
Chapter 12 – Object Database Standards, Languages and Design

See Ch 11 for Object-Oriented Concepts (much is review from typical OO Programming)

ODMG Model

- Object Data Management Group

- data model on which ODL and OQL are based

- provides standard data model for object-oriented databases

- Objects and Literals

- Basic building blocks of the object model

- Object has both object identifier and state (current value)

- Value can have complex structure

- state can change over time by modifying value(s)

- Object describe by 4 main characteristics:

- Identifier – unique system wide identifier

- Name – unique name within database – sometimes used as entry points to database

- Lifetime – persistent (database object) or transient (program object)

- Structure – how the object is constructed – atomic or collection object

- Literals – 3 types

- Atomic – values of basic data types – long, short, unsigned, etc.

- Structured – constructed like a C++ struct

- Ex: pre-defined structured type Timestamp

Interface Timestamp : Object {
 unsigned short year();
 unsigned short month();
 unsigned short day();
 unsigned short hour();
 unsigned short minute();
 unsigned short second();
 unsigned short millisecond();
 Timestamp plus(in Interval some_Interval);
 Timestamp minus(in Interval some_Interval);
 boolean is_equal(in Time other_time);
 boolean is_greater(in Time other_time);
}

- ODMG keyword interface for type or class

- Collection – specifies a value that is a collection of objects or values

- Collection does not have an object id – members do

- Set, bag, list,array, dictionary (look-up table)

- Built-in operations:

- Is_empty(), insert_element(e), remove_element(e), contains_element(e)

- Create_iterator() – creates iterator object that can iterate over each element in

collection

- Reset() – resets iterator at first element of collection

- Next_position(), get_element()

- More about specific types of collection objects in book

- All objects in the ODMG object model inherit the basic interface Object

- basic operations are inherited by all objects – ex:

- copy – creates new copy of object

- delete

- same_as - compares to another object

- operations applied using dot notation – myObject.same_as(p)

- type inheritance – uses colon notation

- Atomic (user-defined objects)

Example: Parts/Suppliers database from EER handout:

Class Product
(extent all_products
 key prod_num)
{
 attribute string name;

 attribute string prod_num;
 attribute string description;

 attribute date date_produced;
 attribute enum Color{red, blue, green, yellow} color;

 attribute set struct Parts {
 int quantity,
 Part part
} parts;

 relationship Purchased Item is_for

inverse PurchasedItem::is_for;
 void add_product(string name, string prod_num)

raises (prod_name_not_valid);
 void add_part(Part new_part);
}

- use keyword class

- any user-defined object that is not a collection is an atomic object

- ex: In a parts-suppliers database (see EER handout) – specify object type for Product object

- 3 parts of a user-defined object - attributes, relationships and operations

- attribute – property that describes some aspect of an object

- have values – literals either simple or complex

- can also be object-ids of other objects

- ex: prod_num – simple; parts – complex and other objects

- relationship – property that specifies two objects in DB are related to each other

- only binary relationships

- pair of inverse references via keyword relationship

- some relationships (ER type) are modeled as an attribute in an object (ex: parts)

- operations – specify behavior of the object

- specify names of exceptions that can occur during operation execution

- Interfaces and Classes

- interface – specification of abstract behavior of an object

- specifies operation signatures

- non-instantiable

- used for specifying abstract operations that will be inherited by classes or other interfaces

- behavior inheritance – specified with “:” symbol

- class – specification of abstract behavior and abstract state of an object state

- instantiable

- behavior and state inheritance – uses “extends” keyword

- supertype and subtype are classes

- multiple inheritance not allowed with “extends”

- can have multiple inheritance by inheriting any number of interfaces, and at most one class

- Extents

- set object that holds all persistent objects of the class

- enforces set/subset relationship between extents of superclass and its subclasses

- Keys

- key consists of one or more properties (attributes or relationships) whose values are constrained to

be unique for each object in the extent

- composite key – made up of several properties

- Factory Object

- generate or create individual objects via its operations

- interface ObjectFactory – single operation new()

- user-defined objects can inherit this interface to become factory objects

- provides constructor operations for new objects

class ProductFactory : FactoryObject {
 ...
}

- Database

- interface DatabaseFactory – to create new database objects

- interface Database

- has own name

- bind operation to assign unique names to persistent objects in a database

- lookup – returns object with specified name

- unbind – removes name from database

- Object Definition Language – ODL

- independent of any programming language

- used to create object specifications

- example above is in ODL notation

- several possible mappings from an object schema diagram (ER or EER) into ODL classes

- entity types mapped to ODL classes

- inheritance done using extends

- no direct way to map unions or do multiple inheritance

- read chapter for more details of mapping

- Object Query Language – OQL

- syntax similar to SQL – with extensions for ODMG concepts

- designed to work closely with languages which have a ODMG binding

- some sample queries here – we won’t have time for too much detail

- Sample queries

Q0: SELECT P.NAME

FROM P IN PRODUCTS

WHERE P.COLOR = “BLUE”

- entry point to database needed for a query – any named persistent object

- usually the name of the extent of the class

- iterator variable – P in example –

- type of result – bag<string> since we are selecting P.NAME

- in general – result of a query is a bag for select ... from set for select distinct ... from

Q1: products

- any persistent name is a query – result is a reference to that object

- Q1 returns reference to a collection of all persistent product objects

- if we give a particular product object a name – “widget” – through bind – we could do the following

Q1a: widget

- this would return a reference to the object

- Once an entry point is specified – path expression can be used to specify a path to related attributes

Q2: widget.color

Q2a: widget.parts

Q2b: widget.is_for

- can specify a query that results in a complex structure using struct keyword

Q3: order123.customer.custname

Q3a: select struct(custname:struct(last_name:c.name.lname, first_name:c.name.fname))

from c in order123.customer

- retrieves the name from the customer of order123

- Specifying views as named queries

V1: define colored_products(color) as

SELECT P

FROM P IN PRODUCTS

WHERE P.COLOR = color

- can write a query: colored_products(“green”)

- can select single elements from collections:

Q4: element (select p

from p in products

where p.name = “widget5”)

- guaranteed to return a single element – if more than one is in the result, exception is raised

- aggregate functions and quantifiers

Q5: count (p in colored_products(“blue”))

Q6: avg (pi.quantity

from pi in PurchasedItem

where pi.is_for.color = “blue”)

- membership condition

Q7: select c.custname.lname, c.name.fname

from c in customer

where “blue” in

(select p.name

from p in c.orders.consists_of.is_for)

-

-

-

