Microsoft Reactive Framework Meets
Spatio-Temporal Databases

Hossam Fattah!
Jayant Gupta®

Abdeltawab M. Hendawi?

Youying Shi®
Mohamed Ali?

IMicrosoft Corporation, WA, USA
hofattah@Qmicrosoft.com
’Department of Computer Science, University of Virginia, VA, USA
hendawiQcs.virginia.edu
S3center for Data Science, University of Washington, Tacoma, WA, USA
{youyings, jayantg, mhali}Quw.edu

Abstract—Microsoft SQL Server Spatial (SqlSpatial) Library
is primarily developed to efficiently evaluate operations on
stationary objects. When it comes to real-world applications that
deal with moving objects which require real-time tracking and
processing such as connected vehicles, here, the limitations float
to the surface. Unfortunately, the SqlSpatial library has very
limited operations in this domain. To overcome these limitations,
this paper presents the RxSpatial library developed to real-
time processing of spatio-temporal operations on moving objects.
This paper introduces the front-end application programming
interfaces (APIs) for developers to build their applications, and
the back-end containing the streaming-fashion processing for the
spatio-temporal operations. The superiority of the RxSpatial over
the basic SqlSpatial is demonstrated throughout an extensive
experimental evaluation on real and synthetic data sets.

I. INTRODUCTION

Several spatial libraries have been developed by Microsoft,
IBM and Oracle either as part of their database management
systems or as stand-alone libraries. These libraries have sub-
stantially advanced the state of the art in geospatial comput-
ing and provided efficient implementations of various spatial
functions such as intersection, distance and area over spatial
objects. These libraries have been a perfect fit for an era
where digital maps and Geographic Information Systems (GIS)
were ramping up and booming. However, as time goes by,
GIS systems have dramatically changed. It is no longer the
case where cartographers take out their measuring tapes in
the city or in wilderness to draw their maps, or to find
the intersection/distance between different properties. Instead,
GPS devices, hand-held devices and mobile technologies have
pumped up the requirements on geospatial computing to a
higher bar. Consider the scenario where a moving object (e.g.,
a vehicle) is on the road and a standing geofencing query
is interested in continuously reporting the intersection of the
vehicle’s location and a large set of geofences (e.g., repre-
senting the boundaries of shopping malls). Because existing
spatial libraries are designed for static objects, the intersection
operation between the vehicle’s location and each geofence
is repeated over and over again from scratch every time
a location update is received. The concept of incremental

stream processing has not been considered yet in existing
spatial libraries; neither on the user’s interface side nor in the
underlying spatiotemporal query processor.

In this paper, we address real time spatiotemporal stream
query processing and introduce the Reactive eXtension Spatial
library, RxSpatial for short. RxSpatial (1) blends the Mi-
crosoft SQL Server Spatial Library with the Microsoft Reactive
Framework, (2) integrates spatial index structures for moving
objects with the query processing pipeline, and (3) provides
incremental spatial operations to evaluate queries in a data
streaming fashion.

The proposed library provides a front end, which is a
programming interface for developers who are familiar with
the Microsoft Reactive Framework for .NET applications.
This front end introduces new interfaces that are called Rx-
Geography and RxGeometry to provide the real time versions
of the SQLGeography and the SQLGeometry classes of the
SQL Server Spatial Library, respectively. SOLGeography and
SQLGeometry are the classes that encompass methods for
spatial operations over geodetic and planar spatial data types,
respectively.

Each one of the RxGeography and RxGeometry interfaces
derives from the /Observable interface of the Reactive Frame-
work. As a quick background, the IObservable interface rep-
resents a provider for push-based notifications. /O0bservable
defines a subscribe method that multiple observers can sub-
scribe to in order to get notifications of real time updates. The
RxGeography and RxGeometry implement modified versions
of the methods that are found in the SQLGeography and the
SQLGeometry classes of the SQL Spatial Library, respectively.
For example, the SQLGeography class implements a method
called SQLIntersects to detect if two “stationary” geography
objects intersect. Its real time RxGeography counterpart im-
plements two methods: (1) a method called RxIntersects to
continuously monitor and detect the intersection between a
moving object (represented by an RxGeography object) and
a stationary object (represented as SQLGeography), and (2)
a method called RxRxIntersects to continuously monitor and
detect the intersection of two moving objects (each one is
represented an RxGeography).

Thanks to the Reactive Framework, the RxSpatial library
provides strong support for asynchronous program develop-
ment and event-based programs, with a smooth learning curve.
The wide community of the .NET Developers would be able
to represent asynchronous data streams of spatial objects using
an IObservable;T; data type [3], where T is a spatial data type
(SqlGeography or SqlGeometrty). Hence, the RxSpatial library
can be used to query the asynchronous data streams using
LINQ [1], which is the Microsoft .NET way of embedding
SQL queries.

In addition to the programming interface front-end, the
RxSpatial library provides a back-end for processing spatial
operations in a streaming fashion. The contribution at the
back end level lies in the incremental stream processing of
various geospatial operations. As an example, to detect the
intersection of a moving object and a set of geofences, the
intersection operation is not carried over from scratch between
the moving object’s location and all geofences upon the receipt
of a location update. Instead, the intersection operation is
incrementally evaluated to make use of as much computations
as possible from the previous step. Moreover, the location,
direction and speed of the moving object are used on top of
a spatial index structure to efficiently process the intersection.
Fortunately, we release the RxSpatial library equipped with the
RUM-Tree [27], an efficient index structure and a modified R-
Tree for moving objects.

Several timing-sensitive and real time geosptial applications
would benefit from the RxSpatial Library. For example, in
some child safety applications, children are tracked using GPS
devices or smart phones. When they get near forbidden or
dangerous area, the application needs to send an alert to parents
on time. In the scenario of collaborative vehicle systems, a
cluster of vehicles is on the way heading to their destinations,
where every vehicle is a moving object to be tracked and
controlled. If a vehicle is too far away from the cluster or too
close to its neighboring vehicles, an action should be taken to
adjust its speed and direction so that the vehicles maintain a
reasonable communication distance and avoid collisions. In
behaviorally targeted advertising campaigns, when a driver
is close to a shopping mall, coupons, recommendations, and
possibly a parking spot information need to reach the driver’s
smart device on time. In social networks, when a friend is
nearby, it would be great to receive a notification of the friend’s
location as soon as he appears in the vicinity of his friend. In
safe routing engines [14], the commuters’ location information
and the disastrous weather zone require real-time processing to
generate a reasonable life saving emergency route to evacuate.
In the scenario of tracking criminal activities [19], criminals
and sex offenders under probation are forced to wear ankle
bracelets that stream their GPS locations. Local authorities
are expected to be notified immediately once a criminal steps
into a school zone or steps out of a curfew zone predefined
by law enforcement agents. In the context of this paper,
we give examples and figures to illustrate the usability of
the proposed RxSpatial library in two key domains: criminal
activity tracking systems, and collaborative vehicle systems.

The rest of the paper is organized as follows. Section II
gives a brief background of various technologies used within

RxSpatial. Section III presents the library’s user interfaces
with its convenient APIs, while Section IV discusses the
library’s back end with its underlying data structures and
algorithms. Section V describes some real-world application
scenarios that would utilize the proposed library. Section VI
provides experimental results that show the performance of
the underlying real time query processing engine. The paper
is concluded in Section VIIL.

II. BACKGROUND

Before we present the details of RxSpatial, this section high-
lights the techniques, systems and libraries that are used within
the implementation of RxSpatial. It also overviews several
previous attempts to leverage the exiting Microsoft SQL Server
Spatial Library with real time streaming capabilities.

A. Microsoft SQL Server Spatial Libraries

The Microsoft SQL Serevr Spatial Library provides an
easy to use, robust, and high performance environment for
persisting and analyzing spatial data. The library [2] provides
data types for spatial objects such as points, lines and poly-
gons, both in geometrical (planar) and geographical (geodetic)
representations. The SQL Server Spatial Library adheres to
the Simple Feature Access standard of the Open Geospatial
Consortium [24]. In addition to the data type support, the
library implements various spatial operations on top of these
data types, e.g., intersection, distance, and area. The SQL
Server Spatial Library has been widely used to provide spatial
support for both SQL Server based and .NET based appli-
cations. However, the original library is tuned to address the
needs of static non-moving object scenarios.

There has been few earlier attempts to add real time support
for spatial operations in the SQL Server Spatial Library. An
early attempt to integrate the Microsoft SQL Server Spatial
Library with Microsoft Streamlnsight [6] has been studied
in [16]. Microsoft StreamlInsight is a commercial data stream
management system for processing long-running continuous
queries over data streams. It has the ability to correlate stream
data from multiple sources and to execute standing queries on
a low-latency query processor to extract meaningful patterns
and trends. The approach in [16] adopts the extensibility
framework of StreamlInsight [4] to implement an example set
of spatiotemporal operations, e.g., KNN search, and range
search; as user defined operators and integrates these operators
with the query pipeline.

In contrast to the extensibility approach taken by [16], the
work in [17] presents and contrasts two approaches to support
real time spatiotemporal operations: the native approach and
the extensibility approach. The native support approach deals
with spatial attributes as first class citizens, reasons about the
spatial properties of incoming events and, more interestingly,
provides consistency guarantees over space as well as time.

The Geolnsight [10] system is another platform that blends
the Microsoft SQL Server Spatial Library with StreamInsight
to support geo-streaming applications, in general, and to sup-
port Intelligent Transportation Systems (/7S), in particular.

Geolnsight has been used to analyze the traffic information
that is streamed out of loop detectors in Los Angeles county.
Moreover, several spatiotemporal analytic queries that are
executed in real time have been demonstrated in [18]. The
demo scenario is based on the Microsoft Shuttle Service where
GPS readings are generated and streamed by shuttles as they
move around the Microsoft main campus in Redmond, WA.
Tracking the activities of criminals and sex offenders in real
time using ankle bracelets, then, performing behavioral mining
on top of their GPS traces has been another interesting scenario
for the SQL Server Spatial Library [19]. Given these previous
attempts, we believe industry has reached a point where a
full fledged real time spatiotemporal library is on track for
development and production.

B. Microsoft Reactive Extension

The Reactive Manifesto [15] mentions that reactive systems
should be responsive, resilient, elastic, and message driven.
The Microsoft Reactive Extension (or the Reactive Frame-
owrk) [26] is a reactive programming extension that can be
utilized within various .NET applications and, moreover, it
goes hand in hand with the Microsoft LINQ [1] (Language
Integrated Query). The Reactive Framework follows the Re-
active Manifesto principles, and makes the development of
reactive applications more convenient. Developers only need
to focus on the business logic instead of dealing with various
asynchronous issues.

The Reactive Framework provides two main interfaces: the
IObservable and the [Observer interfaces. IObservable is a
generic interface that wraps a source of message events (or a
stream of events). IObservable provides a Subscribe method
as part of the interface APIs to enable stream consumers to
subscribe to the underlying stream source and to receive update
notifications of incoming stream events.

The IObserver interface represents the stream consumer
(or, in other words, the recipient of the stream events). An
1Observer class subscribes to an IObservable class and adds
callback functions so that the /Observer can be notified when
a new event is generated from the stream source. These
callback functions are called: OnNext, OnError and OnEnd,
and are used to notify the stream consumer of new events,
error messages and termination signal coming from the stream
source, respectively.

The RxSpatial library utilizes the Microsoft Reactive Frame-
work to provide a convenient programming interface for devel-
opers. RxSpatial implements two interfaces: the RxGeography
which derives from IObservable;SQLGeography; and RxGe-
ometry which derives from [Observable;Geometry;. Hence,
RxGeography and RxGeometry are the data types that repre-
sent moving spatial objects in geodetic and planar domains,
respectively. In other words, RxGeography and RxGeometry
are the data types that represent the stream of location updates
that are generated by moving objects as they roam the space.
More details on the design and implementation of these data
types are presented in Section IV.

It is worthy to mention that in addition to the .NET frame-
work (and mainly the C# programming language), some other

programming languages also support the reactive extensions.
For example, RxJava [11] is a Java library that implements the
ReactiveX API specifications [25]. In [7], geospatial analysis
of taxicab data is implemented using RxJava.

C. Spatio-temporal Indexing

Various spatial libraries come equipped with spatial index
structures for fast access of geospatial objects. Existing li-
braries are tuned for stationary non-moving objects and, hence,
are equipped with index structures that are not well tuned for
moving objects (e.g. R-Trees). The R-Tree with Update Memos
(or the RUM Tree) is an enhancement of the original R-Tree. It
is designed to reduce the cost of object updates in the R-Tree.
Thus, it is a suitable choice for GIS applications with frequent
location updates or moving objects. In R-Tree, the update of an
object has two steps: an insertion of new entry and a deletion
of the old entry. With the aid of update memo, RUM-Tree
avoids the effort of finding and deleting the old entry during the
update process; thus the cost of update becomes similar to the
cost of insertion and, later on, a garbage collection mechanism
handles the memory cleanup work.

When building an application using RxSpatial, the two major
concerns are: (1) the scalability in terms of the number of
moving objects and (2) the scalability in terms of location
update frequency, that is, the number of location updates
received per unit time from a single moving object. An interest-
ing performance analysis study that compares the RUM-Tree
against other candidate data structures is found in in [22]. This
study provides large-scale experiments with 2 million to 20
million moving objects. The experiments provide a comparison
between the RUM-Tree, the R*-Tree [23] and the Frequently
Updated R-Tree (FUR-Tree) [13]. The performance measures
mainly consist of two parts: (1) the cost of disk access (I/O
cost) during the update and search operations and (2) the
memory utilization.

From a memory utilization perspective, the R*-Tree’s strat-
egy aims for an optimized memory and costs less memory
compared to other data structures. The memory cost of the
FUR-Tree is comparable to the R*-tree. However, the RUM-
Tree suffered from a higher memory cost due to its lazy
garbage collection strategy and due to the existence of obsolete
entries in the tree nodes. Therefore, RUM-Tree demands
higher, yet still affordable, memory requirements.

During the update operation of an object’s location, the R*-
Tree needs to search for the object’s old location using an
expensive top-down tree navigation, followed by a deletion of
this old entry and, then, the addition of an entry for the new
object’s location. The cost of the FUR-Tree update operation
is positively correlated to the displacement distance of the
object. The RUM-Tree’s performance is relatively stable and
is less than the R*-Tree and the FUR-Tree variants. During
the search operation, the R*-Tree benefits from the continuous
adjustment during top-down updates so it has the lowest search
cost. FUR-Tree needs to check and process more nodes and is
less performant compared to the R*-Tree. The RUM-tree also
suffers from the presence of obsolete entries and, hence, the
RUM-Tree may cost more time during the search operation.

Since the RUM-Tree performs significantly better in the
update operation and have slightly lower performance in the
search operation compared to other candidate data structures,
the RUM-Tree becomes appealing under the frequently moving
object settings. Also, with a minor sacrifice on the memory
utilization side, RxSpatial adopts the RUM-Tree as its index
structure choice for frequently moving objects.

III. THE RXSPATIAL LIBRARY’S FRONT END

As we mentioned earlier in Section II, the Microsoft Re-
active Framework introduces the /Observable and the I0b-
server interfaces to represent stream sources (producers) and
stream sinks (consumers), respectively. Moreover, the orig-
inal Microsoft SQL Server Spatial Library introduces the
SQLGeography and the SQLGeometry classes to encompass
geospatial operations against geodetic and planar spatial ob-
jects, respectively. The RxSpatial library’s front end utilizes
the two paradigms and introduces the RxGeography and the
RxGeometry classes to provide geospatial operations against
geodetic and planar spatial “moving” objects, respectively. For
brevity, we focus our discussion on the RxGeography class, and
the same concepts would apply to the RxGeometry class.

As shown in Figure 1, the RxGeography class is designed
to represent a moving object and to be attached to a geospatial
stream source (e.g., a mobile device that streams GPS read-
ings). Hence, RxGeography needs to be an observer of the
location stream that is coming from the moving object and,
consequently, implements the IObserver;T; generic interface
with its three methods: OnNext, OnComplete and OnError.
Note that T is the data type that represents the object’s location
and RxSpatial decided to use the static SOQLGeography class to
represent the object’s location. This means that RxGeography
is an IObserver;SQLGeography; and the object location can
be a point as well as any spatial data type that SQLGeography
can represent (i.e., point, line, polygon). The stream source or
moving object would utilize the /Observer’s methods to send
its location updates. As an example, a phone app would call the
RxGeography.OnNext(newLocation) method every time a new
location is read by the GPS device. It would call the RxGeog-
raphy.OnNext(error) and RxGeography.OnComplete() methods
to signal an error or to terminate connection, respectively.

On the other side, RxGeography allows other observers
to read the location of its underlying stream source. Hence,
RxGeography also implements the IObservable interface with
its Subscribe method. Stream consumers that are interested in
the moving object’s location subscribe to the RxGeography to
receive location updates of that object. Figure 2 gives a class
diagram for the main components of RxSpatial.

For every method (or spatial operation) provided by the
SQLGeography class in the original SQL Spatial Library, the
RxGeography in the proposed RxSpatial library provides two
real-time streaming versions of this method. Let’s consider
the intersection operation as an example. While the SQL-
Geography.STIntersects method (in the SQLGeography class
of the original library) detects the intersection between two
static spatial objects, the RxGeography class implements the
following two methods:

—" Visualization
|
RxRxObsegli RxObservers
| RxRxintersect || | Rxintersect
RxRxDistance ‘ m
i RxIntersection
RxRxIntersection J)

qlGeograp

RxGeography | [RxGeography| [RxGeography|)
object LM Ecanedrong
h

SqlGeography SqlGedgraphy = SqlGepgraphy
(LocationInfo) (Locationinfo) (Locatjoninfo) —l
LocationInfo| Locationlnfo| Locationinfo observer[
Smart Smart | Smart static location infoE:j
Device | Device ‘ | Device | extemnal componem:

RxGeography object
functionality component

Fig. 1. An overview of the RxSpatial Library

o RxGeography.RxIntersects, which detects the intersec-
tion between a moving object and a static object.

e RxGeography.RxRxIntersects, which detects the intersec-
tion between two moving objects.

Note that an operation between a static object and a moving
object is prefixed by a single “Rx”, while an operation between
two moving objects is prefixed by the double “RxRx”notation.
Also, note that both RxGeography.RxIntersects and RxGeogra-
phy.RxRxIntersects take two input parameters. To understand
these parameters, let’s first review the parameters of the
SOLGeography.STIntersects that detects intersection between
two static objects. SQLGeography.STIntersects takes a single
parameter which is another static SQLGeography object and
returns a boolean value that represents whether the two objects
intersect or not. Example lines of code may look like:

SQLGeography ol, ol;

bool isIntersecting = ol.STIntersects(02);

Both o/ and 02 in the above example are of type SQL-
Geography. The corresponding streaming version RxGeogra-
phy.RxIntersects takes two parameters: (a) another static SQL-
Geography object and (b) an observer of type IObserver;bool; .
Example lines of code may look like:

RxGeography mol;
SQLGeography 02;
I0bserver <bool> isIntersecting;

mol.RxIntersects(02, isIntersecting)

In the above example, mol is a moving object represented by
an RxGeography data type, 02 is a static SQLGeography object
and isIntersecting is an IObserver of type boolean. Every
time the moving object updates its location, the intersection
operation’s result is evaluated and the boolean result is pushed
as a notification to the islntersecting observer that monitors
the output stream. Note that, in contrast to the single boolean

<<Interface>> <<Interface>>
| lObservable<T> | °| |Disposable |
+ Subscribe(lObserver<T> 0) + Dispose()
: IDisposalbe
.Y

<<Interface>>
I0Observer<T> <+~

<T -> SqIGeo'graphy>
— #1 + OnNext(T location)

RxGeograpy + OnComplete()

- currentLocation: SqlGeography
- observers: Collection<lObserver>)

- NotifyObservers () -=---=-=-=-=--- {for necessary observers:
+RxIntersect(SqlGeography G, f observer.OnNext(

|IObserver<Double> 0) i currentLocation)
+RxDistance(SqlGeography G, 1
|0Observer<bool> 0) :

+ OnError(Exception e)

+RxIntersection(SqlGeography G,
|0bserver<SqlGeography> 0)
+RxRxIntersect(RxGeography G, .
|0Observer<Double> 0)

Subscribe different
---- observers to track

+RxRxDistance(RxGeography G, i locations
|0bserver<bool> 0) !
|Observer<SqlGeography>0) -----*

Rxlntersetl:tObserver RxRxIntersectionObserver
-0: IObserver<bool> -0: |IObserver<SqlGepgraphy>
-G: SqlGeography -G: RxGeography

RxRxDistanceObserver RxDistanceObserver

-0: IObserver<double> -0: [Observer<double>

+RxRxIntersection(RxGeography G; :
i
-G: SqlGeography

-G: RxGeography

..

RxRxIntersectObserver

-0: |Observer<SqlGepgraphy>
-G: SqlGeography

-0: |Observer<bool>

-G: RxGeography

Fig. 2. Class Diagram For the Main Components of RxSpatial

output value of intersecting two static objects, the output of
the RxlIntersects operation is a stream of boolean values.

The RxGeography.RxRxIntersects operation takes also two
parameters: another moving object represented by another
RxGeography object and an observer of type IObserver;ibool, .
Example lines of code may look like:

RxGeography mol, mo2;
I0bserver<bool> isIntersecting;

mol.RxIntersects(mo2, isIntersecting),

where mol is a moving object represented by an RxGeog-
raphy data type, mo2 is another moving RxGeography object
and isIntersecting is an IObservable of type boolean. Figure 2
illustrates few methods implemented by the RxGeography class
as well as the data types that represent the various /Observer
data types that hold the output stream of various geospatial
operations.

Single global index | Per object index
Main memory X
Update time X
Search time X
Scalability X
TABLE 1. COMPARISON OF INDEXING ALTERNATIVES

IV. THE RXSPATIAL LIBRARY’S BACK END

While the RxSpatial’s front end provides the programming
convenience for developers, the RxSpatial’s back end is respon-
sible for the efficient processing of various spatial operations.
While RxSpatial aims at fixing and stabilizing the user’s
APIs through which a developer writes his application, we
believe that enhancing the back end is a long term process of
incubating existing/evolving research directions and optimiz-
ing the performance of the chosen algorithms. This section
describes the various research directions that are on the radar
of RxSpatial and draws the roadmap for future versions of
the library. This section also discusses various implementation
alternatives and lists their pros and cons. However, this section
and the experimental section (Section VI) scope down the
discussion to the choices made by the first version of RxSpatial
and leave a lot of room for improvement in future versions.

As we mentioned earlier, existing spatial libraries are de-
signed for static non-moving objects. RxSpatial is designed
for real time processing and is tuned for incremental query
processing to fit in the data streaming paradigm. To achieve
this goal, RxSpatial provides a general framework where vari-
ous spatiotemporal index structures and incremental processing
techniques can be plugged in. More specifically, RxSpatial
aims at integrating the following research directions within
the query pipeline:

1) Spatial index support for moving objects, where an
index is used to track the moving object’s current
location.

2) Incremental query processing, where an incremental
spatial join algorithms are utilized to produce early and
low latency results upon the receipt of a location update.

3) Search space pruning using locality, speed and direc-
tion, where a moving object joins with other static or
moving objects in the vicinity taking into consideration
the speed and direction of the moving object to perform
caching along the object’s expected trajectory.

The current version of RxSpatial focuses on the first direc-
tion, that is, integrating spatiotemporal index structure for mov-
ing objects within the reactive query processing pipeline. In
this paper, we study the feasibility and the impact of integrating
various index structures (e.g., Grid Files, R-Trees, RUM-Trees)
on the performance of the library. Future versions of the library
are expected to tackle the directions of incremental query and
space pruning and to integrate various techniques [9], [12],
[21] within the library.

In a typical workload settings, we expect a large number
of moving objects to be tracked, and we also expect a large
number of spatial operations (e.g., distance and intersection)
to take place among these objects. The performance of these
spatial operations would benefit from indexing the current

locations of moving objects. Imagine that we draw a graph (call
it, the observability graph), where the nodes are the moving
objects and an edge in this graph represents a binary spatial
operation between two moving objects. We argue that the
density of connected components in this graph would highly
impact the design choice of how to index the moving objects.

We highlight two “extreme” design alternatives for indexing
the moving objects as follows:

e Single global spatial index, that keeps track of all
moving objects under consideration by the system in
one global index structure.

e Per moving object spatial index, that is every
moving object keeps track of all its subscribers
(list(s1, $2,...8p)) in a separate index owned and main-
tained by that moving object.

Table I summarizes the pros and cons of each alternative.
A single index for all moving objects would be efficient in its
memory footprint because every object is tracked and indexed
only once in a single index that contains all moving objects.
On the other side, maintaining an index per moving object
means that a moving object, that is involved in n spatial
operations with n other moving objects, will be inserted and
tracked in all the n indexes maintained by these moving
objects. Consequently, the insertion and update cost is lower
in the single global index approach. However, a global single
index would suffer from bad performance in processing various
spatial operations because, with the movement of an object, a
big index structure has to be searched to retrieve a small subset
of moving objects that are subscribed or are involved in a
spatial operation with that moving object. A per moving object
index structure that indexes only subscribed objects would be
efficient in processing various spatial operations and would
scale in terms of the number of moving objects and the number
of stream observers.

The current version favors scalability and adopts the per
moving object index structures. However, future versions of the
RxSpatial library are expected to invest in a hybrid approach
that balances the above two extremes and to utilize the density
of connected components in the observability graph. Clusters
or subsets of moving objects that are identified to be densely
connected subgraphs are declared to be related and to be
collectively tracked in a separate spatial index. Note that the
hybrid approach is not part of the RxSpatial current version.
Experiments in Section VI are limited to the current version
with its per moving object index structures choice.

A. Rum-Tree Within RxSpatial

In this section, we demonstrate how the RUM-Tree index
is employed inside our RxSpatial library. We do this through
an illustrative example that consists of a RUM-Tree and three
GPS-enabled cell phones of green, blue and orange colors,
Figures 3. Those phones represent three different moving
objects.

Initially, Figures 3(a) demonstrates how observers are orga-
nized in the RUM-Tree inside the RxSpatial library. The space
is partitioned into three Rectangles: Ni, No and Ng3; location 1
and 2 are in N7. location 3, 4 and 5 are in N5. Location 6, 7 and

8 are in N3. In Figures 3(b), before time t0, the initial position
of green cell phone is in location 8 and of blue cell phone is
in location 1. Location could be a node in a road network or a
point of interest (POI). The assumption is that blue cell phone
was added at time t-1 and green cell phone was added at time
t-2. None of these cell phones ever moved to another place
since added to the RUM-Tree. Therefore in the updated memo,
the record of green cell phone is: cnt=1, which denotes only
1 object in the RUM-Tree, and timestamp=t-2, which means
the latest timestamp that green cell phone is added is t-2. The
record of blue cell phone is: cnt=1, timestamp=t-1. Then, the
orange cell phone is added to position 4 at tO in Figures 3(b).
At location 4 of the R-Tree, the object of orange cell phone is
added. Then, in the updated memo, the record of orange cell
phone is inserted with cnt=1, timestamp=t0.

In Figures 3(c), the green cell phone moves from location
8 to location 4 at time tl. Thus, its corresponding entry in
updated memos is: cnt=2, timestamp=t1. The old object in 8 is
now obsolete as its present timestamp is t-2 which is older than
its latest timestamp in the updated memo t1. In Figures 3(d),
the orange cell phone moves from location 4 to location 2 at
time t2. Its corresponding entry in the updated memo is: cnt=2,
timestamp=t2. The old object in location 4 is now obsolete as
its timestamp t0 is older than its latest timestamp in the updated
memo t2. In Figures 3(e), the blue cell phone is removed
from the entire RUM-Tree. Then its corresponding entry in
the updated memo is: cnt=1, timestamp=t3. The count did not
increase, only the timestamp increased. Thus, the only object
of blue cell phone in the RUM-Tree becomes obsolete.

In Figures 3(f), a round of garbage collection towards
the three cell phones is performed. Each time the garbage
collector checks an object in R-Tree node, it first checks its
timestamp and then checks its corresponding timestamp in the
updated memo. An object is treated as an obsolete object, if its
timestamp is earlier than its timestamp in the updated memo
entry. Each time an object is removed from the R-Tree, the
cnt field in its entry in the updated memo reduces by 1. The
obsolete objects of the three cell phones are now removed from
the RUM-Tree. For the blue cell phone which is removed, the
cnt field is 0, which will make its entry to be deleted from
the updated memo.The count field, cnt, of the other two cell
phones reduced to 1. The RxSpatial sends notifications based
on the latest non-obsolete objects location.

V. REAL-WORLD APPLICATIONS

In this section, we provide example applications that could
be built using the Reactive Spatial Library. We basically
consider two scenarios: (1) criminal activity tracking systems
and (2) collaborative vehicle systems. These two types of
systems are considered for the following reasons:

1) Both application scenarios are very time sensitive. Re-
sponse time is crucial both in preventing future criminal
offenses and in controlling the movement of vehicles in
the right direction and speed.

2) Both application scenarios require the usage of intersec-
tion and distance operations (a) between moving objects
and static polygons, or (b) between moving objects and
other moving objects.

Observer(Location) g !

Stamp N Insert(i.4)
Counter !
Stamp
{ R-Tree Rom Counter(t0)
[Ne o] 7

[
\1|2[| GLeTs] [s[7Te] :

ij -id:int
Dict<Id, Updated Memo> - latest_stamp: int

- obsolete_entry_num:int

Garbage Collector

(a) Initial Rum-Tree

L)
location Update(M ,2) > N1 1‘
Stamp !J
Counter(t2) (:] @
N2 ‘
: 5= N3@

=
-— -

location Update(i,

Stamp
Counter(t1)

UpdateMemos

UpdateMemos

TimeStamp[@]=t-2 Cnt[®]=1
TimeStamp[@]=t-1 Cnt[g]=1
TimeStamp[g]=t0 Cnt[g]=1

TimeStamp[]=t1 Cnt[¥]=2
TimeStamp[#]=t-2 Cnt[W]=1
TimeStamp[#]=t0 Cnt[#]=1

(b) Insertion of Orange Object

(c) Location Update for Green Object

mollRo
N3@

NS@

UpdateMemos

UpdateMemos

BCE]

UpdateMemos et TimeStamp[@]=t1 Cnt[B]=1

TimeStamp[®]=t1 Cnt[¥]=2
TimeStamp[#]=t-2 Cnt[&]=1
TimeStamp[#]=t2 Cnt[u]=2

(d) Location Update for Orange Object

Fig. 3.

3) The two types of systems examine the RxSpatial
functionalities under different settings. While criminal
tracking systems are characterized by a large set of
low-frequency streaming sources, collaborative vehicle
systems are characterized by a relatively smaller set of
high-frequency streaming sources.

A. Monitoring Criminal Activity

According to the criminal justice system, court orders may
require a criminal on bail or under probation to wear an
ankle bracelet. This ankle bracelet continuously streams the
location of that criminal or offender to a monitoring system.
Each offender with a tracking device is assigned a designated
confinement zone (e.g., a city or a county) to which the
offender is detained to, and a set of restricted zones (e.g.
school zones) to which the offender is obliged to stay away
from. Also, some offenders are not allowed to meet up with
each other to reduce the possibility of forming a new gang
or conspiring for a new offense. For more details on this
application scenario, the reader is referred to [19].

To get the reader familiar with the user interface (UI) and
the system simulator depicted in Figure 4, we list the main
functionalities of the UI as follows:

e FEach moving object is represented by a pushpin and
is assigned a number for identification. A blue pushpin
means that the moving object did not trigger any alert,
while a pushpin with a different color means that the
moving object has triggered an alert.

(e) Deletion of Blue Object

TimeStamp[#]=t1 Cnt[&]=2
TimeStamp[#]=t3 Cnt[#]=1
TimeStamp[#]=t2 Cnt[K]=2

TimeStamp[u]=t2 Cnt[u]=1

(f) Garbage Collection

Integrating RUM-Tree (R-Tree With Updated Memo) Inside RxSpatial. Best Viewed in Color.

e On the left side of each figure is the control panel.
“Start” and “Pause” buttons are used to start and pause
the movement of objects, respectively.

e The “Speed” and the “Number of Objects” sliding bars
control the speed and the number of moving objects that
are considered in the simulation.

o The “Add Area” and “Clear Area” buttons are used to
specify confinement or curfew zones.

e Based on a specific scenario, more sliding bars are uti-
lized to specify various thresholds including the thresh-
old on the distance at which two criminals are to be
considered in close proximity and, consequently, an alert
is triggered.

Figure 4(a) shows the scenario of tracking a criminal enter-
ing a restricted zone or leaving a confinement zone. Under the
cover, this scenario requires the intersection of the moving
criminal’s location with the set of stationary polygons that
represent the restricted/confinment zones. The RxlIntersects
method is utilized to compute the intersection between the
moving object and the stationary polygons. From the figure, we
see that offenders 10 and 12 entered a restricted zone triggering
an alert (represented by red colored pushpins).

Figure 4(b) shows the scenario where the RxDistance
method is used to calculate, in real time, the proximity between
an offender and a polygon. Offender 12 gets into the “watching
distance” of the restricted region and, hence, triggers a warning
(represented by a yellow colored pushpin). Note that offender
12 has not entered the restricted zone yet. However, the
distance between him and the restricted zone is below a
specific “watching distance” threshold. Hence, a warning is

Intersect | Distance | RxRxDistance Intersect | Distance | RxRxDistance

Ty e Forest Pa
quamish o Vehicle Number: 20

1 10 20
——L |7 - @

Vehicle Speed: 48
Vehicle Speed: 1 @ 1 50 100
Bainbridge Observe Distance: 4610.93

Island’
di
1 50 100 @
. f 1
N
M

Add Area

Vehicle Number: 20

Clear Area e

uuuuuu

(a) The restricted/confinement zone alert

rport

Bainbridge
island

(b) The restricted proximity to a zone warning

Both

Intersect | Distance | ReRxDistance s ¢
Loke Forest Park |

Lake Forest Par

‘1“"“"" Moving Object Number: 20 quami i
@ @ Movement spe{d: 1 O}
Paant ol ‘ 1 50 100 Rglion Q
o Observe Distance: 4740.79
Q 1 sk 10k Bainbridge
Observer Condition:(15,16) ADD! Island @)
Seal
o 19 0 19
Add Obsver
Mercer M
mand ClearObsver Isl
&
Start 6
\Bryn M: Pause Bryn |
RIVEnﬂﬂ - Riverton

=

(c) The mutual proximity among criminals scenario

Fig. 4. Using the RxSpatial library in Criminal Activity Tracking Systems. Best Viewed in Color

raised instead of an alert.

While the previous two scenarios involve a spatial operation
between a moving object and a set of stationary objects, Figure
4(c) shows a scenario that involves a spatial operation among
two or more moving objects. The RxRxDistance method is
used to compute proximity between pairs of offenders. Once a
moving offender is within a specific distance within any other
moving offender, a warning is initiated signaling that the two
offenders are likely to meet up. In the figure, offender 10 and
offender 12 are close enough and are likely to meet up. Hence,
a “restricted meetup warning” is raised up by the system. The
same warning also applies to offender 15 and offender 16 in
the same figure.

B. Collaborative Vehicle System

In collaborative vehicle systems, cars within a certain dis-
tance from each other can share data together. For example,
the leading car at the front could share the route status with the
following cars at the back. The leading car may even decide to
take an alternative route and to send back a message indicating
that a traffic congestion or an accident has occurred on the
road. In these collaborative scenarios, the connection between
two cars is stable if and only if the two cars are within a
specific distance, called the valid communication distance.

Another example is that, when driving on a highway, the
collaborating cars need to ensure a minimum safe distance
within each other to avoid collision. Meanwhile, they need
to maintain a valid communication distance that allows for the
direct wireless communication between each other. When a car
is too close (compromising the safe distance), or too far away
(exceeding the valid communication distance), an action needs
to be taken to adjust the speed of this car.

In Figure 5, every car is a moving object that is tracked by
the system. The collaboration status is tracked between cars
4 and 18, cars 10 and 12, and cars 7 and 9. The dotted line
between cars 4 and 18, and the gray color of the pushpins
show that the cars 4 and 18 are watching the movement of
each other, but the connection between them is not strong
enough as the distance exceeds a limit. The solid thick line
between cars 10 and 12, and the yellow color of pushpins
show that they are within a stable working distance. The thin
line between cars 7 and 9, and the green color of the pushpins

Kingsgate

Moving Object Number: 20 y P D) O
Movement Speed: 1 ’ (4 AR\ . A\
S ™\ f Kir Redmon!
1 50 100 Tl .@
Observe Distance: 9935.07 8 /
1 sk Si Sammami
Observer Condition:(9,7) ADD!

0 19 0 19 Rhercd
Add Obsver Island,

{
ClearObsver e Issaquidl

= @
East Renton
Pause Rlve fighlands

508 kwn\a

Mirr
Vashon
SnaTa(F

Fig. 5. Distance Monitoring in Collaborative Vehicle Systems

show that they are within a working distance but are likely to
disconnect if they get further apart. The blue color of other
cars show that they did not intend to watch the movement of
any cars so they are not trying to connect and, hence, there
is no need to audit the connections. Under the cover, a self
join RxRxDistance operation is continuously evaluating the
pairwise distances between every single pairs of cars. The self
join RxRxDistance operation becomes even more challenging
given the high rate of the input streams that are received by
the system and that represent the vehicle location updates.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the RxSpatial
Library against the traditional SQL Server Spatial Library.
Moreover, we evaluate the performance of different imple-
mentations within the RxSpatial Library. More specifically, we
integrate different spatial index structures within the library
to store and retrieve the current locations of moving objects.
The implementation of all experiments are in C# in Visual
Studio 2013, Windows 8.1. A data set of real trajectories
collected by Microsoft Researchers around the Seattle area
is used to test the validity of the implementation [5], [8].
However, for performance and scalability evaluation, different
data sets for moving objects are generated using the MNTG
traffic generator [20].

The performance parameters under evaluation include:

e The number of stream data sources, which represents
the number of moving objects.

e The location update inter-arrival time, which repre-
sents the time difference between consecutive location
updates from a moving object.

e The number of stream observers, which represents
the numbers of objects that subscribe to a stream source
or that subscribe to the outcome of a spatio-temporal
operation.

The performance measures considered in this work:

e Maximum load, which represents the maximum number
of moving objects that can be tracked and analyzed
using spatio-temporal operations, without dropping any
incoming location update.

e Latency, which represents the average processing time
per location update. The time is measured from receiving
of update at the system’s input buffers till the update’s
result is propagated to the output stream.

e Number of dropped location updates, which repre-
sents the number of incoming location updates dropped
by the system under heavy system loads.

The performance is tested against the following variants of
the Microsoft SQL Server Spatial Library and the proposed
RxSpatial library:

e The original Microsoft SQL Server Spatial, where
there is no native support for incremental streaming
operation. Each spatial operation is carried over from
scratch upon the receipt of every location update.

e The RxSpatial using a Grid index structure, where
the space is divided into a rectangular grid, and the
space indexed using a Grid File like index structure.
This approach is characterized by simplicity in the
implementation of the chosen index structure.

e The RxSpatial using an R-Tree index structure, where
the current locations of moving objects are indexed using
the original R-Tree.

e The RxSpatial using a RUM-Tree index structure,
where the current locations of moving objects are in-
dexed using an R-Tree with update memo (or a RUM-
Tree) as described in Section II and Section IV.

A. Scalability in terms of the location update inter-arrival time

This section evaluates the scalability of the various im-
plementation variants in terms of the location update inter-
arrival time. Figure 6 evaluates the effect of the location
update inter-arrival time on the average processing latency
per location update. The x-axis denotes the inter-arrival time
between two location updates, while the y-axis represents the
average latency. This experiment spawns 2000 RxIntersects
operations on top of a single moving object. This experiment
mimics the scenario of evaluating the intersection of a moving
vehicle’s location against 2000 geofences that represent the
polygons of shopping malls and points of interest.

Figure 6(a) clearly reveals that the RxSpatial variants out-
perform the original SQL Server Spatial Library. Further, at
the lowest inter-arrival time of 200 (fastest input rate) RUM-
Tree shows around 55 times better computational performance
over the base-line SQL Server Spatial indexing. Figure 6(b)

350

©—o RxSpatial(Grid)

=—a RxSpatial(R-Tree)
a—a RxSpatial RUM-Tree)]
Y—v SqlSpatial

300

250

Latency (ms)
N
8

o
=}

1001

50

a .
0 L L L # & L a
100 200 300 400 500 600 700 800 900
Location update inter-arrival time (ms)

(a) Comparison between the original Microsoft SQL Server Spatial Library
and proposed RxSpatial variants

o—o RxSpatial(Grid)
=—@ RxSpatial(R-Tree)
A4 RxSpatial(RUM-Tree) |

4
100 200 300 400 500 600 700 800 900
Location update inter-arrival time (ms)

(b) Comparison among the proposed RxSpatial variants

Fig. 6. The effect of location update inter-arrival time on the system’s latency

compares only the RxSpatial variants and clearly shows that
RUM-Tree implementation exhibits better performance under
low inter-arrival time (high input rate). Our results show
that use of RUM-Tree for indexing results 13.3% and 41.7%
decrease in latency compared to R-Tree and GRID based
indexing. As inter-arrival time gets large (i.e., the stream rate
gets lower), both the R-Tree and RUM-Tree implementations
exhibit similar performance due to the abundance of processing
cycles.

Figure 7 evaluates inter-arrival time between location up-
dates against the the maximum number of moving objects
without dropping any incoming update. Our results show that
lesser moving objects can be supported for smaller update
inter-arrival time. This is due to an increased load on the
system resulting in lesser processing cycles. Among the vari-
ants SQL Server Spatial Library has the lowest throughput.
Amongst the RxSpatial variants either Tree based implemen-
tations perform better than the simple grid file implementation.

600 T T T T T T T
RxSpatial(Grid)
RxSpatial(R-Tree)
(
|

500 RxSpatial(RUM-Tree)

SqlSpatial

I

400+

300

200

Maximum Load (Moving Objects)

100f

0 200 400 600 800 1000 1200 1400
Location Update inter-arrival time (ms)

Fig. 7. The effect of location update inter-arrival time on the system’s
maximum load

120 T T T T T T

80

40t

RxSpatial(Grid)
RxSpatial(R-Tree)
(
|

Maximum Load (Moving Objects)
(2]
o

11l

RxSpatial(RUM-Tree)
SqlSpatia
0 . . .

. . .
20 40 60 80 100 120 140 160
Stream Observers per Moving Object

Fig. 8. The effect of the number of stream observers on the system’s
maximum load

Overall, RUM-Tree shows an improvement of 3.7%, 18% and
63% over R-Tree, Grid based and List based (SQLSpatial)
indexing respectively in terms of maximum load, when update
inter-arrival time is kept at 1500ms.

B. Scalability in terms of the number of stream observers

Figure 8 evaluates the effect of the number of stream
observers that subscribe to a spatial operation on the system’s
maximum load. Imagine the scenario where a group of cars
that follow a single leading car are observing the location
updates of that leading car, and/or the distance between them
to that leading car. This scenario features a large number of
stream observers that observe the generated location updates
of a stream source (moving object). The x-axis is the number
of observers subscribing to a single RxGeography object or
to the output stream of a single operation (RxIntersection,

200 T T T T T
©—o RxSpatial(Grid)

=—a RxSpatial(R-Tree)
At (
— |

RxSpatialRUM-Tree)
1500 SqlSpatial

1001

Latency (ms)

50

0 20 40 60 80 100
Stream Observers per Object

(a) Comparison between the original Microsoft SQL Server Spatial Library
and proposed RxSpatial variants

30

o—e RxSpatial(Grid)
=—8 RxSpatial(R-Tree)
25 &4 RxSpatial(RUM-Tree) 1

20 1

Latency (ms)
o

0
0 20 40 60 80 100

Stream Observers per Object

(b) Comparison among the proposed RxSpatial variants

Fig. 9. The effect of the number of stream observers on latency

RxDistance, RxRxIntersection, or RxRxDistance operation. The
y-axis is the system’s maximum load (number of moving
objects) the system can support before dropping incoming
location updates.

From the figure, the more observers that subscribe to a
stream source, the lower the number of incoming stream
sources the system can support. When the number of observers
grows from 30 to 150, the throughput drops by around 10 input
stream sources for Grid (from 100 to 90) and Tree (from 105 to
95) based index structures. However, the throughput drops by
around 40 (from 80 to 40) stream sources for the original SQL
Server Spatial Library. This experiment shows the resiliency
of the RxSpatial variants to increasing the number of stream
observers.

Experiments shown in Figure 9 evaluate the effect of the
number of observers on the processing latency. Each observ-
able object is required to send location updates to all the
observers subscribed to it. This affects the latency of the

-3
S

INERY

RxSpatial(Grid)
RxSpatial(R-Tree)
(
|

RxSpatial(RUM-Tree)
SqlSpatial

Latency (ms)
£ (< f=2}
o o o

@
=}
T

20

200 400 600 800 1000
Number of Moving Objects

Fig. 10. The effect of the number of Moving Objects on the system’s latency

location updates to be sent out by the moving object. Fig-
ure 9(a) illustrates the performance of the original SQL Server
Spatial Library and all RxSpatial variants. The figure clearly
shows that List based indexing (SQLSpatial) is time consuming
compared to RxSpatial variants. Further, Figure 9(b) zooms
in to consider the RxSpatial variants. The results show that
Tree-based indexing performs better thatn Grid based indexing.
Overall, for 100 observers RUM-Tree shows 11.2%, 62.81%
and 94.22% decrease in latency over R-Tree, Grid and List
(SQLSpatial) indexing respectively.

C. Variation in System Latency with change in the number of
input streams

Figure 10 evaluates the performance of the system as we
increase the number of moving objects the system is observing.
Each moving objec denotes an input stream that sends location
updates at regular intervals. The y-axis is the latency as
measured by the average processing time per location update.
The figure show that under light loads, (around 200 moving
objects), the average response time is comparable across all
techniques. However, as the number of objects increases,
the RxSpatial library variants outperform its corresponding
implementations in the original SQL Server Spatial Library.
Overall, for input streams of 1K Moving Objects, RUM-Tree
shows 12.2%, 37.22% and 54.95% decrease in latency over
R-Tree, Grid and original SqlSpatial, respectively.

D. Evaluating the system’s load shedding behavior under
heavy loads

In this section, we stress test the system with a high input
rate stream of location updates to evaluate the load shedding
behavior of various implementation variants under considera-
tion. Similar to Section VI-A, this experiment registers 2000
RxIntersects operations on top of a single moving object.
However, the stream inter-arrival time between consecutive
location updates is significantly reduced (in the range of 5

1000

-3
=1
=

)
o
=)

IS
1=}
S

Number of Dropped Location Updates
/
/

o—o RxSpatial(Grid)
200
=—a RxSpatial(R-Tree) T
a—a RxSpatialRUM-Tree)
¥—v SqlSpatial
5 10 15 20 25 30 35 40

Location Updates inter-arrival time (ms)

Fig. 11. The effect of location update inter-arrival time on the number of
dropped location updates

4000

T ~
®—o RxSpatial(Grid)

3500 ®® RxSpatial(R-Tree)
2 a—a RxSpatialRUM-Tree)
§_3000— ¥—¥ SqlSpatial
=}
f=
£ 2500}
@
1S}
o
-
g 2000
Q
Q
o
O 1500+
kS
g 1000
5 L
=]
z

500

0

50K 100K 150K 200K

Number of Location Updates

Fig. 12. The effect of the number of moving objects on the number of
dropped location updates

- 40 ms) to simulate high input rate streams. For smaller inter-
arrival time between consecutive location updates (higher input
rates), the system’s input buffer gets full and the system has to
shed the load by dropping incoming location updates in order
to cope up with the high rate of incoming location updates.

Figure 11 shows the load shedding behavior of all variants
against the location update inter-arrival time. As expected, the
original SQL Server Spatial library shows a higher number
of dropped location updates because of the high processing
cost the system takes to process a single location update. The
Grid implementation of RxSpatial, although better than the
original SQL Server Spatial Library, showed a high number of
dropped location updates. This behavior is attributed to the fact
that the Grid index degenerates to a linear list, or to a small
number of linear lists condensed in few cells with the non-
uniformity in distribution of indexed objects over space. The R-

Tree and RUM-Tree variants showed resiliency in terms of load
shedding. With an increase of inter-arrival time to over 15ms
(for R-Tree) and to over 10ms (for RUM-Tree), no dropping
of incoming location updates has been observed. Hence, the
R-Tree and RUM-Tree variants are efficient enough to cope
up with all incoming location updates at these rates.

Figure 12 shows the number of Dropped Location Updates
as we increase the number of Location Updates sent by moving
objects. In this experiment each moving object sends 200
requests to 50 Observers at an interval of 50ms. So, each
moving object is sending a total of 10,000 (200 * 50) location
updates. We increased the number of moving objects from
1 (10K updates) to 20 (200K Updates) and observed the
results for each data structure. We kept the system’s input
buffer to 10. We find that the R-Tree and RUM-Tree variants
dropped between 190%-200% less updates from incoming
stream than SqlSpatial and Grid based data structures for 200K
location updates. These observations show that Tree based
data-structures can handle more incoming updates compared
to Grid based and List based data structures.

To summarize the performance results across the previous
subsections, the experimental study shows that the perfor-
mance of the RxSpatial library with its streaming capacities
outperforms the original non-streaming SqlSpatial libraries.
It also shows that investing in integrating the proper index
structures that are tuned to handle moving objects with fre-
quent location updates is absolutely worthy and justifies the
implementation overhead, specially under heavy workloads.
Both the R-Tree and RUM-Tree implementations show better
performance than the simple Grid index, with the RUM-Tree
showing better performance than the original R-Tree under
high input rates.

VIL

In this paper, we presented the RxSpatial library with its
front end that enables developers, who are familiar with the
Microsoft .NET Reactive Framework, to build applications
with real-time spatiotemporal capabilities. While the RxSpatial
Library’s front end provides the programming convenience,
the library’s back end provides the efficiency in stream query
processing over spatial moving objects. RxSpatial provides
incremental evaluation of spatial operations and utilizes ef-
ficient index structures for moving objects. As an example,
we discussed the integration of Grid files, R-Trees, and RUM-
Trees inside RxSpatial: (1) to index moving objects, and (2)
to incrementally evaluate streams of location updates. We
described real-world scenarios and conducted experimental
study to examine the performance of RxSpatial.

CONCLUSION

REFERENCES

[11 V.S.2015. LINQ (Language-Integrated Query). https://msdn.microsoft.
com/en-us/library/bb397926.aspx, Dec. 2015.

[2] S. S. 2016. Microsoft SQL Server Spatial Libraries.
microsoft.com/en-us/library/bb933790.aspx, Dec. 2015.

[3] N.F 4.6 and 4.5. IObservable Generic Interface. https://msdn.microsoft.
cony/library/dd990377.aspx, Dec. 2015.

https://msdn.

(4]

(31

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

M. Ali, B. Chandramouli, J. Goldstein, and R. Schindlauer. The
extensibility framework in microsoft streaminsight. In /CDE, 2011.

M. Ali, J. Krumm, and A. Teredesai. ACM SIGSPATIAL GIS Cup
2012. In ACM SIGSPATIAL GIS, pages 597-600, California, USA,
Nov. 2012.

R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent Streaming
Through Time: A Vision for Event Stream Processing. In CIDR, 2007.

D. Christoph, P. Thomas, and J. Hans-Arno. Geospatial event analytics
leveraging reactive programming. In ACM DEBS, pages 324-325, Oslo,
Norway, June 2015.

A. M. Hendawi, J. Bao, M. F. Mokbel, and M. Ali. Predictive Tree:
An Efficient Index for Predictive Queries On Road Networks. In ICDE,
Seoul, South Korea, Apr. 2015.

G. R. Hjaltason and H. Samet. Incremental distance join algorithms for
spatial databases. In SIGMOD, pages 237-248, 1998.

K. S. Jalal, D. Ugur, A. Mohamed, A. Afsin, and S. Cyrus. Geospatial
stream query processing using Microsoft SQL Server StreamlInsight.
VLDB, 3(1-2):1537-1540, Sept. 2010.

D. Karnok. RxJava. https://github.com/ReactiveX/RxJava, Dec. 2015.

O. Kwon and K. Li. Progressive spatial join for polygon data stream.
In GIS, pages 389-392, 2011.

L. M. Li, H. Wynne, J. C. S, C. Bin, and T. K. Lik. Supporting Frequent
Updates in R-trees: A Bottom-up Approach. In VLDB, pages 608—619,
Berlin, Germany, Sept. 2003.

Y. Li, S. George, C. Apfelbeck, A. M. Hendawi, D. Hazel, A. Teredesali,
and M. Ali. Routing Service With Real World Severe Weather. In ACM
SIGSPATIAL GIS, Texas, USA, Nov. 2014.

R. Manifesto.
Dec. 2015.

J. Miller, M. Raymond, J. Archer, S. Adem, L. Hansel, S. Konda,
M. Luti, Y. Zhao, A. Teredesai, and M. Ali. An Extensibility Approach
for Spatio-temporal Stream Processing using Microsoft StreamlInsight.
In SSTD, Minneapolis, MN, USA, Aug. 2011.

A. Mohamed, C. Badrish, S. Balan, and K. Raman. Spatio-temporal
stream processing in microsoft streaminsight. Data Engineering,
33(2):69, June 2010.

A. Mohamed, C. Badrish, R. B. S, and K. Ed. Real-time spatio-temporal
analytics using Microsoft StreamlInsight. In ACM SIGSPATIAL GIS,
pages 542-543, California, USA, Nov. 2010.

D. Mohammed, F. Olajumoke, J. Lars, S. Niko, Y. Brett, N. Joe, and
A. Mohamed. Safe step: a real-time GPS tracking and analysis system
for criminal activities using ankle bracelets. In ACM SIGSPATIAL GIS,
pages 512-515, Florida, USA, Nov. 2013.

M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat,
E. Waytas, and S. Yackel. MNTG: An Extensible Web-based Traffic
Generator. In SSTD, pages 38-55, Munich, Germany, Aug. 2013.

M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: scalable incremental
processing of continuous queries in spatio-temporal databases. In
SIGMOD, pages 623-634, 2004.

S. Y. N, X. Xiaopeng, and A. W. G. The RUM-tree: supporting frequent
updates in R-trees using memos. VLDB Journal, 18(3):719-738, 2009.
B. Norbert, K. Hans-Peter, S. Ralf, and S. Bernhard. The R*-tree:
an efficient and robust access method for points and rectangles. In
SIGMOD, pages 322-331, New Jersey, USA, May 1990.

OGC. Open Geospatial Consortium. http://www.opengeospatial.org,
Dec. 2015.

ReactiveX. An API for asynchronous programming with observable
streams. http://reactivex.io, Dec. 2015.

Reactive Systems. http://www.reactivemanifesto.org/,

RX. Microsoft Reactive Extensions. https://msdn.microsoft.com/en-us/
data/gg577609.aspx, Dec. 2015.

X. Xiaopeng and A. W. G. R-trees with update memos. In /ICDE, pages
22-22, Georgia, USA, Apr. 2006.

