Ch. 4 – Enhanced ER Model

- more complex requirements than traditional
 - o design
 - o www indexing, etc.
- need extra semantic data modeling concepts

Subclasses/Superclasses/Inheritance

(hand out product & airport examples)

- subclass of an entity type
 - o subgrouping by which additional semantics exist for subclass
 - o subclass/superclass relationship also called IS-A relationship
 - member entity of subclass represents SAME real-world entity as member of superclass
 - o ex:

- o subclass member is same entity as superclass member in a specific role
- entity can be member of more than one subclass
 - ex: university DB grad student is a person, also a student, also an employee
- o all members of superclass do not needto members of a subclass
- type inheritance
 - subclass inherits all attributes and relationship participation from its superclass
- Specialization / Generalization
 - o Specialization process of defining set of subclasses of an entity type
 - Subclasses defined on basis of some distinguishing characteristic of members of the superclass
 - Ex: part relationship specialization based on whether part was manufactured or bought
 - Use subset symbol to indicate direction of specialization
 - Subclasses can have:
 - Specific attributes unit cost / standard lot size
 - Specific relationship types raw materials made of

- specialization allows us to:
 - define set of subclasses of an entity
 - define specific attributes and relationship types
- Generalization reverse process
 - Start with distinct entity types and find common features and generalize into single superclass
 - Ex: define entity types car, truck, van notice that they al have VIN, Price, license#
 - Generalize to form vehicle entity type
- Which way is best?
 - Depends on how the DB is designed on semantics
 - Many times a combination start in middle work both ways

Constraints and Characteristics of SP and GE:

- How to determine membership of entity in a subclass:
 - Some specializations use value of an attribute to determine which subclass a member belongs to
 - <u>Predicate defined subclass</u> membership in a subclass based on the value of a predicate
 - Ex: TYPE = "single"

- TYPE = "single", "prop", etc. is the defining predicate
- each subclass could have a different predicate, possibly on a different attribute
- Constraint: members of PROP subclass must satisfy the predicate TYPE="prop"
 - All entities of AIRPLANE whose attrib value of TYPE is "prop" must belong to the subclass
- <u>Attribute-defined specialization</u> all subclasses have membership condition on same attribute – above example – all on TYPE
- <u>User-defined specialization</u> no condition specified up to user to determine how to specialize

- Disjointness constraint subclasses of a specialization must be disjoint
 - Denoted with a "d" in the circle
 - Each entity can be a member of at most one subclass
 - o If attribute-defined and attribute is single-valued disjointness is automatic
- Otherwise <u>overlap</u> can occur same entity can be in more than one subclass
 - O in circle (for overlap)
 - Ex: Univ. DB secretary subclass of person, student subclass of person can represent the same entity
- Completeness constraint
 - Total every member of superclass must be in a subclass
 - Ex: every airplane has to be one of the subclasses
 - Double-line from superclass to circle denotes this in diagram
 - Partial some entities don't have to belong to a subclass, just superclass
 - Ex: employee entity (custodian, eg) no represented by one of the specializations (secretary, technician, engineer)
- Insertion and deletion rules
 - Deleting entity from superclass => automatic deletion from all subclasses
 - Inserting entity in superclass
 - If predicate-defined automatically inserted in corresponding subclass
 - If total specialization requires insertion in at least one subclass
- Hierarchy / lattice
 - Hierarchy each subclass participates in only one superclass specialization
 - Lattice subclass can have more than one superclass
 - \circ Multiple inheritance (show student lattice fig. 4.7)
 - Attributes existing in more than one superclass inherited only once
 - Some inheritance mechanisms don't allow mult. Inh.

Union Types - using categories

- Modeling a single superclass/subclass relationship with more than one superclass
 - superclasses represent different entities
 - subclass represents collection subset of the union of distinct entity types
 - subclass called union type (or category)
 - o ex: ItemPurchased is a subclass of the collection of entities in the union

- category (union) can be total or partial:
 - o total every superclass entity must be a member of category subclass
 - o double-line from circle to union category indicates total union subclass
 - ex:

- o partial some superclass entities do not participate in this union
 - ex: every company is not necessarily an account holder

