Ch. 4 – Enhanced ER Model

- more complex requirements than traditional
 o design
 o www indexing, etc.
- need extra semantic data modeling concepts

Subclasses/Superclasses/Inheritance (hand out product & airport examples)

- subclass of an entity type
 o subgrouping by which additional semantics exist for subclass
 o subclass/superclass relationship – also called IS-A relationship
 o member entity of subclass represents SAME real-world entity as member of superclass
 o ex:

 o subclass member is same entity as superclass member – in a specific role

 o entity can be member of more than one subclass
 - ex: university DB – grad student is a person, also a student, also an employee
 o all members of superclass do not need to members of a subclass

- type inheritance
 o subclass inherits all attributes and relationship participation from its superclass

- Specialization / Generalization
 o Specialization – process of defining set of subclasses of an entity type
 o Subclasses defined on basis of some distinguishing characteristic of members of the superclass
 - Ex: part relationship – specialization based on whether part was manufactured or bought
 - Use subset symbol to indicate direction of specialization
 o Subclasses can have:
 - Specific attributes – unit cost / standard lot size
 - Specific relationship types – raw materials made of
specialization allows us to:
- define set of subclasses of an entity
- define specific attributes and relationship types

- Generalization – reverse process
 - Start with distinct entity types and find common features and generalize into single superclass
 - Ex: define entity types car, truck, van – notice that they all have VIN, Price, license#
 - Generalize to form vehicle entity type

- Which way is best?
 - Depends on how the DB is designed – on semantics
 - Many times a combination – start in middle – work both ways

Constraints and Characteristics of SP and GE:

- How to determine membership of entity in a subclass:
 - Some specializations use value of an attribute to determine which subclass a member belongs to
 - Predicate defined subclass – membership in a subclass based on the value of a predicate
 - Ex: TYPE = “single”

 - TYPE = “single”, “prop”, etc. is the defining predicate
 - each subclass could have a different predicate, possibly on a different attribute

 - Constraint: members of PROP subclass must satisfy the predicate
 - TYPE=”prop”
 - All entities of AIRPLANE whose attrib value of TYPE is “prop” must belong to the subclass

 - Attribute-defined specialization – all subclasses have membership condition on same attribute – above example – all on TYPE

 - User-defined specialization – no condition specified – up to user to determine how to specialize
- **Disjointness constraint** – subclasses of a specialization must be disjoint
 - Denoted with a “d” in the circle
 - Each entity can be a member of at most one subclass
 - If attribute-defined and attribute is single-valued – disjointness is automatic

- Otherwise – **overlap** can occur – same entity can be in more than one subclass
 - O in circle (for overlap)
 - Ex: Univ. DB – secretary subclass of person, student subclass of person – can represent the same entity

- **Completeness constraint**
 - Total – every member of superclass must be in a subclass
 - Ex: every airplane has to be one of the subclasses
 - Double-line from superclass to circle denotes this in diagram
 - Partial – some entities don’t have to belong to a subclass, just superclass
 - Ex: employee entity (custodian, eg) no represented by one of the specializations (secretary, technician, engineer)

- **Insertion and deletion rules**
 - Deleting entity from superclass => automatic deletion from all subclasses
 - Inserting entity in superclass
 - If predicate-defined – automatically inserted in corresponding subclass
 - If total specialization – requires insertion in at least one subclass

- **Hierarchy / lattice**
 - Hierarchy – each subclass participates in only one superclass specialization
 - Lattice – subclass can have more than one superclass
 - Multiple inheritance – (show student lattice – fig. 4.7)
 - Attributes existing in more than one superclass – inherited only once
 - Some inheritance mechanisms don’t allow mult. Inh.

Union Types – using categories

- **Modeling a single superclass/subclass relationship with more than one superclass**
 - superclasses represent different entities
 - subclass represents collection – subset of the union of distinct entity types
 - subclass called – union type (or category)
 - ex: ItemPurchased is a subclass of the collection of entities in the union
- category (union) can be total or partial:
 - total – every superclass entity must be a member of category subclass
 - double-line from circle to union category indicates total union subclass
 - ex:

```
  Building  Lot
     \   /     \
      U  \
   \ /
   Property
```

- partial – some superclass entities do not participate in this union
 - ex: every company is not necessarily an account holder

```
  Company  Person
     \   /     \
      U  \
   \ /
   Acct Holder
```