
RxSpatial: Reactive Spatial Library for Real-Time Location
Tracking and Processing

Youying Shi1, Abdeltawab M. Hendawi2, Hossam Fattah3, Mohamed Ali1
1Center for Data Science, Institute of Technology, University of Washington, WA, USA

1{youyings, mhali}@uw.edu
2Department of Computer Science, University of Virginia, VA, USA

hendawi@virginia.edu
3Microsoft Corporation, WA, USA

hofattah@microsoft.com

ABSTRACT

Current commercial spatial libraries have implemented strong sup-
port for functionalities like intersection, distance, and area of vari-
ous stationary geospatial objects. The missing point is the support
for moving objects. Performing moving object real-time location
tracking and computation on the server side of GIS applications is
challenging because of the large numbers of moving objects to be
tracked, the time complexity of spatial computation, and the real-
time requirements. In this Demo, we present the RxSpatial Library,
a real time reactive spatial library that consists of (1) a front-end, a
programming interface for developers who are familiar with the Re-
active framework and the Microsoft Spatial Library, and (2) a back-
end for processing spatial operations in a streaming fashion. Then
we provide demo scenarios that show how RxSpatial is employed
in real-world applications. The demo scenarios include criminal ac-
tivity tracking, collaborative vehicle system, performance analysis
and visualization of the library’s internal algorithms.

1. INTRODUCTION
In many time sensitive GIS applications, real-time location track-

ing enables immediate feedback when certain conditions are met,
(e.g., entering a risky region [8]). For instance, in some child safety
systems, children wearing smart devices are tracked. When they get
near forbidden or dangerous areas, the application needs to send an
alert to parents on time so that they can stop the children from get-
ting hurt. In the scenario of autonomous vehicle clusters, where a
cluster of driverless cars are on the way heading to the same direc-
tion, every car is a moving object to be tracked. If any car is too far
away from the cluster or too close to its neighboring cars, actions
should be taken to adjust its movement. In advertising applications,
when a driver is close to a shopping mall, coupons, recommenda-
tions, and possibly a parking spot information needs to reach his
smart device. In social networks, when a friend is nearby, it would
be good to receive a push notification of the friend’s location infor-
mation. In safe routing engines [8], the commuters’ location infor-
mation and the disastrous weather zone require real-time process-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899411

ing to generate a reasonable life saving emergency route to evacu-
ate. To fulfill the needs of these applications, this paper introduces
the Reactive eXtension Spatial library, RxSpatial for short. RxSpa-

tial offers a front-end programming interface for developers. This
front-end provides new interface that is called RxGeography that
is derived from the IObservable interface of the Microsoft Reac-
tive Framework [11]. RxGeography implements modified versions
of the methods found in the STGeography class in the SQL Spatial
Library. For example, the STGeography class implements a method
called STIntersection to detect if two ’stationary’ geography objects
intersect. The RxGeography implements a method called RxInter-
sects to continuously monitor and detect the intersection between a
moving object (represented by an RxGeography object) and a sta-
tionary object (represented as STGeography). It also implements
a method called RxRxIntersection to continuously monitor and de-
tect the intersection of two moving objects,(i.e., both of them are
represented as RxGeography).

In addition to the programming interface front-end, the RxSpa-

tial library provides a back-end for processing spatial operations
in a streaming fashion. The contribution at the back end level lies
in the incremental stream processing of various geospatial opera-
tions. As an example, to detect the intersection of a moving ob-
ject and a set of geofences, the intersection operation is not carried
over from scratch between the moving object’s location and all ge-
ofences upon the receipt of a location update. Instead, the intersec-
tion operation is incrementally evaluated to make use of as much
computations as possible from the previous step. This is achieved
by mapping each moving object to an Observable (i.e., IObserv-
able interface) and each location update for a moving object triggers
the geospatial computation module of the observers who have sub-
scribed this object’s movements. Then, the location, direction and
speed of the moving object are used on top of multidimensional
index structure to efficiently process various geospatial operations.

Fortunately, we release the RxSpatial library equipped with the
RUM-Tree [12] as the core spatial index. RUM-Tree is chosen
based on its ability to handle moving objects update in an efficient
way compared to other conventional index structures, e.g., R-trees
and quad trees. Furthermore, the geospatial computation in the
RxSpatial library is powered by the spatial data types supported
in the Microsoft SQL Server Spatial Library [2]. It provides opti-
mized data types such as SqlGeometry and SqlGeography to store
and query objects in flat and geodetic spaces, respectively. Vari-
ous methods are provided to handle these spatial data types. The
SQL Server Spatial Library adheres to the Open Geospatial Con-
sortium "Simple Feature Access specification" [10] which is inher-
ited by our proposed RxSpatial library. Moreover, the RxSpatial

library provides strong support for asynchronous program devel-

Figure 1: The Architecture of The RxSpatial Library.

opment and event-based programs, with a smooth learning curve.
Developer is able to represent asynchronous data streams with Ob-
servable objects [3]. This is enabled through the use of SqlGeog-
raphy object as input to the onNext API supported by Microsoft
Reactive Extension(Rx) [11]. Thus, the RxSpatial library can query
the asynchronous data streams using LINQ [1]. It is also able to pa-
rameterize the concurrency issues related to the asynchronous data
streams using Schedulers. To illustrate the usability of the proposed
RxSpatial library, we describe two real-world applications; moni-
toring criminal activity system, and collaborative vehicle system.

2. ARCHITECTURE
Figure 1 provides a high level description of the RxSpatial archi-

tecture. Location data streams are continuously fed to the server
from registered smart devices. Standing spatial queries are also
registered within the system. For the sake of this demo, the query
result is sent to a visualization module. The Reactive Spatial Li-

brary mainly introduces two types of observers: RxObservers and
RxRxObservers. RxObservers monitor the relationship (e.g., inter-
section or distance) between one static (i.e., non moving) object and
a non-static (moving) object. RxRxObservers monitor the relation-
ship between two moving objects.

An RxGeography object and a moving object have one-to-one
correspondence. A moving object’s location is represented in the
library by an RxGeography object. RxGeography comes with an
interface for observers (both RxObservers and RxRxObservers) to
subscribe to the location updates of its moving object. When a loca-
tion update of a smart device is received, the new location is stored
inside the RxGeography object. Then, it is propagated to all sub-
scribing observers.

2.1 RxObservers
Any observer that monitors the status between a moving ob-

ject and a non-moving object is called RxObservers. It stores the
location data of a pre-stored static location G locally. It is trig-
gered by the event of a location update from the moving object
that is being monitored. As a naming convention, there is just one
’Rx’ in the name of any type of RxObservers because there is only
one moving object involved. RxObservers comes with three dif-
ferent types; each of them utilizes different APIs provided by the
SQL Server Spatial Library: (i) RxIntersect observer that outputs

Figure 2: Integrating RUM-Tree (R-Tree With Updated Memo)

Inside RxSpatial.

a boolean value. This internally calls the STIntersect API, e.g.,
G.STIntersect(g) indicates whether a static object G intersects a
moving object g, (ii) RxDistance observer that outputs a double
value, e.g., G.STDistance(g) computes the distance between G and
g , and (iii) RxIntersection observer that outputs a SqlGeography
object, e.g., G.STIntersection(g) computes the intersection region
between G and g.

In the RxGeography class, calling RxIntersect, RxDistance, Rx-
Intersection APIs subscribes the RxObserver of the corresponding
operation type to the movement of this RxGeography object. Ev-
ery time a new location is fed to the RxGeography object; each
RxObserver will be notified by calling the OnNext API. This will
recompute the corresponding computation, and then new update is
streamed to the final output.

2.2 RxRxObservers
Any observer that monitors the relationship between two mov-

ing objects is called RxRxObserver. RxRxObserver is triggered
by the event of a location update from anyone of the two ob-
served moving objects. As a naming convention, there are two
’Rx’s in the name of any type of RxRxObserver because there are
two RxGeography objects involved in the operation. Three dif-
ferent variations of the RxRxObservers are currently implemented
in the RxSpatial library. Each one of them internally dispatches
a corresponding API provided by the SQL Server Spatial Li-
brary. The variations are: (i) RxRxIntersect observer that out-
puts a boolean, e.g., g1.STIntersect(g2) checks whether g1 inter-
sects g2, (ii) RxRxDistance observer that outputs a double, e.g.,
g1.STDistance(g2) computes the distance between g1 and g2, and
(iii) RxRxIntersection observer that outputs a SqlGeography object,
e.g., g1.STIntersection(g2) gets intersection region between g1 and
g2, where g1 and g2 are both moving objects.

In RxGeography class, by calling RxRxIntersect, RxRxDistance,
and RxRxIntersection APIs, the RxRxObserver of the specified type
can subscribe the movement of this RxGeography object. By On-
Next API, new location update will be fed to the observed RxGeog-
raphy object. Then, each RxRxObserver will be notified with this
update to do the consequent computation.

As mentioned earlier, the main users of this library are devel-
opers. The advantage of designing the architecture in this way is
that all the internal interfaces, observers and data structure do not
need to be maintained by the application developer. This isolation
allows developers to use the RxSpatial with little knowledge about
the structure of the underlying SQL Spatial library.

(a) Restricted Region Enter Tracking. (b) Restricted Region Proximity Tracking. (c) Mutual Proximity Tracking.

Figure 3: Using the RxSpatial Library For Geofencing And Proximity Distance Operations In Criminal Activity Tracking System.

2.3 Data Structure
The data structure we chose is RUM-Tree, R-Tree with update

memos. RUM-tree is used to store observer objects. It consists
of three main components: a stamp counter, a R-Tree and update
memos. We use stamp counter to add stamp to each insert/delete
operation; the observer objects themselves are stored in an R-Tree;
’update memos’ act as a memory-based auxiliary structure that
help differentiate obsolete objects from the new ones. The ’up-
date memos’ are dictionaries whose keys are the unique object ids.
Each update memo consists of three parts: a unique object id, the
newest stamp of this object id, and the total number of obsolete ob-
jects with the same object id that required to be removed in garbage
collection stage.

An insertion operation is executed when we store a new observer
into the RUM-Tree. It is performed as follows: firstly the observer
object is assigned an id; then we add 1 to the stamp counter and
the observer is assigned with the current stamp. After that the ob-
server would be inserted into R-tree and stored into a R-Tree node
together with its stamp, indexed by its location; then a automatic
check would be performed by the library to check whether this id
is stored in the Update memos. If this id was found in the Update
memos, the library would get the corresponding Update memos,
modify the latest stamp with the current stamp and increment the
obsolete entry number. On the other hand, if this id wasn’t found in
the Update memos, the id and Update memo pair would be inserted
into the Update memo dictionary for reference by the library, the
latest stamp in this Update memo entry would be set to the current
timestamp, and the obsolete entry number would be set to 1, which
means one Observer with this id would need to be removed.

An update operation is executed when the location of one ob-
server is modified. It is performed with the following two steps:
firstly the old entry of this observer is deleted from the RUM-Tree;
then an insertion operation is performed. The deletion operation is
as following steps: first the library would check whether the object
id of this observer already exist in the Update memo dictionary. If
it was found in the dictionary, the library would modify the corre-
sponding Update memo with the latest stamp and add increment
the obsolete entry number. Otherwise the id and Update memo
pair would be inserted to Update memo dictionary by the library
for reference; it would also set the latest stamp and set obsolete
entry number to 1. We would be able to save the time needed to
search and remove the old observer in the R-Tree, therefore speed
up the deletion operation. After the deletion operation, the inser-
tion operation is the same. Thus the overall update operation cost
of RUM-Tree is less than R-Tree.

Figure 2 demonstrates how observers are organized in RUM-
Tree. The area is partitioned into three Rectangles: N1, N2 and
N3; location 1 and 2 are in N1. location 3, 4 and 5 are in N2. Lo-
cation 6, 7 and 8 are in N3.In this example, observer1 moved from
location 1 in N1 to 6 in N3; observer2 moved from location 7 in N3

to 2 in N1; observer3 moved from location 8 in N3 to location 3 in

N2. When a location update with new location 2 was sent from ob-
server1, whose old location is 7, to RUM-Tree, the following steps
are executed: firstly the stamp counter is increased and the new
stamp is assigned to observer1; secondly; the library would check
whether the update memo entry of observer1 exist: if the update
memo entry exits, the library would update its stamp and increment
the obsolete entry number by 1; Otherwise the library would create
a new update memo entry for observer1, assign the newest stamp
to the update memo and assign 1 to the obsolete entry, as only one
node with exact same id needs to be deleted; then the library would
put observer1 in an appropriate node. When a location update in
n3 was sent to RxGeography object, the library would notify each
observer except for the obsolete ones. In the described case, ob-
server1 in location 6 would get the notification but observer2 and
observer3 will not, as 7 and 8 are obsolete areas.

3. DEMO SCENARIOS
In this section, we demonstrate two application scenarios, i.e.,

Monitoring Criminal Activity and Collaborative Vehicle System,
supported by our proposed Reactive Spatial library, (RxSpatial). In
addition, we will depict an internal inspection of the system and
give glances on the performance evaluation. The (RxSpatial) li-
brary and the application scenarios in this demo are implemented
in C#, in Visual Studio 2013, and running on Windows 8.1. This
demonstration is based on real GPS data streamed out of ankle
bracelets [9] for the Monitoring Criminal Activity scenario. Two
sets of moving objects on the Washington state USA [5, 4, 6, 7]
are used for the Collaborative Vehicle System and the performance
examination.

In the application snapshots, figures 3 and 4, we can notice
that a numbered push pin represents a moving object. A blue pin
means this moving object does not trigger anything or it is not even
watched by anything. A pin with other colors means that moving
object has some active condition. The control panel is on the left
side of each figure. The function of buttons and scroll bars are as
follows. Start: to start the objects movement, Pause: to pause the
movement, Vehicle speed: to control the moving speed of pins, Ve-

hicle number: to control the number of moving objects on the map,
Observer Distance: to define the distance between observer and
observed object which could trigger the watch notification, Add

Area: to draw a rectangle in the map to add a stationary RxOb-
server, Clear Area: to remove all observers already added, and Add

Obsver: to add a pair of mutually observing observers in RxRxOb-
servers when the user selects the id of a pair of push pins and clicks
the Add Obsver button. The color code of the push pin depends on
the application scenario.

3.1 Monitoring Criminal Activity
The criminal justice system sometimes requires an offender on

probation or on bail to have an ankle bracelet to track his location.
Every criminal is designated a restriction area which he is supposed

Figure 4: Distance Monitoring in Collaborative Vehicle Sys.

to stay away from. Sometimes, some offenders are not supposed to
meet with each other. Figure 3(a) demonstrates restricted region
tracking scenario: the gray rectangle indicates a restricted region
where certain criminals, (i.e., push pins), are not supposed to enter.
When the offenders 10 and 12 enter the restricted region, this act
will trigger an alert.

Figure 3(b) demonstrates restricted region proximity tracking
scenario where certain criminals are not supposed to get close to the
restricted region. We can see that the offender 18 gets in the watch-
ing distance of the restricted region and thus triggers the watch no-
tification. Offender 12 gets close enough to the restricted area, and
then triggering security notification. When offender 10 gets in the
restricted area, this will trigger enter notification.

Figure 3(c) demonstrates mutual proximity tracking scenario:
Criminal 10 and criminal 12 are not supposed to meet each other.
Here in this figure, they are close enough and likely to meet, so the
watch notification is triggered. Offender 15 and offender 16 are not
supposed to meet either; in this figure they are so close that security
notification is triggered.

3.2 Collaborative Vehicle System
In this part, we are going to demonstrate the distance control in

collaborative vehicle system. One scenario is data sharing which
can only be guaranteed when the distance between cars is within a
working distance. Examples include, the in-front road status and
yielding for coming car message at the left turn can be shared from
the leading car to following car. In Figure 4, each pin represents a
car in the collaborative vehicle system. The collaboration status is
tracked between 4 and 18, 10 and 12, and 7 and 9. The dotted line
between car 4 and 18, and the gray color of pins, show that the cars
4 and 18 are watching the movement of each other. But the connec-
tion between them is not strong enough as the distance exceeds a
limit. The solid thick line between 10 and 12 and the yellow color
of pins show that they are within a stable working distance. The
thin line between 7 and 9, and the green color of pins show that
they are within a working distance but are likely to disconnect if
they get further apart. The blue color of other cars show that they
did not intend to watch the movement of any cars, so they are not
trying to connect and thus no need to audit the connections.

3.3 Performance Test Result Visualization
Demo

In this part, we are going to have a control panel to visualize the
performance of the system. Audience will have the ability to decide
to examine the RxObserver or RxRxObserver. They can choose x-
axis type and y-axis type and other parameters as well. The x-axis
types are Update Interval, Observer Number per Object, or Moving
Object Number, and the y-axis types could be Average processing
time, or Max number of moving objects supported by the system.
For example, the control panel configured like Figure 5(a) will gen-
erate the results charted in Figure 5(b).

(a) Performance Visualizer control.

(b) Performance Visualizer Chart.

Figure 5: Performance Visualizer.

4. REFERENCES

[1] V. S. 2015. LINQ (Language-Integrated Query).
https://msdn.microsoft.com/en-us/library/bb397926.aspx,
Dec. 2015.

[2] S. S. 2016. Microsoft SQL Server Spatial Libraries.
https://msdn.microsoft.com/en-us/library/bb933790.aspx,
Dec. 2015.

[3] N. F. 4.6 and 4.5. IObservable Generic Interface.
https://msdn.microsoft.com/library/dd990377.aspx, Dec.
2015.

[4] A. M. Hendawi, J. Bao, and M. F. Mokbel. iRoad: A
Framework For Scalable Predictive Query Processing On
Road Networks. In VLDB, Riva Del Garda, Italy, Aug. 2013.

[5] A. M. Hendawi, J. Bao, M. F. Mokbel, and M. Ali. Predictive
Tree: An Efficient Index for Predictive Queries On Road
Networks. In ICDE, Seoul, South Korea, Apr. 2015.

[6] A. M. Hendawi, A. Khot, A. Rustum, A. Basalamah,
A. Teredesai, and M. Ali. COMA: Road Network
Compression For Map-Matching. In MDM, Pennsylvania,
USA, June 2015.

[7] A. M. Hendawi, E. Sturm, D. Oliver, , and S. Shekhar.
CrowdPath: a framework for next generation routing services
using volunteered geographic information. In SSTD, Munich,
Germany, Aug. 2013.

[8] Y. Li, S. George, C. Apfelbeck, A. M. Hendawi, D. Hazel,
A. Teredesai, and M. Ali. Routing Service With Real World
Severe Weather. In ACM SIGSPATIAL GIS, Texas, USA,
Nov. 2014.

[9] D. Mohammed, F. Olajumoke, J. Lars, S. Niko, Y. Brett,
N. Joe, and A. Mohamed. Safe step: a real-time GPS tracking
and analysis system for criminal activities using ankle
bracelets. In ACM SIGSPATIAL, pages 512–515, Florida,
USA, Nov. 2013.

[10] OGC. Open Geospatial Consortium.
http://www.opengeospatial.org, Dec. 2015.

[11] RX. Microsoft Reactive Extensions.
https://msdn.microsoft.com/en-us/data/gg577609.aspx, Dec.
2015.

[12] X. Xiaopeng and A. W. G. R-trees with update memos. In
IEEE ICDE, pages 22–22, Georgia, USA, Apr. 2006.

