Real-Time Spatio-Temporal Location Tracking and
Processing of Moving Objects

Youying Shit Abdeltawab M. Hendawi?

Hossam Fattah®

Mohamed Ali ' Jumana Karwa !

lcenter for Data Science, Institute of Technology, University of Washington, WA, USA
Hyouyings, mhali, karwaj }Quw.edu
2Department of Computer Science, University of Virginia, VA, USA
hendawiQuirginia.edu
3Microsoft Corporation, WA, USA
ho fattah@microsoft.com

ABSTRACT

There has been an increasing need for tracking moving objects ef-
ficiently in real time from telecom providers and the transporta-
tion industry in tracking hundreds of millions of moving objects in
real time. Another common use case is real time tracking or mon-
itoring of activities of certain people like family or friends when
they check in to some place, or share interesting location pictures
on a scenic drive, share an entire timeline of photos and videos
of several road trips in real time. Existing commercial spatial li-
braries have good support for stationary geospatial objects. How-
ever, there has been a dearth of the same for moving objects. There
are several challenges in handling complex computations and stor-
age of this high-frequency, low-latency, real-time moving objects
for GeoSpatial applications. This Demo intends to present a reac-
tive GeoSpatial library that provides a streaming processing unit to
efficiently handle spatio-temporal operations, and a set of applica-
tion programming interfaces (APIs) for developers. The demon-
stration scenarios include SpatioTemporal Timelines, Car Pooling
Tracking System, Family Locator, Safety Check and Targeted Ads.

1. INTRODUCTION

During the past decade a lot of research has been done on
location-based services, moving objects, traffic jam preventions,
whether prediction, etc. Real time tracking of moving objects too
have become an important aspect of many of the real world appli-
cations and providing efficient and strong support for such appli-
cations is very much important. For example, in real time navi-
gational systems, providing efficient and swift handling of the in-
formation is of prime importance. Also, positioning information
can prevent workers from entering areas exposed to environmental
risks like downfalling threats, landslides and so on [4]. Another
common use case for realtime data is storing objects in motion and
analyzing those data points as they move and generate streams of
notifications. Hence, we need here, a stable and efficient publish-
subscribe system that would be able to quickly notify interested
subscribers efficiently in real time. Handling the volume of data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

that moving objects create, and slicing and dicing the data to find
interesting analytical results is the kind of task for which this li-
brary is a great fit. A natural thing to do with moving objects is to
plot them on a map and to analyze the data generated by the object
as it makes its journey. For example, on a map of transit data for
the car pooling system, we can ask how many cars pass by every
hour on this route, what are the start and end points of these cars
and and the average time these cars take to reach their destination.
Unlike stationary geospatial objects, moving geospatial data in real
time poses many challenges, in terms of complexity of data struc-
tures, their representation, and manipulation, specially in terms of
updating the location information in real time. The main challenge
here is that with millions of moving objects, it would be really in-
efficient to process and analyse the same thing from scratch each
time. In order to address this primary need, this demo introduces
a library [6], that extends the existing SQL Server Spatial Library
for efficiently handling moving objects in real time. It provides an
API for processing spatial operations in a streaming fashion for in-
cremental stream processing of various geospatial operations. As
an example, to detect the intersection of a moving object and a set
of geofences, the intersection operation is incrementally evaluated
to make use of as much computations as possible from the previous
step. The following section provides the layout and briefly explains
the primary components of this library.

2. LIBRARY LAYOUT

Location data are fed to the server continuously from a registered
smart device. The computation result would be sent to the visualizer
for display after the data is processed. Our library provides a quick
and efficient way to track and process real time moving objects. It
does this by mapping each moving object to an Observable (i.e.,
IOservable interface), yet each location update for a moving object
will trigger the geospatial computation with the observers who have
subscribed to this object’s movements. Then, the location, direction
and speed of the moving object are used on top of multidimensional
index structure to efficiently process the intersection as well as other
geospatial operations. Fortunately, we release the library equipped
with the RUM-Tree [5] as the core spatial index. Figure 1 provides
a high level description of the library. The primary elements of the
layout are as follows:

RxObservers: These are observers that monitor the status be-
tween a nonmoving area and a moving object. It stores the location
data of a pre-stored static location L locally. It is triggered by the
event of location change from the moving objects it is watching. It
comes with three different types; each of them utilise different APIs
provided by SQLServer Libraries: (i) RxIntersect observer outputs

a boolean, L.STIntersect(g), which stands for whether L intersects
g, (ii)) RxDistance observer outputs a double, L.STDistance(g),
which stands for the distance between L and g, and (iii) RxIntersec-
tion observer outputs a SqlGeography object,L.STIntersection(g),
which stands for the intersection region between L and g. An ob-
server of the specified type can subscribe the movement of this Rx-
Geography object. By OnNext API, new location g is fed to the
RxGeography object; each RxObserver will be notified with g, fin-
ishing the corresponding computation based on g, and then update
the output.

RxRxObservers:
Any one of the observers
that monitors the status
between two moving
objects are called Dy-
namic Observers. This
observer is triggered
by the event of location
change from the ob-
served moving object.
Because there are two
moving objects involved,
these are dynamic ob-
servers (and two Rx in
RxRxObservers). They
come with three different
types; each of them
utilize the same API as
static observers, however
this time its between
location updates between
two moving objects, e.g.,
g1.STIntersection(g2),
which stands for the
intersection region be-
tween moving objects gl
and g2 where gl and g2.
Similar to the static observers, a call to the OnNext API would
result in new location g2 to be fed to the observed RxGeography
object.

RUM Tree: RUM-Tree is chosen based on its ability to handle
moving objects update in more efficient way compared to other con-
ventional index structures, e.g., grid. RUM-tree is leveraged to store
observer objects. It consists of three main components: a stamp
counter, a R-Tree and update memos. We use stamp counter to add
stamp to each insert/ delete operation; the observer objects them-
selves are stored in a R-Tree; "update memos’ acts as a memory-
based auxiliary structure that would help differencing obsolete ob-
jects from the newest objects. The "update memos’ is a dictionary
whose key is unique object id and value is a single update memo.
Each update memo consist of three parts: a unique object id, the
newest stamp of this object id, and the total number of obsolete ob-
jects with the same object id that required to be removed in garbage
collection stage.Furthermore, the geospatial computation in our li-
brary is powered by Spatial data types supported by Microsoft SQL
Server Spatial Library [1]. It provides optimized data types such
as SqlGeography to store and query objects in a geometric space.
Fig 1 demonstrates the the layout of this library. In safe routing
engines, the commuters’ location information and the disastrous
weather zone require real-time processing to generate a reasonable
live saving emergency route to evacuate. On similar lines, it would
be really helpful for commuters to know if they are heading to a
potentially unsafe area. Similar libraries in the previous work [2,
3] were originally designed to support operations on stationary ob-
jects with limited capabilities for moving objects. We demo one or

<<Interface>> <<Interface>>
IObservable<T> IDisposable
+ Subscribe(IObserver<T> 0) + Dispose()
: IDisposalbe

<<Interface>>
10bserver<T>
1+ OnNext(T location)

<T -> SqlGeography=>

RxGeograpy +OnComplete()

- currentLocation: SqiGeography
- observers: Collection<lObservers)

+ OnError(Exception e)

for necessary observers:
observer.OnNext(
currentLocation)

- NotifyObservers ()
+RxIntersect(SgiGeography G, =~~~
|Observer<Double> 0) '
+RxDistance(SqlG y G
|0bserver<bool> 0) H
+Rxlntersection(SalGeography G, |
|0Observer<SqglGeography= o)
+RxRxintersect(RxGeography G, || ___
|Observer<Double> 0) !
+RxRAxDistance(RxG phy G, !
|Observer<boot> o) H
+RxRxIntersection(RxGeography G|
I0bserver<SgiGeography>0) ____J

Subscribe different
observers to track
locations

RxIntersectObserver RxRxIntersectionObserver

-0: IObserver<book>
-G: SqlGeography

-0: IObserver<SqlGepgraphy>
-G: RxGeography

RxDistanceObserver
-0: IObserver<double>
-G: SqlGeography

RxRxDistanceObserver
-0: [Observer<double>
-G: RxGeography

RxIntersectionObserver RxRxIntersectObserver
-0: I0bserver<SqlGepgraphy> | |4 |Observer<bools

-G: SqlGeography

-G: RxGeography

Figure 1: Library Layout

more of the scenarios and show how is our library would benefit
the developer in projecting the updates from moving objects effi-
ciently. To illustrate the usability of the proposed RxSpatial library,
we describe a few real-world applications; SpatioTemporal Time-
lines, Car Pooling Tracking System, Family Locator, Safety Check
and Targeted Ads.

3. DEMO SCENARIOS

In this section, we are going to present a few demo scenarios
that would greatly benefit from our library. The library and the
application scenarios in this demo are implemented in C#, in Vi-
sual Studio 2013, and running on Windows 8.1. In the applications
snapshot, figures 2 , we can notice that a numbered push pin repre-
sents a moving object. A blue pin means this moving object does
not trigger anything or it is not even watched by anything. A pin
with other colors means that moving object has some active con-
dition. The control panel is on the left side of each figure. The
function of buttons and scroll bars are as follows. Start: to start the
objects movement, Pause: to pause the movement, Vehicle speed:
to control the moving speed of pins, Vehicle number: to control the
number of moving objects on the map, Observer Distance: to de-
fine the distance between observer and observed object which could
trigger the watch notification, Add Area: to draw a rectangle in the
map to add a stationary RxObserver, Clear Area: to remove all ob-
servers already added, and Add Obsver: to add a pair of mutually
observing observers in RxRxObservers when the user selects the id
of a pair of push pins and clicks the Add Obsver button. The color
code of the push pin depends on the application scenario.

3.1 Spatiotemporal Timeline (iTrajectory)

This is an app developed
for users to share information
SEE S col about their travel stories by

y sharing their trajectory along
Tenpasen [i with hashtags, pictures and
] i Tambere videos along the trajectory in
I . real time. Fig 2 shows the
@a user sharing a pic while pick-

e ing up coffee from a drive

@ in. More specifically, the so-

© waler cial network phone app con-
tinuously collects the user’s

Y LS GPS locations along with vari-
Google ous other user activities on the
phone (e.g., pictures, videos
and posts). Alternatively, the
user gets the ability to specify
a range over the map, and the
system would retrieve all of the
user’s friends traveling within
that region, given a date and
time. As an example, the user may specify aAIJfind all my friends
in Seattle downtown on ChristmasaAi. Hence if a user and his
friend are close enough to each other, the watch notification is trig-
gered to both the users giving them the exact location of one an-
other. In this case both users (say gl and g2) would act as ob-
servers to other moving objects that would intersect their region of
travel. Hence, the developer could easily use RxIntersection ob-
server that outputs a SqlGeography object, gl.STIntersection(g2),
which would easily give the intersection region between gl and g2.

3.2 Targeted Ads

Spatiotemporal social networks leverage the business of be-
haviourally targeted ads to include the vicinity to the user being tar-
geted (e.g., shopping mall coupons along the user’s trajectory). This

< a O = il B3 19:48

Lakewood

Figure 2: Sharing Location
Pictures in Real Time on the
Trajectory

ringsgate

Moving Object Number: 20 ; / G o
Movement Speed: 1 (4 R @ N
Rat) r Kir Redmon!
1 50 100 \(D
Observe Distance: 9935.07 & /
1 5k 10k Sammami
Observer Condition:(9.7) ADD!
0 19 0 19 Rherd
Add Obsver Island.
ClearObsver fewgstiie Jssaqil]

Highlands

Start K
, East Renton
|_Pause | Hwe

ses kwlla o
vashon

stk Seafac #
&

Figure 3: Car Pool Tracking

would require the businesses like shopping malls or food courts tar-
get customers moving closer to their vicinity with ads. This can
again be easily achieved this time by using ESObservers - observers
that monitor the status between a nonmoving area (shopping malls)
and a moving object (cars) within a substantial range of their busi-
ness locations to attract more customers.

3.3 Car Pooling Tracking System

In this part, we are going to demonstrate the distance control
in a car pooling system. One scenario is knowing about cars that
start and end at the same or nearby locations and most likely take
the same route at similar timings to a common destination. Exam-
ples include, a car starting in Renton and taking the I-5 to reach
Redmond between 9 a.m. and 9.30 a.m. In Figure 3, each pin rep-
resents a car in the car pooling vehicle system. The collaboration
status is tracked between 7 and 9, 10 and 12, and 17 and 1. The
red line between cars 7 and 9, show that the cars are watching the
movement of each other since they started at nearby locations. But
the connection between them is not strong enough as the distance
exceeds a limit. The solid thick line between 10 and 12 and the
yellow color of pins show that they are within a stable working dis-
tance and would most likely happen to car pool. The dotted line
between 4 and 18, and the grey color of pins show that they are
within a working distance but are likely to disconnect if they get
further apart. The blue color of other cars show that they did not
intend to watch the movement of any cars, so they are not trying
to connect and thus no need to audit the connections. In this case
too, the developer could easily use the RxRxIntersection observer
that outputs a SqlGeography object, gl.STIntersection(g2), which
would easily give the intersection region between gl and other g2
moving cars. If the intersection is small till these cars reach their
destination like 15 and 16, these cars could car pool.

3.4 Family Locator

Every child say in the
age group of 8 - 16 of a
family is designated an
area i.e. home or school
“’g for example which is

supposed to notify his

t family as soon as he

checks in that loca-

i tion. Sometimes, some
@ g children are not sup-
Vew . posed to move outside
these vicinities.Figure 4

Figure 4: Family Region Track- demonstrates restricted
ing region tracking scenario:
the gray rectangle indi-

o por
Intersect | Distance | ReRuDistance P larils Both
IR. Lake Forest Park

Vehicle Number: 20 quamish Kin

1 10 2
Vehicle Speed: 48

1 50 100
Observe Distance: 4610.93 inbridg
Island
1 sk 10k

£

3
H

T Port
Intersect | Distance | RxRxDistance Madisan

LR Forest Pal
quamish o
Puget Sound .;
1 10 20

Vehicle Speed: 1 r'@
Bainbridge d
Island L-
1 50 100 Se @
Sy
Add Area "l

Vehicle Number: 20

o

M
; i
>
Start d e
<\Bryn |
hiverthe

nnnnnn

Figure 5: Unsafe Region Tracking

cates a restricted region
out of which children, (i.e., push pins), are not supposed to exit
without their parent. When the child 10 is nearing the exit region,
this act will trigger an alert to the supervisor and the parent.

3.5 Safety Check

Another example is warning commuters of potentially hazardous
areas when on the move. Figure 5 demonstrates unsafe region track-
ing scenario where certain drivers are not supposed to get close to
restricted regions like accident prone or unsafe areas. When user
10 gets in the restricted area, this will trigger security notification
to the subscribed user and also possibly notify the nearest police
station.

4. REFERENCES

[1] S.S.2016. Microsoft SQL Server Spatial Libraries.
https://msdn.microsoft.com/en-us/library/
bb933790.aspx, Dec. 2015.

[2] A. M. Hendawi, A. Khot, A. Rustum, A. Basalamah,

A. Teredesai, and M. Ali. COMA: Road Network
Compression For Map-Matching. In MDM, Pennsylvania,
USA, June 2015.

[3] L. M. Li, H. Wynne, J. C. S, C. Bin, and T. K. Lik. Supporting
Frequent Updates in R-trees: A Bottom-up Approach. In
VLDB, pages 608—619, Berlin, Germany, Sept. 2003.

[4] Y. Li, S. George, C. Apfelbeck, A. M. Hendawi, D. Hazel,

A. Teredesai, and M. Ali. Routing Service With Real World
Severe Weather. In ACM SIGSPATIAL GIS, Texas, USA, Nov.
2014.

[5] A. Mohamed, C. Badrish, S. Balan, and K. Raman.
Spatio-temporal stream processing in microsoft streaminsight.
Data Engineering, 33(2):69, June 2010.

[6] Y. Shi, A. M. Hendawi, H. Fattah, and M. Ali. RxSpatial:
Reactive Spatial Library for Real-Time Location Tracking and
Processing. In MDM, Pennsylvania, USA, June 2015.

