Chapter 3: Entity Relationship Model

ER-Model
- conceptual schema design
- high-level data model used to design database
- independent of implementation – can map to several lower level data models (relational, object-oriented, etc)

- main units:
 - entity – basic object of ER model – represents real world thing – rectangle in diagram
 - attribute – properties of an entity – ovals in diagram
 - relationship – defines set of associations among entities – diamond in diagram

- ex: TOY entity – attributes – name, msrp, num_in_stock, etc.
- toy has relationship with manufacture – made-by (or makes)

- Attributes:
 - Simple – not decomposable – ex: toy’s price
 - composite – made of smaller, simple attributes – ex: address = street, city, state; contact = name, email
 - hierarchy of attributes in diagram
 - multivalued attribute – can have more than one value for same entity
 - ex: age_group – if made for more than one specified group
 - ex: location of manufacturer
 - double-lined oval in diagram
 - derived – computed from the values of other attributes
 - ex: age – computed from child’s birthdate
 - ex: # toys ordered computed from other data in the db
 - complex attribute – arbitrary nesting of multi-valued attributes
 - ex: location for manuf – multiple locations, each of which is composite
 - ex: customer may have multiple addresses/ phones
 - value sets of attribute (domain)
 - specifies allowable values for attributes
 - not in ER diagrams
 - null-valued attribute – no applicable value for the attribute for a specific entity
 - ex: ages for customer with no children
 - has three possible interpretations:
 - not applicable
 - unknown
 - missing

- entity type
 - describes the set of entities that have the same attributes
 - set of entity types defines part of database schema
 - key attribute:
 - entity type has a key attribute that defines each instance of the entity type uniquely (underlined in diagram)
 - single attribute – toy_num
 - combination – man_name+phone
 - key constraint – uniqueness on all extensions
- can have multiple keys – man_num and above combination
- can have not keys – weak entity type – more on this later
- entity set (extension) – of entity type = set of instances of entity type

- Relationships
- relationship type R among n entity types E1,…,En defines set of associations among entities of from these types (relationship set)
- instance r of a relationship type R associates n entities (e1,…,en) of types E1,…,En
 - e1,…,en participate in r
- ex: each instance of orders relationship associates one customer with one toy
- note: each relationship does not necessarily associate two unique entities

 (cust1) ---------------- OB1 ----------------------(toy1)
 (cust2) -----------------OB2 ----------------------(toy2)
 (cust3) -----------------OB3 ---------------------/

 - both cust2 and cust3 have ordered toy2
 - degree of this relationship type is 2 – associates two entity types (toy and cust)

- relationships with attributes
 - representing information about the relationship
 - ex: orders – date, quantity, etc.

- relationships as attributes:
 - alternative way to represent relationships
 - put attributes in one or both entities
 - ex: makes ➔ attribute in TOY – MAN_ID

- relationship roles
 - each entity type that participates in a relationship plays a role
 - ex: orders: cust – orderer; toy – thing ordered
 - when same entity participates more than once, role names are required
 - ex: [employee] ------manager------<supervises>--------emp----------[employee]
 - recursive relationship – relationship associates two entities of the same type
 - ex: [person]-------husband------<married>--------wife--------[person]

- Constraints on relationships
 - Cardinality
 - How many relationship instances an entity can participate in
 - 1-N: a single entity can relate to multiple other entities
 - ex: makes – each toy is made by a single manufacturer (1); each manufacturer makes multiple toys (N)
 - 1-1: single entity can relate to one other entity
 - ex: married (above)
 - ex: employee manages department
 - M-N: multiple entities can relate to multiple other entities
 - Ex: orders – each toy can be ordered by multiple customers; each customer can order multiple toys
 - No matter which cardinality, each instance of the relationship type
 - should only associate d entities, where d is the degree of the relationship
- Participation
 - specifies whether the existence of an entity depends on its relationship with another entity
 - total: every entity instance whose entity type participates in a relationship, must participate in a relationship instance
 - ex: every toy must be made by some manufacturer
 - represented by double line in diagram – on side of total part. Entity
 - partial: entity instance can stand alone – not in relationship
 - ex: not all toys must be ordered
 - represented by single line in diagram

- weak entity types – entity with no key attribute
 - must be associated with a strong entity type through a relationship – called its identifying relationship
 - must have total participation constraint – cannot exist without identifying relationship
 - ex: child attribute – no key attribute – must be related to a customer through parent relationship

- Design Guidelines
 - How to decide how to model a conceptual entity
 - Iterative refinement process
 - concept starts as attribute, but changes to relationship because of reference to another entity type
 - ex: put orders in customer entity – but find ref to toy
 - attribute in multiple entities may be refined into separate entity
 - ex: in university db – dept in student, course, prof., etc.
 - entity may be changed to attrib if it only has one attrib and related to one entity
 - ex: univ db – prof entity only has name and only related to dept. – make into attrib of course entity