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With the transformation to smarter cities and the development of technologies, a large amount of data is

collected from sensors in real-time. This paradigm provides opportunities for improving transportation systems’

performance by allocating vehicles towards mobility predicted demand proactively. However, how to deal

with uncertainties in demand probability distribution for improving the average system performance is still a

challenging and unsolved task. Considering this problem, in this work, we develop a data-driven distributionally

robust vehicle balancing method to minimize the worst-case expected cost. We design an efficient algorithm for

constructing uncertainty sets of random demand probability distributions, and leverage a quad-tree dynamic

region partition method for better capturing the dynamic spatial-temporal properties of the uncertain demand.

We then prove equivalent computationally tractable form for numerically solving the distributionally robust

problem. We evaluate the performance of the data-driven vehicle balancing framework based on four years

of taxi trip data for New York City. We show that the average total idle driving distance is reduced by 30%

with the distributionally robust vehicle balancing method using quad-tree dynamic region partition method,

compared with vehicle balancing solutions based on static region partitions without considering demand

uncertainties. This is about 60 million miles or 8 million dollars cost reduction annually in NYC.
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1 INTRODUCTION
The number of cities is increasing worldwide and the transformation to smarter cities is taking

place, which brings an array of emerging urbanization challenges [28]. With the development

of technologies, we are able to collect, store, and analyze a large amount of data efficiently [3].

Intelligent transportation system is one example, in which sensing data collected in real time

provides us opportunities for understanding spatial-temporal humanmobility patterns. For instance,

traffic speed [5], travel time [6, 21], passengers’ demand model of taxi network [27], and road

transportation network efficiency [35] are inferred and measured.

Researchers have been working on various approaches to improve the performance of trans-

portation systems. Resilience properties of dynamical networks are analyzed for distributed routing

policies [10, 11]. Smart parking systems that allocate and reserve parking space for drivers [17],

routing and motion planning problems for mobile systems [22, 36] have been proposed. By consid-

ering future demand predicted with data when making current decisions, optimal vehicle balancing

strategies have many advantages compared with approaches that do not balance vehicles from a

system-wide coordination perspective. Vehicle balancing methods reduce the number of vehicles

needed to serve all passengers with mobility-on-demand systems [31, 40, 41] and bike-sharing

systems [32, 33], or reduce customers’ waiting time [31, 41] and taxis’ total idle distance [25] with

the same number of empty vehicles. However, the limit knowledge we have about demand and

mobility patterns [16] affect the performance of vehicle balancing strategies, and making real-time

decisions under demand model uncertainties is still a challenging and unsolved task. Although

robust optimal solution shows its advantage in worst-case scenarios compared with non-robust

approaches [4, 23, 24], there is still trade-off between the system’s average performance and the

worst-case performance with a probabilistic guarantee [26].

In this work, we integrate the process of gathering actionable information from data and designing

decision-making objectives and constraints for vehicle balancing problems, to ensure real-time

resource-allocating efficiency from the perspective of expected cost of ride-sharing service. It is

difficult to obtain an explicit true probability distribution of the random demand purely based

on data without prior knowledge, therefore, we minimize the expected vehicle balancing cost

under a set of possible probability distributions of demand learned from data. Distributionally

robust optimization techniques have been developed for minimizing expected cost under the worst-

case probability distributions of random parameters for linear programming (LP), semi-definite

programming (SDP) problems [13, 18], and linear controllers [30] in the literature. But there is no

approaches for real-time distributionally robust vehicle balancing over complex transportation

networks, or algorithms to model uncertain demand probability distributions set from data yet.

We design a computationally tractable distributionally robust dynamic vehicle balancing method

under uncertainties about the probability distributions of demand. Efficient algorithms for con-

structing an uncertainty set of the probability distributions based on data and different demand

model are developed. We utilize a structural property of the covariance of the random demand.

A quad-tree dynamic region partition method is used for the first time, and shown to improve

performance in the experiments. We then prove an equivalent convex optimization form of the non

LP or SDP form of distributionally robust vehicle balancing problem, and guarantee both average

performance of the system and computational tractability. Finally, we evaluate the average costs of
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the distributionally robust vehicle balancing method, based on uncertainty sets constructed based

on different region partition and demand model based on real data.

The contributions of this work are

• We take explicitly the ambiguity of demand probability distribution into account when

minimizing vehicle balancing cost. We design a data-driven dynamic distributionlly robust

vehicle balancing model to optimize the expected cost over the worst-case distribution of

demand, and analyze its applications in taxi dispatch, autonomous mobility-on-demand and

bike balancing. Previous vehicle balancing work either focuses on one specific probability

distribution or aims to find a robust solution for a single value of worst-case demand.

• For the first time, we design a quad-tree dynamic region partition method and efficient

algorithms to construct uncertainty sets of probability distributions based on different demand

model. These sets better capture the spatial-temporal correlations of demand uncertainties

based on data.

• We derive a computationally tractable form to numerically solve the distributionally robust

problem. The problem is not a standard linear programming (LP) or semi-definite program-

ming (SDP) that has already been proved a computationally tractable form in the literature.

• We evaluate the average cost obtained by adopting the distributionally robust vehicle balanc-

ing solutions based on four years taxi trip data of New York City, and show that the average

total idle distance is reduced by 10.05% with static grid region partition. With the quad-tree

dynamic region partition, the average total idle distance is reduced by 20% more. This is about

60 million miles or 8 million dollars gas cost reduction annually compared with non-robust

solutions.

The rest of the paper is organized as follows. The distributionally robust vehicle balancing

problem is proposed in Section 2. An efficient algorithm for constructing distributional uncertainty

sets based on spatial-temporal demand data and a dynamic region partition method are designed

in Section 3. An equivalent computationally tractable form of the distributionally robust vehicle

balancing problem is proved in Section 4. We show performance improvement in experiments

based on a real data set in Section 5. Concluding remarks are provided in Section 6.

2 DYNAMIC DISTRIBUTIONALLY ROBUST VEHICLE BALANCING
In this section, we propose a distributionally robust vehicle balancing problem based on dynamic

spatial region partitions. The goal includes balancing vehicles for efficient service and reducing the

total costs, such as vehicles’ total idle distance or the total number of vehicles sent to other regions.

By considering possible probability distributions of demand predicted from data, we take explicitly

the ambiguity of demand probability distributions to guarantee the average system performance.

Previous work either assumes an explicit demand distribution [31, 33, 40, 41] or aims to find a

robust vehicle balancing solution for a single value (not a probability distribution) of worst-case

demand [24–26, 31] for static spatial region partitions. The generalization of the vehicle balancing

problem formulation in this work is also explained in Subsection 2.2. A list of parameters and

variables in the problem formulation is shown in Table 1.

We assume that one day is divided intoK time intervals indexed by t = 1, 2, . . . ,K in total. Vehicle

balancing or re-balancing decision is calculated in a receding horizon process, and at time t , empty

vehicles are allocated towards demand with time index (t , t + 1, . . . , t + τ − 1) respectively. Each τ
discrete time slots (t , t + 1, . . . , t + τ − 1) is indexed by k = 1, 2, . . . ,τ when we calculate a vehicle

rebalancing solution, and the effect of current decisions to the future re-balancing cost is involved.

Only the solution of k = 1 for time t is implemented, while the solutions for remaining time slots

are not materialized. After one empty vehicle arrive at its dispatched region, a local controller will
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Parameters of (8) Description

nk the number of regions at time k

τ model predicting time horizon

rc ∈ R
nc ∼ F ∗, F ∗ ∈ F the concatenated demand vector with unknown distribution function F ∗ for k = 1, . . . ,τ

W k ∈ Rn
k×nk

weight matrix,W k
i j is the distance from region i to region j

Pkv , P
k
o ,Q

k
v ,Q

k
o region transition matrices from time k to (k + 1)

V 1 ∈ Nn
1

the initial number of vacant taxis at each region provided by GPS and occupancy status data

O1 ∈ Nn
1

the initial number of occupied taxis at each region provided by GPS and occupancy status data

mk ∈ R+ the upper bound of distance each taxi can drive idly for picking up a passenger at time k

Mk ∈ Rn
k×nk

the structural constraint matrix that restricts X k
i j = 0 for far away regions

α ∈ R+ the power on the denominator of the objective function

β ∈ R+ the weight factor of the objective function

Variables of (8)

X k
i j ∈ R+ the number of taxis dispatched from region i to region j during time k

V k ∈ Rn
k

+ the number of vacant taxis at each region before dispatching at the beginning of time k

Ok ∈ Rn
k

+ the number of occupied taxis at each region before dispatching at the beginning of time k

Sk ∈ Rn
k

+ the number of vacant taxis at each region after dispatching at time k

Table 1. Parameters and variables of taxi dispatch problem (8).

assign the vehicle to pick up a passenger existing in this region’s request queue according to greedy

algorithms (e.g., shortest path). When the time horizon rolls forward by one time step from t to
(t + 1), information about uncertain demand is first updated, and vehicle locations and occupancy

status are observed again. Examples of receding horizon resource allocation applications include

economic power dispatch [23], taxi dispatch [25], autonomous mobility-on-demand [41], etc.

2.1 Problem Formulation
We assume that the number of region partitions in the city is either static or changing arbitrarily

with time, use superscript k to denote time, and space is partitioned to nk regions (nodes) at time

k . Each region j has rkj ⩾ 0 predicted total amount of demand (e.g., number of passengers for

a mobility-on-demand system) during time k , where j = 1, . . . ,nk , k = 1, . . . ,τ . We consider

rk ∈ Rn
k
as a random vector instead of a deterministic one. To model spatial-temporal correlations

of demand during every τ consecutive time slots, we define the concatenation of demand sequences

as

rc = (r 1, r 2, . . . , rτ ) nc =
τ∑

k=1

nk .

We assume that F ∗ is the true probability distribution of the random vector rc , i.e., rc ∼ F ∗.

We denote by a non-negative matrix X k
the decision matrix at time k , where X k ∈ Rn

k×nk
+ , and

X k
i j ≥ 0 is the number of vacant vehicles sent from region i to region j (or node i to node j) at

time k according to demand and service requirements. For notational convenience, we define a

set of decision variables as X 1:τ = {X 1, X 2, . . . X τ } ∈ Dc , where Dc is the convex domain of

decision variables defined by constraints. If we have the true probability distribution of demand

rc ∼ F ∗, then minimizing the expected cost of allocating vehicles in the city is defined as a stochastic

programming problem:

min.

X 1:τ
Erc∼F ∗

[
J (X 1:τ , rc )

]
s.t. X 1:τ ∈ Dc , (1)

where J (X 1:τ , rc ) is a cost function of allocating vehicles according to decisions X 1:τ
under demand

rc .
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However, in many applications we only have limited knowledge about the true distribution F ∗.
Moreover, problem (1) is computationally demanding, not suitable for a large-scale dynamic supply

balancing problem in smart cities in general. The knowledge of random demand rc is restricted
to a set of independent and random samples—historical or streaming demand data, according to

an unknown distribution F ∗. We assume that the true lower, upper bound, mean and covariance

information lie in a neighborhood of their respective empirical estimates, a common assumption of

learning and data-driven problems [13, 18]. In Section 3 we will design an algorithm of calculating

the set F such that F ∗ ∈ F with a high probability. We then consider the following distributionally

robust problem to minimize the worst-case expected cost as a robust form of problem (1). In the

rest of this section we will define concrete forms of objective function and constraints.

min.

X 1:τ
max

F ∈F
E
[
J (X 1:τ , rc )

]
s.t. X 1:τ ∈ Dc . (2)

2.1.1 Service quality metric function JE . We define V k
j ∈ R+, O

k
j ∈ R+ as the number of vacant

and occupied vehicles at region j before balancing or re-balancing at the beginning of time k ,

respectively, and V k ,Ok ∈ Rn
k

+ . When receding the time horizon, we always first update real-time

sensing information, such as GPS locations and occupancy status of all vehicles, and V 1 ∈ Rn
1

+ and

O1 ∈ Rn
1

+ are provided by real-time data. We denote Ski > 0 as the total amount of vehicles available

within region i during time k with dispatch decision {X 1, . . . ,X k }

Ski =
nk∑
j=1

X k
ji −

nk∑
j=1

X k
i j +V

k
i > 0, k = 1, . . . , τ ,

V k+1

i =

nk∑
j=1

Pkv, jiS
k
j +

nk∑
j=1

Qk
v, jiO

k
j , k = 1, . . . , τ − 1,

Ok+1

i =

nk∑
j=1

Pko, jiS
k
j +

nk∑
j=1

Qk
o, jiO

k
j , k = 1, . . . , τ − 1,

(3)

where Pkv , P
k
o ,Q

k
v ,Q

k
v ∈ R

nk×nk+1

are region transition matrices: Pkv, ji (P
k
o, ji ) describe the probability

that a vacant vehicle starts from region j at the beginning of time interval k will traverse to region i
and being vacant (occupied) at the beginning of time interval (k +1); similarly,Qk

v, ji (Q
k
o, ji ) describe

the probability that an occupied vehicle starts from region j at the beginning of time interval k
will traverse to region i and being vacant (occupied) at the beginning of time interval (k + 1). The
region transition matrices are learned from historical data, and satisfy

nk∑
j=1

Pkv,i j + P
k
o,i j = 1,

nk∑
j=1

Qk
v,i j +Q

k
o,i j = 1.

Balancing the supply-demand ratio across the network is one type of service quality metric in

power resource allocation [23], taxi dispatch [25] and autonomous mobility on demand systems [40].

Hence, we aim to minimize the difference between the local and global demand-supply ratio for τ
time intervals

τ∑
k=1

nk∑
i

�������

rki

Ski
−

∑nk
j=1

rkj∑nk
j=1

Ski

�������
. (4)
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However, function (4) is not concave of the random parameters rk , not computationally tractable

as an objective function for (2). Hence, in this work, we consider a service quality function JE

JE (X
1:τ , rk ) =

τ∑
k=1

nk∑
i=1

*
,

aikr
k
i

(Ski )
α
+
-
, (5)

where aik > 0, i = 1, . . . ,nk , k = 1, . . . ,τ are positive constants denoting region priorities, α > 0

is a power parameter that is designed according to the service requirement. In particular, When

aik = 1, i = 1, . . . ,nk , k = 1, . . . ,τ , α > 0 is a close to 0, the objective function (5) approximates

the objective (4) [24], and minimizing (5) means a balancing vehicle objective. With the definition

of Ski as (3), JE is a function concave (linear) in rk and convex in X 1:τ
that has the decision variables

on the denominator.

2.1.2 Cost of balancing and re-balancing. Besides minimizing service quality function (5), we

also consider minimizing the costs (such as idle distance) by sending vacant vehicles according to

X k
. Given a spatial network structure during time k , we defineW k ∈ Rn

k×nk
as the weight matrix

that describes the cost of sending one vehicle among regions for time k according to the network

model. For instance, whenW k
i j is the approximated distance to drive from region i to region j, the

en route idle distance is considered as the cost for allocating one empty vehicle. WhenW k
i j = 1, the

cost of re-balancing a vehicle between any region pair (i, j ) is identical that the total number of

vacant vehicles balanced between all pairs of (i, j ) is considered as the total cost. The across-region

balancing cost according to X k
is

JD (X
k ) =

nk∑
i=1

nk∑
j=1

X k
i jW

k
i j . (6)

The distance every vehicle can travel is bounded, because of the speed limit during time k and

traffic conditions—during congestion hours, the distance each vehicle can go to pick up a passenger

should be shorter than normal hours. Assume that the idle distance upper bound for a vehicle at

time k ismk > 0, provided by traffic speed monitors and forecasting models [5], [1], the distance

from region i to region j is disti j . We denote a structural constraint matrixMk ∈ Rn
k×nk

, such that

Mk
i j = 0 when disti j ⩽ mk

, andMk
i j = 1 otherwise. Then the following constraint

X k ◦Mk = 0, X k
i j ⩾ 0 (7)

indicates a solution satisfies that X k
i j = 0 for disti j > mk

, i, j = 1, . . . ,nk . Here ◦ means Schur or

entry-wise product. Both JD (X
k ) in (6) and constraint (7) are linear of X k

.

We aim to balance vehicles with minimum idle distance, and define a weight parameter β of

two objectives JD in (6) and JE in (5). With constraints (3) and (7), we consider the following

distributionally robust vehicle balancing problem under uncertain probability distributions of

random demand

min.

X 1:τ ,S1:τ ,V 2:τ ,O2:τ
max

F ∈F
E



τ∑
k=1

*.
,
JD (X

k ) + β
nk∑
i=1

rki

(Ski )
α
+/
-


s.t. (3), (7),

(8)

where X 1:τ , S1:τ ,V 2:τ ,O2:τ
denote variables and O2, . . . ,Oτ

(V 1
and O1

are given by sensing in-

formation) respectively. The above problem (8) cannot be immediately translated into an LP or

SDP form. Only the service requirement JE has decision variables on the denominator and directly
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related to the random demand rk , balancing cost JD and all the constraints are linear of the variables

and not functions of rk . Hence, we only need to find an equivalent convex form for JE under F ∈ F .

2.2 Generalization of Problem Formulation
Reducing the dependency of the average performance of solutions on the accuracy of
demand model: Problem (8) is one example of a distributionally robust vehicle balancing problem

that does not restrict the specific distribution of random demand. For instance, for queuing models,

the average number of waiting customers in the queue is related to the demand-supply ratio

or supply-demand ratio for a stable queue [19]. Considering a balanced demand-supply ratio is

considering to balance the average number of waiting customers intuitively. Robotic mobility-on-

demand systems [37, 40] usually assume a queuing model to describe the passenger arrival rate at

region i is λki . When calculating the arrival rate for one time interval from historical data, λki equals

the total number of requests appearing in one time interval, or rki in this work. Mean and covariance

of the estimation of λki still exist when calculating this arrival rate λki via data. Hence, when a

mobility-on-demand system can be described by a queuing model, solving problem (8) provides a

solution for balancing vehicles for λki in a range instead of a deterministic value. Therefore, we do

not restrict the demand model to satisfy a specific distribution and we reduce the dependency of

the average performance of solutions to the accuracy of demand model.

Similarly, bicycle balancing and re-balancing problems also require that the demand-supply

ratio of each station is restricted inside a range in order to provide a certain level of service

satisfaction [33]. While adjusting the range of demand-supply ratio or supply-demand ratio back

and forth is computationally expansive, when we find a feasible solution of (8), the demand-supply

ratio of each region should not be far away from the global demand-supply ratio, and fall in a

range around the global level. Hence, when the objective is to make the demand-supply ratio of

each region all be inside some range without knowing the feasible upper and lower bounds of the

range, solving (8) that makes the local ratio all close to the global ratio and will reach an equivalent

objective without selecting the range manually.

Balancing vehicles for carpooling or heterogeneous vehicle service: We consider a single

type vehicle balancing problem (for instance, each individual empty vehicle is considered to have

the same ability) under formulation (8). When each vehicle in the system has a different service

ability, for instance, when the capacity of one vehicle isC1 = 1,C2 = 2,C3 = 3 orC4 = 4, we denote

Ok
l,i as the number of vehicles with capacity Cl before dispatch at region i , and X k

l,i j as the number

of vehicles that should go from region i to region j. Then the total number of available seats or

supply is Ski =
4∑
l=1

Cl *
,
Ok
l,i +

nk∑
j=1

X k
l, ji −

nk∑
j=1

X k
l,i j

+
-
. With this number Ski , objective function JE defined

as (5) is still concave in rk , convex in X k
l , l = 1, 2, 3, 4. The balancing cost function (6), constraints

about region transition (3) and idle distance bound (7) can be modified accordingly and still be

convex of decision variables. Under this scenario, with a modified definition of total supply at each

region, the vehicle balancing model (8) is generalizable for carpooling or heterogeneous capacity

vehicle balancing problems. With periodically re-balancing vehicles every hour or 30-minutes, a

lower level matching between passengers and vehicles within each region will assign one vehicle

to several requests according to its capacity. A hierarchical carpooling framework with higher layer

distributionally robust vehicle balancing and a lower layer routing or matching process is a venue

for future work.
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r̃c (dl , t , Ip ) one sample of rc (t ) according to sub-dataset Ip , records of date dl
r̂c ∈ R

nc
, Σ̂c ∈ R

nc×nc
the estimated mean and covariance of vector rc

r̂c,l , r̂c,h the estimated lower and upper bound of vector rc
γ B

1
, γ B

2
the bootstrapped thresholds for accepting hypothesis testing (9)

αh significance level of a hypothesis testing

Table 2. Parameters of Algorithm 1.

3 EFFICIENT DISTRIBUTIONAL SET CONSTRUCTION ALGORITHM
Wedesign an efficient algorithm for constructing the uncertainty setF of probability distributions in

problem (8), with spatial-temporal data that provides information about the true distribution F ∗ of rc .
While theoretical bound of the distributional set is too conservative in practice, empirical estimates

according to confidence regions of hypothesis testings are acceptable in portfolio management

problems [8, 13]. However, vehicle trip or trajectory data is usually large-scale spatial-temporal data,

and how to efficiently extract information of mobility demand is a challenging task. Considering the

computational cost of building a distributional set for every consecutive τ time slots (the demand

prediction and vehicle balancing time lengths) of one day, we leverage the structure property of the

covariance matrix of rc to develop an efficient construction algorithm for set F . Furthermore, to

reflect the spatial-temporal dynamic properties of demand and index regions efficiently, we build

our distributional set based on a dynamic space partition method.

3.1 Distributional Set Formulation
We denote one sample of vector rc (t ) = (r t , r t+1, . . . , r t+τ−1) at date dl as r̃c (dl , t ), a vector of

demand at each region for time {t , t + 1, . . . , t + τ − 1}, t = 1, . . . ,K of each day. For each t , samples

from N days r̃c (d1, t ), r̃c (d2, t ), . . . , r̃c (dN , t ) are independent.We aim to construct a uncertainty

set F (t ) that describes possible probability distributions of rc (t ) based on the support, mean and

covariance of random samples of rc (t ). We omit t for the following problem definition when there

is no confusion. Possible probability distributions of a random vector rc is related to a hypothesis

testing H0 given a data set of rc : given mean µ0 and covariance Σ0, test statistics γ1, γ2, with

probability at least 1 − αh , the random vector rc satisfies that [13]

H0 : (r̃c − µ0)
T Σ−1

0
(r̃c − µ0) ⩽ γ1, (r̃c − µ0) (r̃c − µ0)

T ⪯ γ2Σ0. (9)

Without prior knowledge about the support, the true mean, covariance, constructing set F based

on data is an inverse process of a hypothesis testing—estimating the mean and covariance and

calculating threshold values γ1 and γ2 such that (9) is an acceptable hypothesis by the data set. The

problem of constructing F is formally defined as the following

Definition 3.1. Problem 1. Given a dataset of rc , find the values of r̂c,l , r̂c,h , r̂c , Σ̂c , γ
B
1
and γ B

2
,

such that with probability at least 1 − αh with respect to the samples the hypothesis testing (9)

is acceptable. Then with probability at least 1 − αh the true distribution of rc is contained in the

following distributional set F

F (r̂c,l , r̂c,h , r̂c , Σ̂c ,γ
B
1
,γ B

2
)

={(E[rc ] − r̂c )
T Σ̂−1

c (E[rc ] − r̂c ) ⩽ γ B
1
, E[(rc − r̂c ) (rc − r̂c )

T
] ≤ γ B

2
Σ̂c , rc ∈ [r̂c,l , r̂c,h]}

(10)

where r̂c,l and r̂c,h is the lower and upper bound of each entry of the demand vector, respectively.
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Fig. 1. The process of calculating Σ̂ ∈ Rn×n , n =
∑K
t=1

nt when receding time horizon. When index moves
from t = 1 to t = 2, only entries in matrix Σ̂ shown in blue are new and necessary for calculating Σ̂c (t ), t = 2.

We then design Algorithm 1 (a list of parameters in Table 2) to calculate the bootstrapped [9]

estimations of r̂c,l , r̂c,h , r̂c , Σ̂c ,γ
B
1
,γ B

2
for rc (t ), t = 1, 2, . . . ,K of every time step, that makes H0

in (9) acceptable and consistent with the data.

3.2 Reducing Computational Complexity
Because F (t ) is a function of time index t , the dimension of r̂c , Σ̂c is decided by the number of

dynamic regions and prediction horizon, which can be large for spatial-temporal transportation

data collected in smart cities. However, the mean and covariance matrices for t , t + 1, . . . , t + τ
have overlapping components: for instance, r̂c (t ) and r̂c (t + 1) both include estimated mean values

of demand during time (t + 1, t + 2, . . . , t + τ − 1). Hence, instead of always repeating the process

of calculating a mean and covariance value for τ time slots together for each index t , the key idea

of reducing computational cost of constructing F (t ), t = 1, . . . ,K is to calculate the mean and

covariance of each pair of time slots of the whole day only once. Then pick up the corresponding

components needed to construct r̂c (t ) and Σ̂c (t ) for each index t .

Specifically, we define the whole day demand vector as r = (r 1, r 2, . . . , rK ) ∈ Rn ,n =
K∑
t=1

nt , i.e.,

a concatenated demand vector for each time slot of one day. And we denote r̂ as the estimated

mean of the random vector r . To get all covariance component for each index t , the process is: at
t = 1, calculate the covariance of rc (1), store it as Σ̄[1:n1,1:n1

]
; and every time when rolling the time

horizon from t to t +1, only calculate the covariance matrix entries between τ pairs of (r t+τ−k , r t+τ ),
k = 0, . . . ,τ − 1 and store the result as

Σ̄
[n[1,t+τ−1]

:n[1,t+τ ],n[1,t+τ−k ]
:n[1,t+τ−k+1]

]
= Σ̄

[n[1,t+τ−k ]
:n[1,t+τ−k+1],n[1,t+τ−1]

:n[1,t+τ ]
]
= cov(r t+τ−k , r t+τ ),

(11)

where n[1,t+τ ] =
∑t+τ

j=1
nj , the subscript [b1 : b2,b2 : b1] means entries from the b1-th to the b2-th

rows and b2-th to the b1-th columns of matrix Σ̄ as explained in Figure 1.

Then we have Algorithm 1 that describes the complete process of constructing distributional sets.

Given vehicles’ service trajectories or trips data, we count the total number of pick up events during

one hour at each region as total demand. If the given data set is the arriving time of each customer

at different service nodes of a network, then the total number of customer appeared in every service

node during each unit time is the demand. When categorical information such as normal days or

holidays/special event days of one year, different weather conditions or a combination of different

contexts is available, indexed as Ip ,p = 1, 2, . . . , P , we cluster the data set as subsets first.
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ALGORITHM 1: Algorithm for constructing distributional sets

Input: A data set of spatial-temporal demand
1. Demand aggregating and sample set partition
Partition space, aggregate demand of each region for each time t , cluster demand vector samples according to

categorical information Ip , and denote S (Ip ), S (t , Ip ) as a sample set of the whole day demand and demand at

time t of category Ip , p = 1, . . . , P , respectively.
2. Bootstrapping mean and covariance matrix
A significance level 0 < αh < 1, the number of bootstrap time NB ∈ Z+.

for j = 1, . . . ,NB do
Re-sample S j (Ip ) = {r̃ (d1, Ip ), . . . , r̃ (dN , Ip )} from S (Ip ) with replacement, calculate the mean r̄ j (Ip )

and covariance Σ̄j (Ip ) of the whole day demand vector of set S j (Ip ) as (11).
end for

Get the bootstrapped mean covariance, and support of the whole day demand vector (i = 1, . . . ,Kn)

r̂ (Ip ) =
1

B

B∑
j=1

r̄ j (Ip ), Σ̂(Ip ) =
1

B

B∑
j=1

Σ̄j (Ip ),

r̂i,l (Ip ) =mind r̃i (d, Ip ), r̂i,h (Ip ) =maxd r̃i (d, Ip ), for all samples r̃ (d, Ip ) in the subset S (Ip ).

3. Bootstrapping γ B
1
and γ B

2
for each time index t

for each subset S (t , Ip ) do
for j = 1, . . . ,NB do
(1) Get the mean and covariance vector for the j-th re-sampled set, r̂c (t , Ip ), Σ̂c (t , Ip ), r̄

j
c (t , Ip ), Σ̄

j
c (t , Ip )

as (12).

(2). Get γ
j
1
(t , Ip ) and γ

j
2
(t , Ip ) by (13) and (14).

end for
Get the ⌈NB (1 − αh )⌉-th largest value of γ

j
1
(t , Ip ) and γ

j
2
(t , Ip ) , j = 1, . . . ,Nb , as γ

B
1
(t , Ip ) and γ

B
2
(t , Ip ),

respectively.

end for
Output: Distributionally uncertainty sets (10).

For step 3(1), the process of picking components from the mean and covariance matrices of the

whole day demand is

r̂c (t , Ip ) = r̂[n[1,t−1]
:n[1,t+τ−1]

]
(Ip ), Σ̂jc (t , Ip ) = Σ̂j

[n[1,t−1]
:n[1,t+τ−1],n[1,t−1]

:n[1,t+τ−1]
]

(Ip ). (12)

For the j-th re-sampled subset S j (t , Ip ), the mean and covariance matrices are E[rc ] = r̄ jc (t , Ip )

and E[rcr
T
c ] = Σ̄jc (t , Ip ), respectively. For step 3(2), according to the definition of F in (10), we get

γ j
1
(t , Ip ) by the following equation

γ j
1
(t , Ip ) = [r̄ jc (t , Ip ) − r̂c (t , Ip )]

T Σ̂−1

c (t , Ip )[r̄
j
c (t , Ip ) − r̂c (t , Ip )]. (13)

According to definition (10), the left part of the inequality related to γ B
2
satisfies that

E[(rc − r̂c ) (rc − r̂c )
T

] = E[rcr
T
c ] − r̂cE[rTc ] − E[rc ]r̂Tc + r̂c r̂

T
c = Σ̄c − r̂c r̂

T
c .

Then we get γ j
2
for index (t , Ip ) by solving the following convex optimization problem

min.

γ2

γ2

s.t Σ̄jc (t , Ip ) − [r̂c (t , Ip )][r̂c (t , Ip )]
T ≤ γ2Σ̂c (t , Ip )

(14)

3.3 Constructing Uncertainty Sets for a General Demand Prediction Model
Besides directly using the mean of concatenated demand vector rc (t , Ip ) for each index (t , Ip ) as
the predicted demand, methods that predict demand for time t based on the latest observation of
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time t − 1, t − 2, . . . or with streaming data has also been applied in areas such as transportation

network [27, 38], power network [23, 34] and health care systems [2]. More complicated models

can be more accurate than the average value prediction. It is critical to develop a uncertainty

set constructing algorithm for general demand modeling techniques, and explore the effects of

considering uncertainties to improve the ride sharing service. In this subsection, we first design a

process of constructing distributional uncertainty sets for a general demand prediction model, and

then introduce an example of multivariate time series demand predicting model based on streaming

data.

3.3.1 Uncertainty set of a general demand prediction model. We do not restrict the learning or

modeling method to predict demand, and assume that fr : O[t−1−l,t−1] → R
τn

is a function of

mapping sensing or observation data available to the system by time t (from time (t − 1 − l ) to
time (t − 1)) to predicted concatenated demand at time t . The function fr is unknown and can

only be estimated from data. We would like to quantify the estimation uncertainty and consider

possible estimation errors when providing ride-sharing service. Then we have the following relation

between the deterministic component of predicted demand r̂c (t ) and the true demand rc (t )

rc (t ) = fr (Ot−1), rc (t ) = r̂c (t ) + δc (t ). (15)

Here δc (t ) ∈ R
τn

is considered as the estimation residual that measures the difference between the

true demand and the estimated value. The available data Ot−1 can include not only demand data of

each region, but also weather, traffic conditions that can act as exogenous input of the prediction

model. The time index (t − 1) of the observation data Ot−1 used to predict rc (t ) can be either purely

historical data of demand at each day of time t such as what used to calculate the average demand

of each time t in Algorithm 1. It can also include streaming demand data of the same day before

time t .
Then we compare our estimation of rc (t ) based on data for each sample r̃c (t ) of rc (t ) with the

true sample vector value rc (t ), and get a corresponding sample of estimation residual as

˜δc (t ) = r̃c (t ) − r̂c (t ). (16)

With a subset of tranining data Str (t ) = {r̃c (t ), Õt−1} that includes both observations Õt−1 till

time t and demand r̃c (t ) sampled from multiple days, we get an estimation of function fr (Ot−1).
Then for each subset of testing samples Ste (t ) = {r̃c (t ), Õt−1}, according to (15), we have a set

Sr (t ) = {r̂c (t )} as samples of estimated or predicted demand and a set Sδ (t ) = { ˜δc (t )} as samples

of residuals δc (t ). We also have the corresponding mean and covariance values for the residuals in

set Sδ (t ).
We consider each

˜δc (t ) ∈ Sδ as one sample of the random residual vector δc (t ). Since r̂c (t ) is a
deterministic vector for time index t , the following equations hold (the time index t is omitted for

notation convenience):

E[rc ] − r̂c = E[δc ], E[(rc − r̂c ) (rc − r̂c )
T

] = E(δcδ
T
c ), r̂c,l = r̂c + ˆδc,l , r̂c,h = r̂c + ˆδc,h ,

rc − E[rc ] = r̂c + δc − (r̂c + E[δc ]), Σc = E[(rc − E[rc ]) (rc − E[rc ])T ] = Σδ , Σ̂c = Σ̂δ ,
(17)

where Σc and Σδ are the unknown true covariance of rc and δc respectively, Σ̂c and Σ̂δ are the

estimated matrices for Σc and Σδ respectively, δc,l and δc,h are the lower and upper bound of the

estimation residual respectively. To build an uncertainty set for the demand distribution rc (t ), the
problem is equivalent to describe the distributional uncertainty set as equations and inequalities of

statistics of δc .
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Hence, according to the definition of distributional uncertainty set (10) defined based on the

range of mean and covariance of rc , we define the following problem of constructing distributional

uncertainty set for rc with the estimated bound, mean and covariance values of the residual δc

Definition 3.2. Problem 2. Given a dataset of rc , for a prediction method fr , find the values of

ˆδc,l , ˆδc,h , r̂c , Σ̂δ , γ
B
δ,1 and γ

B
δ,2, such that with probability at least 1 − αh with respect to the samples,

the true distribution of rc is contained in the following distributional set F

F ( ˆδc,l , ˆδc,h , r̂c , Σ̂c ,γ
B
1
,γ B

2
)

={rc ∈ [r̂c + ˆδc,l , r̂c + ˆδc,h] : (E[δc ])T Σ̂−1

δ E[δc ] ⩽ γ Bδ,1, E(δcδ
T
c ) ≤ γ Bδ,2Σ̂δ }

(18)

The Algorithm 1 considers to construct an uncertainty set of the concatenated demand vector rc ,
and the estimated demand r̂c (t ) for each index t is the average value of bootstrapped samples. For

a general modeling method fr , we design the following Algorithm 2 to build an uncertainty set of

rc based on repeated estimations of residual δc .

3.3.2 Time series model prediction. One example of model (15) is vector time series model

applied for spatial-temporal data. Time series is a widely applied method for processing streaming

data of predicting demand in resource allocation problems [2, 23, 27]. To involve both spatial

and temporal correlations of demand, we use a vector autoregressive integrated moving average

(ARIMA) model [39] model in this work, and show constructing a distributional uncertainty set by

Algorithm 2 improves the efficiency of vehicle sharing service in data experiments in Section 5. We

denote an order (p,q) ARIMA model for the multivariate time series rc (t ) as the following

rc (t ) = θ0 + Π1rc (t − 1) + Π2rc (t − 2) + · · · + Πprc (t − p) + ϵt − 3ta1ϵt−1 − θ2ϵt−2 − · · · − θqϵt−q .
(19)

Here rc (t − l ) is the l-th lag of rc (t ), θ0 is a constant vector of intercepts with the same dimension of

rc (t ),Πi (i = 1, 2, . . . ,p) andθ j (j = 0, 1, 2, . . . ,q) aremodel parameters with appropriate dimensions,

respectively; p and q are integers and are often referred to as orders of the model, ϵt are random
errors. If q = 0, then (19) is an autoregressive (AR) model of order p. When p = 0, the model reduces

to an moving average (MA) model of order q. We fit parameters θ j ,Πi of (19) to data by least mean

square error estimation, and the estimation residual is δc (t ) = rc (t ) − r̂c (t ) that covers the random
error components. By estimating the distributional uncertainty of δc (t ) via Algorithm 2 and time

series prediction model, we describe how the true demand can deviate from our prediction through

repeated data experiments.

3.4 Dynamic Space Partitioning
A grid file [29] is a static data structure that divides the underlying space into a grid of adjacent

cells. These cells have equal dimensions. Each cell stores spatial objects, (e.g., total number of

vehicle requests), within its boundaries. The number of objects in each cell is unbounded. Vehicle

balancing approaches based on static spatial partitions has reduced total idle driving distance of all

taxis in the network and increased service fairness level [24, 25, 40]. However, when we capture the

reality of spatial and spatial-temporal vehicle balancing problems like the taxi requests we address

in this paper, we can easily notice that those requests are dynamic. This dynamic nature spans both

the space and time. For example, suburbanites tend to go to their business in the metropolitan area

in the morning and return in the afternoon. This makes vehicle requests in down-town higher in

the afternoon. This pattern might change depending on the occurrence of other events, (e.g, a state

fair, or a football game).

, Vol. 1, No. 1, Article . Publication date: November 2017.



DD Dynamic Region Distributionally Robust Vehicle Balancing :13

ALGORITHM 2: Algorithm for constructing distributional sets for a general prediction method

Input: A dataset of spatial-temporal demand
1. Demand aggregating and sample set partition
Aggregate demand to get a sample set S of demand for the whole day r (denote S (t ) as a sample set for rc (t ))
from the original data. Partition S (S (t )) and denote S (Ip ) ⊂ S (S (t , Ip ) ⊂ S (t )), p = 1, . . . , P as the subset

partitioned according to categorical information Ip . Set a significance level 0 < αh < 1, the number of

bootstrap time NB ∈ Z+.
2. Estimate the parameters of prediction function fr (Ot−1) for all time steps t in one day.

for j = 1, . . . ,NB do
Re-sample S j (Ip ) = {r̃ (d1, Ip ), . . . , r̃ (dN , Ip )} from S (Ip ) with replacement, calculate the estimation

residual set S
j
δ (Ip ) = {

˜δ (di , Ip )} of all samples based on prediction function fr , where

˜δ (di , Ip ) = r̃ (di , Ip ) − r̂ (di , Ip ), then the mean
¯δ j (Ip ), covariance Σ̄

j
δ (Ip ), and

Ej [δcδ
T
c ](Ip ) =

1

N

N∑
i=1

˜δ (dN , Ip ) ( ˜δ (dN , Ip ))
T
of residual for all time steps.

end for
Get the bootstrapped mean covariance, and support of the residual vector

E[δ ](Ip ) =
1

B

B∑
j=1

¯δ j (Ip ), Σ̂δ (Ip ) =
1

B

B∑
j=1

Σ̄
j
δ (Ip ),

ˆδi,l (Ip ) =mind ˜δi (d, Ip ), ˆδi,h (Ip ) =maxd ˜δi (d, Ip ), for all samples
˜δ (d, Ip ) in the subset Sδ (Ip ).

3. Bootstrapping γ Bδ,1 and γ Bδ,2 for each time index t

for t = 1, . . . ,K do
for j = 1, . . . ,NB do
Get the statistics of residual vector for the j-th re-sampled set,

¯δ
j
c (t , Ip ), Σ̂δ (t , Ip ), E

j
[δcδ

T
c (t , Ip )] by

picking up the corresponding entries for time index t from ¯δ j (Ip ), Σ̂δ (Ip ), and E
j
[δcδ

T
c ](Ip ).

Calculate γ
j
δ,1 (t , Ip ) = argmin

γ1

( ¯δ
j
c (t , Ip ))

T (Σ̂
j
δ (t , Ip ))

−1 ¯δ
j
c (t , Ip ), and

γ
j
2
(t , Ip ) = argmin

γ2

Ej [δcδ
T
c (t , Ip )] ⩽ γ2Σ̂δ (t , Ip ).

end for
Get the ⌈NB (1 − αh )⌉-th largest value of γ

j
δ,1 (t , Ip ) and γ

j
δ,2 (t , Ip ) , j = 1, . . . ,Nb , as γ

B
δ,1 (t , Ip ) and

γ Bδ,2 (t , Ip ), respectively.

end for
Output: Distributionally uncertainty set (18) for prediction function fr

This leads to the following two major challenges. (1) It is not only necessary to index those

mobility requests, but also to reflect their spatial-temporal dynamic properties on the employed

index. (2) It is also a real burden to do that while achieving high efficiency. Since the grid structure

enforces a fixed partitioning schema with fixed boundaries regardless of the data distributions, we

build our solution based on a different but dynamic index structure, the quad-tree [15].

The quad-tree [15] is known as a dynamic hierarchical data structure, where the space is recur-

sively decomposed into disjoint equal-sized partitions. Each non-leaf node has 2
d
children, where

d is the number of dimensions, typically d = 2 for modeling the spatial dimensions. For spatial

data, a non-leaf node A that covers a rectangle determined by ((xmin ,ymin ), (xmax ,ymax )) is spa-
tially divided into adjacent disjoint nodes: ((xmin ,ymin ), (xmid ,ymid )), ((xmid ,ymid ), (xmax ,ymax )),
((xmid , ymin ), (xmax , ymid )), and ((xmin , ymid ), (xmid , ymax )), where xmid = avд(xmin , xmax ) and
ymid = avд(ymin ,ymax ). A leaf node stores a maximum of M points or items which are within

its boundaries. If the number of items exceeds the threshold, the node splits. The quad-tree is
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unbalanced, but it has good support for skewed data. Practically, real-world spatial data sets are

highly skewed.

Both the quad-tree and grid files can be classified as space partitioning techniques, as opposed

to data partitioning techniques (e.g., R-tree [20]). The advantage of using a quad-tree to index

the demand locations is that a quad-tree provides data-sensitive clustering while partitioning the

underlying space and time. It is also efficient in handling data sparseness which occurs when some

regions have dense data points, (i.e., pick up requests), and others have few. In addition, unlike the

static and fixed partitions produced by the grid structure, the partitions produced by quad-tree are

dynamic depending on the distribution of the underlying data set. This means for the same given

space if the data points changed, the resultant regions from quad-tree partitioning will vary in

shapes, sizes, and numbers.

Here, we leverage a 3d-quad-tree. Two dimensions are used to store the taxi pickup locations

and the third represents the time of the day, i.e., the three dimensions for partitioning data include

(latitude, lonдitude, time − interval ). The time dimension is divided into fixed time intervals to

provide a fair comparison with the grid structure, and the (latitude, lonдitude ) dimensions are

partitioned according to the non-leaf node split process described above. In the experiments we use

various values of time intervals to show the effect of fixed time interval partitioning on the quality

of the modeling process, or the uncertainty of the distribution function of the random demand

vector.

In this work, we evaluate a dynamic space partition method using a quad-tree that is compatible

with the distributionally robust vehicle balancing problem (8) and the distributional set construction,

Algorithm 1. The quad-tree based method further reduces idle distance according to experiments.

4 COMPUTATIONALLY TRACTABLE FORM
In this section, we derive the main theorem of this work — an equivalent computationally tractable

form of the distributionally robust optimization problem (8) via strong duality. Only JE (X
1:τ , rc )

part of problem (8) is related to the random demand rc . The objective function of (8) is convex over

the decision variables and concave (linear) over the random parameter, with decision variables on

the denominators. This form is not a linear programming (LP) or a semi-definite programming

(SDP) problem examined by previous work [7, 8, 12]. Hence, the form of JD (X
k ) keeps the same

and the process of deriving a standard convex optimization problem that equivalent to problem (8)

is mainly to analyze the JE (r
k ,X 1:τ ) part, as shown in the following theorem.

Theorem 4.1. The distributionally robust resource allocation problem (8) with a distributional
set (10) is equivalent to the following convex optimization form

min. β (v + t ) +
τ∑

k=1

JD (X
k )

s.t.
[
v + (y+

1
)T r̂c,l − (y−

1
)T r̂c,h

1

2
(q − y − y1)

T

1

2
(q − y − y1) Q

]
⪰ 0

t ⩾ (γ B
2
Σ̂c + r̂c r̂

T
c ) ·Q + r̂

T
c q +

√
γ B

1
∥Σ̂1/2

c (q + 2Qr̂c )∥2
aik

(Ski )
α
⩽ yki , y = [y1

1
,y1

2
, . . . ,yτ

1
,yτ

2
, . . . ,yτnτ ]

T ,

y1 = y
+
1
− y−

1
, y+

1
,y−

1
,y ⩾ 0, Q ⪰ 0

X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈ Dc .

(20)
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Taxi Trip Data

Collecting Period Data Size Record Number

01/01/2010-12/31/2013 100GB 700 million

Data Format

Trip Information Time Resolution Trip Locations

Start and end points Second GPS coordinates

Table 3. New York city data used in this evaluation section.

Proof. See Appendix 7.1.
Specifically, with the constraints of problem (8) to represent the constraint X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈

Dc in (20), we have a computationally tractable form for the distributionally robust taxi dispatch

problem (8).

5 EVALUATIONS WITH TAXI TRIP DATA
We evaluate the performance of the distributionally robust vehicle balancing framework (8) consid-

ered in this work based on four years of taxi trip data in New York City (NYC) [14]. Information for

every record includes the GPS coordinators of locations, and the date and time (with precision of

seconds) of pick up and drop off locations, as summarized in Table 3. We construct distributional

uncertainty sets according to Algorithm 1 and Algorithm 2, solve (20), the equivalent convex

optimization form of problem (8) to get vehicle balancing solutions across regions. Region is par-

titioned by either static equal-area grid or dynamic quad-tree method, demand is predicted by

either direcly use the average value of historical data or ARIMA model (19). After reaching the

dispatched regions, we assume that drivers pick up the nearest passenger, and add this inside region

idle distance to the across-region idle distance of all taxis for calculating the total idle distance. We

use taxi operational data for experiments because this data set is public, contains information about

peoples’ mobility pattern, and we show the advantage of vehicle service provided according to

our framework by bridging the gap between demand data to a balanced supply. The application of

our framework does not need to be restricted to taxis, it can be autonomous mobility-on-demand

systems [40], or bike sharing [32], depending on what kind of demand data is available. Balancing

autonomous vehicles with a predicted demand probability distribution in a city outperforms other

vehicle dispatch algorithms such as nearest-neighbor or collaborative taxi dispatch algorithm

in the literature, as compared based on NYC data [40]. Though not considering any prediction

uncertainties, applying the estimation of future demand to make decisions still improves mobility

service systems’ performance. Hence, we only compare our method that considers uncertainties of

demand probability distributions with the method of using the predicted demand model as the true

demand model in this section.

How does the number of samples affect the distribution set: We partition the map of NYC

into different number of equal-area grids to compare the values of γ B
1
and γ B

2
of Algorithm 1.

Algorithm 1 captures information about the support, the first and second moments of the random

demand, αh = 0.1. We show the value of γ B
1
and γ B

2
with different values of sample number NB and

the dimension of rc (τn) in Table 4. When the value of NB is increased, values of γ B
1
and γ B

2
are

reduced, which means the volume of the distributional set is smaller. For a large enough NB , the

value of τn does not affect γ B
1
and γ B

2
much.
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γ B
1

γ B
2

NB = 10 n = 50,τ = 2 0.739 5.24

NB = 100 n = 50,τ = 2 0.368 2.47

NB = 1000 n = 50,τ = 3 0.013 1.56

NB = 5000 n = 50,τ = 6 0.012 1.49

Table 4. Comparing thresholds γ B
1
and γ B

2
for different NB and dimensions of rc
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Fig. 2. The average cost of cross-validation tests for the distributionally robust solutions via solving (20)

("DRO" line), two types of uncertainty sets of the robust solutions (lines SOC and Box) and non-robust
solutions.

5.1 Performance of Distributionally Robust Solutions
To compare the average performance of different methods, we use the idea of cross-validation

from machine learning. All data is separated as a training subset for constructing the uncertain

distribution set and a testing subset for comparing the true vehicle balancing costs for each

time of testing. We compare three vehicle balancing methods, include the distributionally robust

framework (8), the robust method of [26], and the non-robust method with the average requests

number during each unit time as the demand model [25] (equivalent to the passenger arrival rate

of a queueing model in each unit time [40, 41]). The optimal cost of each method is a weighted

sum of the demand-supply ratio mismatch error and estimated total idle driving distance. For each

testing sample rk from the data set, we use the demand-supply ratio mismatch error (4) to measure

how well the optimal solution balances the vehicle toward the true supply. The idle distance of

each taxi between two trips with passengers is approximated as the distance between one drop-off

event and the following-up pick-up event.

We compare the average costs of cross-validation tests in Figure 2. The average costs show

the performance when we applying the optimal solution of each method to balance taxis under

all testing samples of rc aggregated from weekdays’ data from 5pm-8pm. The region partition

method is static equal-area grid partition and the distributional uncertainty set is constructed via

algorithm 1. The minimum average cost of a second-order-cone (SOC) robust solution [26] is close

to the average cost of the distributionally robust solutions of (20). They both use the first and

second moments information of the random demand. In particular, the average demand-supply

ratio mismatch error is reduced by 28.6%, and the average total idle driving distance is reduced

by 10.05%, the weighted-sum cost of the two components is reduced by 10.98% compared with

non-robust solutions.

In Figure 2, robust solutions with the box type of uncertainty set and the SOC type of uncertainty

set provide a desired level of probabilistic guarantee — the probability that an actual dispatch cost

under the true demand vector being smaller than the optimal cost of the robust vehicle balancing

solutions is greater than (1 − ϵ ). However, they do not directly minimize the average performance

of the solutions and we need to tune the value of ϵ and test the average cost. The horizontal lines
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Fig. 3. One-hour IntervalQuad-Tree for Taxi
Pickups

Fig. 4. Half-hour IntervalQuad-Tree for Taxi
Pickups

show the average cost of distributionally robust solutions and non-robust solutions, since these

costs are irrelevant to ϵ . The average cost of solutions of (20) is always smaller than costs of robust

balancing solutions based on the box type uncertainty set, which only uses information about the

range of demand at each region. This result indicates that the second order moment information of

the random variable should be included for modeling the uncertainty of the demand and calculating

an optimal solutions. The distributionally robust method (8) directly provides a better guarantee

for the average performance under uncertain demand, and the SOC robust method designed in [26]

provides a probabilistic guarantee for the worst-case performance at a single point of the demand

space.

5.2 Grid Partition Compared withQuad-Tree Partition
As provided in Figure 3, the quad-tree covers from −75.37 to −73.29 for longitude and from 40.11

to 41.04 for the latitude in New York city area. The time in this figure is divided into one-hour

intervals. Figure 4 gives a snapshot for the quad-tree partitions when we change the time dimension

to be in 30-minute intervals, which is different from the one-hour quad-tree in Figure 3. The red

dots in both figures represent taxi-requests distributed over the space and time of the day. We fixed

the time interval as 2 hours down to 15 minutes as shown in Table 5, and get different partitions on

(longitude, latitude) dimensions. We then use demand vectors after these partitions to calculate the

uncertain set of probability distributions for 5-8pm of weekdays, to show the effect of time-interval

length on the quality of the quad-tree.

Table 5 shows the comparison of γ B
1
and γ B

2
values with a dynamic quad-tree partition method

and a static simple equal-area grid partition method for different values of time interval t . When the

values are smaller, the volume of the uncertainty set is smaller. After region partition and pick-up

events aggregation, the demand of each hour is predicted by directly calculating the average of

all training data. For the following experiments, we use the same values of τ = 4, Ns = 1000, and

αh = 0.1.
According to the results of t = 2 h and t = 1 h shown in Table 5 for weekdays’ demand data

from 5pm to 8pm, we conclude that the granularity of time also affects demand prediction accuracy.

When the length of one time instant is appropriate, the quad tree partition method improves the

accuracy of demand prediction. The volume of uncertainty sets shrink, with smaller γ B
1
and γ B

2

values when we use the quad tree partition method, according to the results when t = 50 m,

t = 40 m, and t = 30 m. However, when the length of one time instant is too short, predicting

demand based on the quad tree method is worse than that based on the simple equal-area grid
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Grid Quad-Tree Change Rate

t = 2 h, γ B
1

0.016 0.021 31.25%

t = 2 h, γ B
2

1.73 2.05 18.50%

t = 1 h, γ B
1

0.0130 0.0110 −15.38%

t = 1 h, γ B
2

1.56 1.35 −13.46%

t = 50 m, γ B
1

0.0128 0.0107 −16.41%

t = 50 m, γ B
2

1.53 1.32 −13.73%

t = 40 m, γ B
1

0.0125 0.0102 −18.40%

t = 40 m, γ B
2

1.49 1.26 −15.44%

t = 30 m, γ B
1

0.0121 0.0095 −21.49%

t = 30 m, γ B
2

1.46 1.21 −17.12%

t = 20 m, γ B
1

0.0119 0.120 0.84%

t = 20 m, γ B
2

1.41 1.48 4.96%

t = 15 m, γ B
1

0.0120 0.123 2.50%

t = 15 m, γ B
2

1.40 1.50 7.14%

Table 5. Comparison of γ B
1
and γ B

2
values with a dynamic quad-tree partition method and a static equal-area

grid partition for different time intervals t , where unit "h" means hour and "m" means minute. Change Rate
is calculated via (VQuad−T ree −VGrid )/VGrid , where V{ · } means the values in the corresponding column.

Region division Grid Quad-tree change rate

t = 1h 7.63 × 10
4

6.62 × 10
4

13.1%

t = 30m 6.84 × 10
4

5.47 × 10
4

20.0%

Table 6. Comparison of average total idle distance (weekdays 5pm-8pm) with distributionally robust dispatch
solutions by solving (20) (equivalent form of (8)).

partition. The values of γ B
1
and γ B

2
for time lengths t = 20 m and t = 15 m show that the values of

γ B
1
and γ B

2
are increased by quad tree partition.

In Table 6, we compare the average total idle distance with distributionally robust dispatch

solutions by solving (20) (equivalent form of (8)), based on equal-area grid region partition and

quad-tree region partition methods. For a fixed time interval of 1 hour, quad-tree region partition

method can reduce average total idle distance by 13.1%, and for a fixed 30-minutes interval, the

reduction rate is 20%. This is about a 30% or 60 million miles reduction of total idle distance or 8

million cost reduction annually for all taxis in NYC, compared with the method of balancing taxis in

the city with average requests number that does not consider demand uncertainties. By partitioning

the regions with a data-sensitive quad-tree method from the beginning, the distributional set better

captures the spatial-temporal properties of demand. The performance of the data-driven vehicle

balancing method is then significantly improved.

5.3 Time series demand prediction and distributional uncertainty sets
In this subsection, we show the demand prediction error at different time of one day using the

ARIMA time series model (19), the demand distributional uncertainty sets constructed based on

Algorithm 2 based on grid and quad-tree region partition methods, and considering demand

prediction uncertainties reduces the total idle distance of all taxis in NYC compared with service

provided by not consideirng prediction uncertainties. In the previous experiments, demand at each

time t is predicted directly as the average value of historical demand at time t , and the uncertainty

set is built according to the bootstrapped mean and covariance estimation in Algorithm (1). Though
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13

24

42

Fig. 5. Heatmap of demand in Manhattan area:
lighter meansmore demand. Regions 13,24,and 42
via grid partition (50 regions in total) are denoted
in the right figure.
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mand predicted by ARIMA model in region 42 in
one day. The error rate at each hour is from 4% to
35%.

Arima model or similar time series models in the literature such as [27] provides a relatively more

accurate model, still there exist random errors and considering prediction uncertainties benifit the

vehicle dispatch decisions.

We first compare the true demand and predicted demand via ARIMA model (19) for different

time of weekdays in Figures 6, 7, and 8. Figure 5 shows a static equal-area grid region partition for

Manhattan area and the positions of Regions 13, 24, and 42. Downtown and midtown Regions 13

and 24 are relatively busier especially during daytime compared with Region 42. The prediction is

more accurate than directly

When demand is predicted by (19) and uncertainty sets are constructed by Algorithm 2, Table 7

shows the comparison ofγ Bδ,1 andγ
B
δ,2 values with a dynamic quad-tree partition method and a static

simple equal-area grid partition method for different values of time interval t . When the values are

smaller, the volume of the uncertainty set is smaller. For other parameters of the experiments, we

use τ = 4 for weekdays’ 5 − 8 pm, Ns = 1000, and αh = 0.1 for all comparison.

When the length of one time instant is appropriate, the quad tree partition method improves

the accuracy of demand prediction. The volume of uncertainty sets shrink, with smaller γ Bδ,1 and

γ Bδ,2 values when we use the quad tree partition method, according to the results when t = 50 m,
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Grid Quad-Tree Change Rate

t = 2 h, γ Bδ,1 0.015 0.019 26.67%

t = 2 h, γ Bδ,2 1.67 2.02 20.96%

t = 1 h, γ Bδ,1 0.0127 0.0106 −16.54%

t = 1 h, γ Bδ,2 1.53 1.31 −14.38%

t = 50 m, γ Bδ,1 0.0125 0.0103 −17.60%

t = 50 m, γ Bδ,2 1.51 1.30 −14.00%

t = 40 m, γ Bδ,1 0.0123 0.0101 −17.89%

t = 40 m, γ Bδ,2 1.47 1.23 −16.33%

t = 30 m, γ Bδ,1 0.0119 0.0092 −22.70%

t = 30 m, γ Bδ,2 1.45 1.19 −17.93%

t = 20 m, γ Bδ,1 0.0120 0.121 0.83%

t = 20 m, γ Bδ,2 1.42 1.47 3.52%

t = 15 m, γ Bδ,1 0.0121 0.123 1.70%

t = 15 m, γ Bδ,2 1.43 1.51 5.59%

Table 7. Demand predicted by ARIMA model: comparison of γ Bδ,1 and γ Bδ,2 values with a dynamic quad-tree
partition method and a static equal-area grid partition for different time intervals t , where unit "h" means
hour and "m" means minute. Change Rate is calculated via (VQuad−T ree −VGrid )/VGrid , where V{ · } means
the values in the corresponding column.

Region division Grid Quad-tree change rate

t = 1h 7.15 × 10
4

6.36 × 10
4

11.05%

t = 30m 6.58 × 10
4

5.29 × 10
4

19.60%

Table 8. Demand predicted by ARIMA model: comparison of average total idle distance (weekdays 5pm-8pm)
with distributionally robust dispatch solutions by solving (20) (equivalent form of (8)).

t = 40 m, and t = 30 m. However, when the length of one time instant is too long such as t = 2 h

and t = 1 h, or too short, such as t = 20 m and t = 15 m, predicting demand based on the quad tree

method is worse than that based on the simple equal-area grid partition. The values of γ Bδ,1 and

γ Bδ,2 are increased by the dynamic region partition method. Table 7 also shows the generality and

compatatibility of the dynamic quad-tree region partition method with different demand prediciont

models.

When demand is predicted by ARIMA model (19), we compare the average total idle distance

with distributionally robust dispatch solutions by solving (20) (equivalent form of (8)), based on

equal-area grid region partition and quad-tree region partition methods in Table 8. For a fixed time

interval of 1 hour, quad-tree region partition method can reduce average total idle distance by

11.05%, and for a fixed 30-minutes interval, the reduction rate is 19.60%. When we use grid method

for region partitioning, compared with vehicle dispatch decisions not considering the demand

prediction error by model (19), the average total idle driving distance is reduced by 7.68%, though

the ARIMA model is more accurate than the bootstrapped average demand model we use in Table 6

(the idle distance reduction rate of the distributionally robust and non-robust solusions is 10.05%).

Hence, using a data-sensitive quad-tree method from the beginning for region partition and a

distributional set better captures the spatial-temporal correlated uncertainties of demand helps
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to reduce the totle idle distances, even the demand prediction model is a relatively accurate time

series model. They together provides a 27% mileage reduction compared with grid-region partition,

ARIMA demand prediction without considering model uncertainties.

5.4 Carpool
6 CONCLUSION
Vehicle balancing strategies coordinate vehicles to fairly serve customers from a system-wide

perspective, and reduce total idle distance to serve the same number of customers compared with

strategies without balancing. However, the uncertain probability distribution of demand predicted

from data affects the performance of solutions and has not been considered by previous work. In

this paper, we design a data-driven distributionally robust vehicle balancing method to minimize

the worst-case average cost under uncertainties about the probability distribution of demand. Then

we design an efficient algorithm to construct a distributional set given a spatial-temporal demand

data set, and leverage a quad-tree dynamic region partition method to better capture the dynamic

properties of the random demand. We prove an equivalent computationally tractable form of the

distributionally robust problem under the constructed distributional set. Evaluations show that the

average demand-supply ratio mismatch error is reduced by 28.6%, and the average total idle driving

distance is reduced by 10.05%, compared with non-robust solutions. With quad-tree dynamic region

partitions, the average total idle distance is reduced by 20% more. In the future, we will design

hierarchical vehicle balancing strategies for heterogeneous vehicle networks.
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7 APPENDIX
7.1 Proof of Theorem 4.1

Proof. We have
aik

(Ski )
α > 0 and rc ⩾ 0 by the definitions of JE in (5) and the demand model, then

for any vector y ∈ Rnc , y = [y1

1
,y1

2
, . . . ,yτ

1
,yτ

2
, . . . ,yτnτ ]

T
that satisfies 0 < aik

(Ski )
α ⩽ yki , we also have

0 ⩽
∑τ

k=1

nk∑
i=1

aik rki
(Ski )

α ⩽ yT rc ,

and the second inequality strictly holds when all

aik rki
(Ski )

α = yki , for i = 1, . . . ,nk , k = 1, . . . ,τ . The

constraints of problem (8) are independent of rc , hence, for any rc , the minimization problem

min.
X k

β
τ∑

k=1

nk∑
i=1

aikr
k
i

(Ski )
α
+

τ∑
k=1

JD (X
k )

s.t X [1,τ ], S [1,τ ],V [2,τ ],O [2,τ ] ∈ Dc

is equivalent to

min.
X k

βyT rc +
τ∑

k=1

JD (X
k )

s.t.

aik

(Ski )
α
⩽ yki , y ∈ R

nc ,

y = [y1

1
,y1

2
, . . . ,yτ

1
,yτ

2
, . . . ,yτnτ ]

T ,

X 1:τ , S1:τ ,V 2:τ ,O2:τ ∈ Dc

(21)

In this proof, we use the objective function of problem (21). In particular, only the part of yT rc is
related to rc , and we first consider the following maximization problem

max

rc∼F ,F ∈F
E[yT rc ] (22)

By the definition of problem (8) and problem (21), only the objective function includes the random

vector rc , and is concave of rc , convex of X
k
for k = 1, . . . ,τ . The distributional set F constructed

by Algorithm 1, the domain of y, X 1:τ
, S1:τ

, V 2:τ
, and O2:τ

are convex, closed, and bounded sets.

Hence, problem (22) satisfies the conditions of Lemma 1 in [13], and the maximum expectation

value of yT rc for any possible rc ∼ F where F ∈ F equals the optimal value of the problem

min.

Q,q,v,t
v + t

s.t. v ⩾ yT rc − r
T
c Qrc − r

T
c q, ∀rc ∈ [r̂c,l , r̂c,h]

t ⩾ (γ B
2
Σ̂c + r̂c r̂

T
c ) ·Q + r̂

T
c q +

√
γ B

1
∥Σ̂1/2

c (q + 2Qr̂c )∥2

Q ⪰ 0.

(23)

Hence, we first analytically find the optimal value of problem (23). Note that the first constraint

about v is equivalent to v ⩾ f (r ∗c ,y), where f (r ∗c ,y) is the optimal value of the following problem

max.

rc
yT rc − r

T
c Qrc − r

T
c q

s.t. r̂c,l ⩽ rc ⩽ r̂c,h .
(24)
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For a positive semi-definite Q , the optimal solution of problem (24) exists. The Lagrangian of (24)

under the constraint y+
1
,y−

1
⩾ 0 is

L (rc ,y
+
1
,y−

1
) =yT rc − r

T
c Qrc − r

T
c q + (y+

1
− y−

1
)T rc − (y+

1
)T r̂c,l + (y−

1
)T r̂c,h .

When Q ⪰ 0, the supreme value of the Lagrangian is calculated via taking the partial derivative

over rc , let ∆rcL = 0, and

sup

rc
L (rc ,y

+
1
,y−

1
) =

1

4

(q − y − y1)
TQ−1 (q − y − y1) − (y+

1
)T r̂c,l + (y−

1
)T r̂c,h ,

y1 =y
+
1
− y−

1
, y+

1
,y−

1
⩾ 0.

Then the first inequality constraint of problem (23) for any r̂c,l ⩽ rc ⩽ r̂c,h is equivalent to

v ⩾
1

4

(q − y − y1)
TQ−1 (q − y − y1) − (y+

1
)T r̂c,l + (y−

1
)T r̂c,h .

By Schur complement, the above constraint is

[
v + (y+

1
)T r̂c,l − (y−

1
)T r̂c,h

1

2
(q − y − y1)

T

1

2
(q − y − y1) Q

]
⪰ 0

Together with other constraints, the equivalent convex optimization form of problem (8) is prob-

lem (20). □
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