffic on each road

find the shortest path for a user trip starting after 15 misute
from the present time, (4) ride sharing systems, to get the

drivers that mostly will pass by a rider’s location withinnfe
minutes, (5) store finders, to predict the closest restasitan
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a user’s route after half hour, (6) emergency responsegto al
the three police cars expected to be the nearest to a stalen ca
in a couple of minutes.

The goal of this PhD thesis is to enable the practical real-
ization of location-based services such that they can stippo
common types of predictive queries on spatio-temporal,data
i.e., moving objects. Therefore, this thesis proposes @nien
and scalable predictive spatial query processing systesidd
this system, two different frameworks are introduced, ngme
Panda framework [7] andiRoad framework [6]. Each one is
customized according to the underlying work environment,
euclidean space and road network graph, respectively.

Specifically, this thesis handles the following core chal-
lenges in processing of spatial predictive queries:

« Prediction. Unlike most of the existing related work [11],
[19] that supports short-term prediction only, the pro-
posed frameworks have the ability to evaluate long-term
as well as short-term predictive queries. In addition, the
employed prediction models do not rely on the historical
data, as in many cases it is hard to obtain the historical
data of the moving objects. For example, in new systems
that there is no historical data or in confidential systems
where the data are top secrets or at least private so it can

not be released to the prediction model.
Salability. The proposed frameworks can scale up to

support heavy query workloads on a space with a large
number of moving objects. The scalability Banda is
resulted from adjusting the underlying prediction funatio

to be employed to filter out the objects having no possi-
bility to show up in the query region at the specified time.
This filtering saves a lot of the processing time for each
single query. While the scalability dRoad comes from
introducing a novel data structure nameshchability
tree to prune the space around each object. Yet, it holds
only those nodes, road intersections, reachable within a

specified time period from the object current location.
« Efficiency. The goal here is to introduce an efficient

query processing engine that utilizes the prediction of
each object in the underlying space to answer the pre-
dictive queries in very fast response time. Thus, users do

not have to wait to get the answer to their queries.
o Generality. The introduced solution can support the

processing of many kinds of predictive queries including
predictive range query, predictive KNN query, predictive
aggregate query, andoredictive point query. This is done
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inside the running framework and using the same data
. Moving Answer
structures and algorithms. Object Maintenance
The main idea of the introduced system is to monitor those &

space areas that are highly accessed using predictiveegueri ¥r’i’;’;:r“a“°e Statistics —T

For such areas, the system precomputes the prediction of Maintenance

objects being in these areas beforehand. Whenever a pvedict ~ Query | | Answer.
query is received, the system checks if parts of this prizict Query

query are included in those precomputed space areas. If this Processing

is the case, the system retrieves parts of its answer from the

precomputed areas with a very low response time. For other Fig. 1. The System Architecture

parts of the incoming predictive query that are not included

in the precomputed areas, the system has to dispatch the &ntl the present. An integrated system [1] is used to perform
prediction module to find out the answer, which will take morpredictive analysis on aviation data for air traffic managam
time to compute. It is important to note here that the aim 8ystem. For more comprehensive study on the existing work
predict the answer for certain areas of the space rathetiiganin predictive spatio-temporal queries in general, we réfier
whole space. Then, the overlap between the incoming quéeader to [8].

and the precomputed areas controls how efficient the queryfo summarize, the proposed system differentiates itsetf fr
would be. This isolation between the precomputed area a@xisting related work is that it is the only work that can sop
the query area presents the main reason behind the genpridictive spatio-temporal query processing for bothideen
nature of the proposed system as any type of predictiveegierspace and road networks. In addition, within its infrasinoes
(e.g., range andNN) can use the same precomputed areas ittcluding algorithms and data structures, the common tppes
serve its own purpose. predictive query, e.g., predictivange, K NN, andaggregate,

The rest of this paper is organized as follows. Section ¢an be efficiently evaluated. Further, the embedded piedict
studies the related work. Section Il gives an overview dgfiodels do not depend on historical data to perform the
the system architecture. TRanda and theiRoad frameworks prediction of objects future locations. Moreover, it praes
are discussed in Section IV and Section V respectively. TResmooth scalable behavior to harmonize the realistic needs
system prototype and the experimental evaluation is peavidlarge number of moving objects and massive query workloads.
in Section VI and Section VII. Finally, Section VIII concled

the paper.
pap IIl. SYSTEM ARCHITECTURE

Il. RELATED WORK This section give the overall system overview for our pro-
In this section, we review the existing work for predictivgposed predictive query processing system. We briefly descri
query processing on moving objects. Existing techniques fils main idea, and outline the system architecture and thie ke
predictive query processing can be classified accordingdo tmodules.
supported query type into the following categories: Figure 1 gives the system architecture which includes three
(1) Predictive range queries, i.e., [11], [17], [20]. A pre- main modules, namely, answer maintenance, statistics-main
dictive range query has a query regifinand a future timg, tenance, and query processing. Each module is dispatched by
and asks about the objects expected to be insiderttadter an event, namely, an object movement, a trigger for statisti
time ¢. For example, a network mobility model [11] is usednaintenance, and a query arrival, respectively. The system
to predict the coming path of each of the underlying objectsaintains a storage for precomputed answers, which is agdat
and employ the prediction results to evaluate predictivggea according to the objects movements and used to construct
queries. the final query answer for arriving queries. Below is a brief
(2) Predictive k-nearest-neighbor queries, i.e., [2], [15], overview of the actions taken by the system for each event.
[20]. A predictive K -nearest-neighbor query has point locatio®bject movement. Whenever the system receives an object
P, a future timet, and asks about th& objects expected to movement, it dispatches the answer maintenance module to
be closest toP after timet¢. For example, two algorithms, check if this movement affects any of the precomputed an-
RangeSearch, KNNSearchBF, [20] are introduced to traversgers. If this is the case, the affected precomputed answers
spatio-temporal index tree (TPR/TPfee) to find the nodes are updated accordingly.
that intersect with the query circular region for Range arldaintenance trigger. Based on a tunable threshold, a trigger
KNN queries respectively. may be fired to alert the system that the current set of statist
(3) Predictive aggregate queries, i.e., [1], [7], [16]. A that judge on which answers to precompute need to be reset.
predictive aggregate query has a query regiband a future The updated statistics affect which parts of query answéts w
time ¢, and asks about the number of objed¢s predicted be precomputed.
to be insideR after timet¢. For example, a comprehensiveQuery arrival. Once a query is received, the query processor
technique [16] provides an approximate answer for aggeegdivides the query area into two parts based on the answer
spatio-temporal queries for the future addition to the pagtrecomputation. The first part is already precomputed where
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Fig. 2. Data Structures iRanda and the denominator is the summations of the probabilities o
all grid cells D, that could be a possible destination of an

its answer is just retrieved from the precomputed storabe. TobjectO after ti_met. Dy is the set of possible destinations of
second part is not precomputed and needs to be evaluated fRAUIECLO after timet.

scratch through the computation of the prediction function P(Ci|S,)
against a candidate set of moving objects. P(Ci]So,t) = = (1)
ZdeDt P(Cd|S0)
IV. PANDA: PREDICTIVE QUERY PROCESSINGIN C. Maintenance trigger
EUCLIDIAN SPACE This module runs periodically eachunits to sweep over

This section introduces of theanda framework for predic- current statistics that decide which parts to precompute be
tive query processing for moving objects in euclidean spaderehand and update it. For a quefyto be considered for
We briefly overview the system and describe its basic ddecomputation, it has to appear at least a number of times
structures and explain how to handle each event. objeéf¢ove a certain threshold in the last time perio®therwise,
movements to precompute the predicted answer. it will be computed at the time it is received.

D. Query arrival

Figure 2 depicts the underlying data structure used (?Upon the arrival of a new predictive spatio-temporal query

A. Data Structure

Panda. A brief overview of each data structure is outlineq®’ W'th. an area of _mter(_es_R, req_uestlng a pred|_ct|on about
as follows.Space Gird SG. Panda partitions the whole space uture timet, Pz_mda first d|V|desQ Into a sets of grid cell&’y
into N x N grid cells Fo'r each cell’: € SG. we maintain: that overlap with the query region of interedt For each cell
(1) CellID as an iden;cifier, (2)3urrent10bjects’ as the list 01; ¢ € Cy, Panda does the following. Initially, it gets the query

. . o . .. result from celle, if it is already precomputed, otherwise it
moving objects located insidé;, (3) Query List as the list computes the result from scratch. Then, it maintains a set of

of predictive queries issued afi;. (4) Frequent Cells as the S . .
list of cells that one of their precomputed answers should tealtIStICS that help in deciding whether the answer of cel

updated with the movement of an objectdr. Object List Or a future timet, should be precomputed or not.

OL. This is a list of all moving objects in the systeifravel V. IROAD: PREDICTIVE QUERY PROCESSINGIN ROAD

Time Grid TTG. This is a two-dimensional array ¥ x NETWORKS
2 . .

é\] cells where eaﬁgceflfgg[z,]]hhaséhe a\(/je(;age gzgel M€ This section shortly presents th&oad framework for
etween space cells; andC;, whereC; andC; € 5G. processing predictive queries for objects traveling ondroa

B. Object movement networks.

Basically, when an object moveRanda checks if this move- A Data Sructures

ment has any effect on any of the precomputed answers. If thidn iRoad, there are three basic data structures to main-
is the case, theanda computes this effect by applying thetain: Road Network Graph. The given road network graph
prediction function to this object, Equation 1, then progtag contains a set of nodd¥ and edge<, and the weightsV

it to precomputed answers in the all affected cells. By doiraf the edges represent the travel time. For each node
this, we either add this object along with its probabilityth@ the road network, we store additional information inclugin
list of predicted objects at possible destination cellsemnove (1) list of current objects, to hold the moving objects that are
it from the cells no longer possible destination to that obje currently aroundn, (2) list of predicted objects to carry the
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precomputed results. For each object at a node the road Fig. 5. System Efficiency and Scalability
network graph we maintain treeirrent trip list which holds the
visited nodes by the object in its ongoing triReachability
Tree. A reachability tree uses a nodein the road network VI. SYSTEM PROTOTYPE
asda rogt, ar:jd storr]es ﬁ” the rea%hafble Q(re]st|nactj|ons, i_herdo A nice graphical user interface is developed to allow end
nodes, based on the shortest paths romithin a determined oo 1 jssue queries and visually inspect the results. As

time _Iimit T, i.e., 15 minutes, I_:igure 3(b). Yet, reachabilityShOWn in Figure 4(a), users can issue different types of
tree is employed to handle ObJeCtS mov_ements _SUCh that dictive queries including predictive point, rang&\N, and
precompute and update the list of predicted objects at e regate queries. Then the system responds by the list of
node in the road network beforehand. objects predicted to show up at the query location after the
B. Object movement specified future time along with objects probabilities. A\Is

. users will have an eye on the system inside by seeing how
The iRoad framework employs a novel data structure " .
. ... feachability trees are constructed and dynamically change
namedreachability tree, to hold the nodes reachable within . . :
S : .~ “according the objects movements, Figure 4(b).
a certain time frame7 from an object current location.

According to the movements of the underlying objegtsve VIlI. EXPERIMENTAL PERFORMANCE EVALUATION
leverage thereachability trees to precompute and store the rhig section illustrates the performance evaluation fer th
predicted answer at each node in the underlying road netwesk, 4, framework, while the experimental evaluation for the
graph. L _ . iRoad is still under completion. The experiments given here
The prediction model employed byRoad framework is ¢ ses on the study of the scalability of the proposed ayste
based on the assumption that objects follow the shortebspaj;i1, large query sizes. In this set of experiments, Figu(a)s.
in their trips. The intuitions behind this assumption iS€mS e notice that when the size increases, our system stilMesha
on the fact that in the most cases, the objects moving on rogglciently without significant increase in the total prosieg
networks, e.g., vehicles, travel through shortest rowieBeir ot for example when the query size increased by 16 times,
destinations [12], [13]. A probability value is assignecech ¢om 0,01 to 0.16 of the total space, the average processing
node in the object reachability tree, Equation 2, such that, o per query increases only by three times, from 0.11
nodes closer to object current node have higher probasility, o 34 milliseconds/query. In our second set of scalabilit
than the far away ones. The probability of a nodebeing oy neriments, Figure 5.(b) depicts the behavior of the main
a destination to the objeas, wheren; is a node in the ;omhanents of the system when the number of moving objects
reachability tree of o based on its current location,, is equal j,creases from 5K to 80K. As noticed from the average
to the probability of; , parent node of;, being a destination cpyy cost per query when the number of objects increases

to o divided by the number of children of;, Figure 3. by 16 times, from 5K to 80K, the average cost per query

P(n;|n,) increases only by less than four times, i.e., from 0.7 to 2.7
P(nilno) =[] Fanout(n;) (2)  milliseconds/query.
C. Maintenance trigger VIIl. CONCLUSION
This event does not apply in thBoad framework, as there  This paper outlines a PhD thesis that proposes frameworks
is no partial precomputation in it. for predictive query processing for moving objects in twb di
] ferent environment$anda for objects in euclidean space, and
D. Query arrival iRoad for objects on road networks. For each framework, we

The idea of processing predictive queriesiRoad is to presented its main idea, architecture, and the embedded dat
have the list predicted objects at each node precomputed atrdictures. Three core challenges, necessary to realibing
maintained in advance as a res by the movement handlgroduced frameworks, along with the proposed approaches
module, so for coming queries, the query processor moduesolving these challenges were presented. These chafieng
fetches those results, adapts them according to the typeiraflude (1) Supporting long-term query prediction, margpst
received query and returns the answer in a very fast respoirs¢he future, as well as short term prediction, next desitima
time. or step, (2) Scaling up to large number of moving objects, and



large number of outsized predictive queries, (3) Supportin
common types of predictive spatio-temporal queries inclad
range, aggregate, arkdnearest-neighbor queries. Experimen-
tal evidence was given to prove the scalability and effigjenfc

the presented frameworks. As a future work, we plan to study
how to deal with uncertainty in the underlying moving obgect
locations and directions, and to support different préoiict
models within the proposed framework.
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