
Chapter 6: Index Structures for Files

index - access structure used to speed up retrieval of recoreds
external to the data

allows quick access to a record using a specified field as a search criterion
- hashing from Ch 4 only permits this kind of access to key attribs

index structure - usually defined on a single field - indexing field
- stores each value of the field along with a list of pointers to the blocks that

contain records with that field value
- values in index structure are ordered - binary search is possible

- smaller than entire file so binary search more efficient

types of indexes:
- primary index: specified on an ordering key field

ex: TOY db - customer file - ordered on CUST_NUM - indexing field
index structure contains pointer to the block containing the
 corresponding CUST_NUM value

- clutering index: if several records in the file can have the same value for the
ordering field

- secondary index: specified for non-ordering fields

Primary Indexes:
- two fields in the structure
- first field is of the same data type as the key ordering field of the data file
- second field is a pointer to a disk block
- one index entry for each block in the data file - total number of entries in the

index file is the number of disk blocks in the ordered data file
- non-dense index: fewer index entries than data records

- each index entry contains:
key value of the first record in the block pointed to by the pointer in the
second field
- first record in each block of the data file is the anchor record

(draw picture here - use TOY db)

- Problems with primary index: insertion/deletion of records
- have to change some index entries since anchor records may change
- possible solutions:

- use an unordered overflow file
- linked list of overflow records for each block
- use deletion markers for deletion

Example:
Given: r = 30000 records; B=1024 bytes/block; R=100 bytes/record
Compute:
bfr = floor(B/R) = floor(1024/100) = 10 records/block
blocks needed for file = b = ceiling(r/bfr) = ceiling(30000/10) = 3000 blocks
binary search: #accesses approx = ceiling(log2b) = ceiling(log23000) = 12 block

accesses
size of ordering field V = 9 bytes; size of block pointer P = 6 bytes; size of each

index entry Ri = 6 + 9 = 15 bytes
bfr for index = floor(1024/15) = 68 entries/block
#entries in index = 3000 (number of blocks in file)
blocks needed for index = bi = ceiling(ri/bfri) = ceiling(3000/68) = 45 blocks
binary search:#accesses approx = celing(log2bi) = ceiling(log245) = 6 block

accesses
additional block access to search for record totals 7 block accesses (better than 12)

Clustering Indexes:
- clustering field - data file sorted on a non-key field - may not be unique
- use clustering index to speed up retrieval on such a file
- clustering index has one entry for each distinct value of the clustering field

- index entry contains a pointer to the first block in the data file that has
the corresponding field value in it

(draw picture - use TOY db - assume TOY file is sorted by manufacturer)

- insertion problem can be handled by reserving a whole block for each value of
the clustering field - link together all blocks needed to store data with
that value

- non-dense index because it has one entry for each unique value of the clustering
field

Secondary Indexes:
- the first field of a secondary index is the same type as a non-ordering field of

the data file
- second field is a block pointer or record pointer

- secondary index on a key field (having distinct values for each entry in data
file)
- called secondary key
- one index entry for each record in the data file - dense index
- index ordered on the key field - can do binary search

(draw picture)

- with record pointers - index points directly to the location of the field
- blocks pointers - index points to the block containing the field - do
linear search once block is moved to main memory

- secondary index on non-key field - 3 possible solutions:
1) include several index entries with same value - one for each record in
data file - dense index

2) variable length records for index entries - list of pointers for each
index value

3) sindle entry for each index field value - pointer field points to a block
of record pointers indicating all records in the data file containing the
index field value

- secondary index usually larger than primary - so longer search
- BUT - gain is greater since without it a linear search of the whole data
file would be necessary

Multilevel Indexes:
- indexes of indexes - goal is to reduce the search space
- with single level indexes we have an ordered file on which we can perform a

binary search
- binary search reduces search space by a factor of 2 for each step
- log2b accesses to find the desired entry (b = # blocks)

- multilevel indexes reduce the search space by a factor of bfr each time
- logfob accesses - fo = fanout = blocking factor

- first level of a multilevel index must be an ordered file of distinct values
- create a primary index to the first level -becomes the second level

- one entry for each block in the first level index file
- repeat this process for the second level creating a third level index
- continue until all entries of some index fit in a single block - top level
- a multilevel index with r entries in the first level will have t levels where

t=ceiling(logfor)
- derive this: each level reduces the number of index entries by a factor
of fo
- since we want to reduce until there is only one block we use the

formula: 1 <= (r/(fo)t)

(draw picture - use from book)

Example:
Convert primary index of previous example into a multilevel index
Given: r = 30000 records; B=1024 bytes/block; R=100 bytes/record
bfri = fo = 68 entries/block; #blocks in first level index = b1 = 45 blocks
Compute:

b2 = ceiling(b1/fo) = ceiling(45/68) = 1
second level is top level
#accesses = 1 block at each level + 1 data block access = 2 + 1 = 3
better than 7 accesses of single level index

- Problem: insertion/deletion again
- Solution - dynamic multilevel indexes - leave space at end of each block for

inserting

Dynamic Multilevel Indexes using B-Trees and B+-Trees:
Search Tree - of order p

- each node contains <= p-1 search values and q <= p children
- at each node: < P1, K1, P2, K2, ..., Pq-1, Kq-1, Pq >

where: P1 ... Pq are pointers to subtrees
K1 < K2 < ... < Kq-1 are key values
subtree pointed to by Pi has key values between Ki-1

 and Ki (assuming values are unique)

(draw picture example)

- Problem: insertion can make tree unbalanced (all leaf nodes not at
same level) - deletion can cause wasted space

B-Tree - solves these problems
- search tree with additional constraints (that solve the above problems)
- of order p
-each node contains <= p-1 search values and q <= p children
- at each node:

< P1, <K1, Pr1>, P2, <K2, Pr2>, ..., Pq-1, <Kq-1, Prq-1>, Pq>
where: Pi is a pointer to a subtree

Ki is a key value
Pri is a data pointer to record containing search key

value Ki
K1 < K2 < ... < Kq-1
for X search key value in subtree pointed to by Pi:

if i = 1, X < Ki
if i = q, X > Ki-1
else Ki-1 < X < Ki

At most p tree pointers
At least ceiling(p/2) tree pointers

- root has at least 2 unless only node in tree
q-1 search key field values (data pointers)

- all leaf nodes are at the same level - null tree pointers

- insertion and deletion algs are not detailed - B+-Tree algs are because
more widely used

(draw picture)

B+-Tree - most commonly used

- data pointers stored only at leaf nodes - point to block where data is
located if unique (otherwise to block of pointers)
- structure of leaf nodes different from internal nodes
- leaf nodes are linked to provide sequential access to records as well as
access to individual records
- leaf nodes correspond to base level of multilevel indexes - internal
nodes correspond to higher level indexes
- each internal node:

< P1, K1, P2, K2, ... , Pq-1, Kq-1, Pq>
q <= p
Pi is a tree pointer

K1 < K2 < ... < Kq-1
for X search key value in subtree pointed to by Pi:

if i = 1, X <= Ki
if i = q, X > Ki-1
else (1 < i < q) Ki-1 < X <= Ki

At most p tree pointers
At least ceiling(p/2) tree pointers

- root has at least 2 if it is internal
q pointers, q <= p, q-1 search field values

- each leaf node:
<<K1, Pr1>, <K2, Pr2>, ... , <Kq-1, Prq-1>, Pnext>

q <= p
Pri is a data pointer
Pnext points to next leaf node

K1 < K2 < ... < Kq-1
At least floor(p/2) values

- all leaf nodes are at the same level

- pointers in internal nodes are tree pointers to blocks that are tree nodes
- pointers in leaf nodes are data pointers to the dat file records or blocks

- except for Pnext - pointer to next leaf node

- Advantage over B-tree:
-internal nodes do not include data pointers, so can have more
 entries per node - greater fanout for index files

- Search/insertion/deletion algorithms in book - look if you want

(draw picture)

