Chapter 7: The Relational Data Model and Relational Algebra

Relational model developed by Codd (1970)
- popular because
 - formal model
 - simple and uniform structure
 - good compromise between physical db and “real world” domain

Relational Model Concepts:
- relational model represents database as a collection of relations
- informally thought of like a table - rows and columns (some differences we will see)
- domain D is a set of atomic values (indivisible as far as model is concerned)
 - can specify a data type from which the data values are drawn
 - examples: Names, Prices, Dates
- data type or format also specified for each domain
 - Names: string of characters up to 20 long
 - Prices: real number between 0.00 and 1000.00
 - Dates: char string of the form dd/dd/dd where each d is a numeric digit and together they form a valid calendar date

- relation schema R
 \[R(A_1, A_2, \ldots, A_n) \]
 - made up of relation name R and list of attributes \(A_1, A_2, \ldots, A_n \)
 - each attribute \(A_i \) is the name of a role played by some domain \(D \) in \(R \)
 - \(D \) is called the domain of \(A_i \) - \(\text{dom}(A_i) \)
 - example:
 \[
 \text{TOY(TOY_NUM, NAME, MAN_ID, MSRP, AGE_GROUP, NUM_IN_STOCK, SOLD_YTD)}
 \]
 - TOY is the name of the relation
 - 7 attributes
 - domains: \(\text{dom(TOY_NUM)} = \text{number between 000 and 999} \)
 \[
 \text{dom(NAME)} = \text{Names} \\
 \text{dom(MSRP)} = \text{Prices}, \ etc.
 \]

- relation (relation instance) \(r \) of \(R \) (denoted \(r(R) \))
 - a set of n-tuples \(r = \{ t_1, t_2, \ldots, t_m \} \)
 - each n-tuple is an ordered list of n values \(t = <v_1, v_2, \ldots, v_n> \)
 - \(v_i \) is an element of \(\text{dom}(A_i) \) or is null
 - alternate def: \(r(R) \) is a subset of the Cartesian product of the domains that define \(R \)
 - \(r(R) \) subset \(\text{dom}(A_1) \times \text{dom}(A_2) \times \ldots \times \text{dom}(A_n) \)
 - specifies all possible combinations of values from the domains
 - current relation state -reflects the current state of the real world - the current values of the tuples in the relation
 - can change as the state of the environment changes

- relation schema is relatively static

Notes: (how is a relation different from a file?)
1) Tuples in a relation do not have any particular order
 - can be viewed in order to make logical sense
 - the file in which the relation is stored is physically ordered
2) Logical ordering of attributes in the schema is not important as long as
 the corresponding values in the relation instance are in the same order
 - define \(r(R) \) as a finite set of mappings \(r = \{ t_1, t_2, \ldots, t_m \} \)
 each \(t_i \) is a mapping from \(R = \{ A_1, A_2, \ldots, A_n \} \) to
 \[D = \text{dom}(A_1) \cup \text{dom}(A_2) \cup \ldots \cup \text{dom}(A_n) \]
 - each mapping is a tuple
 - tuple is a set of \(\langle \text{attribute}, \text{value} \rangle \) pairs
 - ordering of attributes not important
 - using the previous def on a relation in which attributes are
 ordered is simpler - this mapping definition is more general
3) Each value in a tuple is atomic - not divisible into parts
 - First normal form assumption
 - needed for formal representation of relational databases
 - later research addressed the possibility of composite
 attributes - now some db’s allow it
4) Several interpretations of a relation:
 - AI: relation schema as an assertion and each tuple as a fact
 about the object or relationship
 - ex: schema of CUSTOMER asserts that each customer
 has a number, name, address, etc.
 - the first tuple in the file asserts the fact that
 Karen Smith lives at 42 Kenmore Rd and has 4
 children
 - logic: relation is a predicate
 - the values in each tuple are interpreted as values
 that satisfy the predicate
 - ex: stating TOY(011,Farm House, FP, 29.95,...) implies
 that this predicate is true

Given all of the possible ways of expressing and interpreting a relation, we
explicitly specify our notation that we will use throughout the chapter

- relation schema of degree \(n \): \(R(\text{A}_1, \text{A}_2, \ldots, \text{A}_n) \)
- \(n \)-tuple \(t \) in \(r(R) \): \(t = \langle v_1, v_2, \ldots, v_n \rangle \), \(v_i \) value wrt \(\text{A}_i \)
- \(t[\text{A}_i] \) : value in \(t \) for \(\text{A}_i \)
- \(t[\text{A}_u, \text{A}_w, \ldots, \text{A}_z] \): substuple of values in \(t \) correspoinding to the
 attributes listed
- \(q, r, s \) denote relation names
- \(q, r, s \) denote relation states
- \(t, u, v \) denote tuples
- name of tuple (ORDER) refers to the current relation state; name with
 attribute names (ORDER(Order_Num, Cust_Num, Toy_Num,...)) refers
 to the relation schema
- dot notation may be used: ORDER.Order_Num

Ex: tuple \(t = \langle 5035, 002, 325, 2, 08/21/95, 12 Eastgate Ames, IA, \)
\(00/00/00 \rangle; \ t[\text{Date Ordered}] = \langle 08/21/95 \rangle;
\(t[\text{Date Ordered, Deliv}] = \langle 08/21/95, 00/00/00 \rangle \)
Key attributes of a relation:
- No two tuples of a relation may have exactly the same values - must be distinct
- superkey of relation R: a subset of attributes of a relation R such that no two
tuples in any relation instance r of R has the same combination of values
for the attributes in the subset
 - let SK denote such a subset, then for any tuples \(t_1 \neq t_2 \), \(t_1[SK] \neq t_2[SK] \)
 - ex: from TOY db - SK = \{TOY_NUM, SOLD_YTD\}
- key of relation R: a superkey of R such that removing any attribute results in a
 set that is not a superkey (minimal superkey)
 - ex: the above SK is a superkey of the TOY relation, but it is not a key
 because removing SOLD_YTD would yield another superkey
- the value of a key attribute uniquely identifies a tuple in a relation
- a relation schema can have more than one key
 - each key is called a candidate key
 - primary key is the key used to identify tuples in the relation
 - usually the one with the fewest attributes
 (by convention, primary key is underlined in notation)
 - ex: imagine the CUSTOMER relation has customer number and SS# -
 both are unique, but for the purposes of this db we use cust num as
 primary key

Definitions:
- relational database schema S: a set of relation schemas \(S = \{R_1, R_2, \ldots, R_m\} \) and a
 set of integrity constraints IC
- relational database DB of S: a set of relation instances \(DB = \{r_1, r_2, \ldots, r_m\} \) such
 that each \(r_i \) is an instance of \(R_i \), and each \(r_i \) satisfies constraints in IC
 - ex: the Toy Catalog relational database schema includes the relation schemas
 TOY, CUSTOMER, MANUFACTURER and ORDER
 - the instances of these relations make up the relational database

Constraints in a relational db:
- domain constraints - specify that values of an attribute must be from the
 specified domain
 - ex: MSRP attribute in TOY db must be in the Prices domain
- key constraints - all tuples in a relation must be distinct - existence of at least
 one key attribute
- entity integrity constraint - no primary key value can be null
- referential integrity constraint - specified between two relations - a tuple in one
 relation that refers to another relation must refer to an existing tuple i
 nthat relation
 - ex: in the TOY relation, the value of the attribute MAN_ID must exist as
 a MAN_ID in the MANUFACTURER relation

- def: a set of attributes FK in relation schema \(R_1 \) is a **foreign key** of \(R_1 \)
 if:
 1) attributes of FK have the same domain as the primary key
 attributes PK of another relation schema \(R_2 \)
 2) for every tuple \(t_1 \) of \(R_1 \), either \(t_1[FK] = \text{null} \) or \(t_1[FK] = t_2[PK] \)
 for some \(t_2 \) of \(R_2 \)
in the above example, MAN_ID is a foreign key of the TOY relation refering to the primary key MAN_ID in the MANUFACTURER relation
- note: the keys do not have to have the same name, but it is allowed

(draw a picture to show the referential integrity constraints in the toy catalog database)

Update Operations: insert, delete, modify
- each can violate one or more of the above constraints - how are these violations handled
- INSERT
- provides a list of attribute values to be inserted as a new tuple
- can violate domain constraints if values not in required domain
 ex: insert <055, volleyball, FP, -9.0, ...> into TOY
- can violate key constraints if try to insert a key value already existing
 ex: insert <001, Joe Kennedy, ...> into CUSTOMER
- can violate entity integrity constraint if key value is null
 ex: insert <null, 001, 325, ...> into ORDER
- can violate referential integrity if foreign key value refers to a tuple that does not exist
 ex: insert <044, volleyball, GC, ...> into TOY
- handle these violations by rejecting the insertion or allowing the user to attempt to fix the cause of the violation
- DELETE
- removes a tuple from the relation
- can violate referential integrity if a foreign key in a tuple in another relation contains the value of the primary key of the deleted tuple
 ex: delete MAN_ID = FP would violate ref int of TOY tuples with TOY_NUM = 011 and 221
- fix it by rejecting the deletion or attempting to cascade the deletion (delete any tuple that refers to the deleted tuple) or modifying the remaining foreign key values (null it out)
- MODIFY
- change the values of one or more attributes in a relation
- specify a condition to select the tuple
- if not modifying a primary key or foreign key - only domain constraints can be violated
- if primary key modified- comes down to deleting one tuple and inserting another -see above for issues
- if foreign key - referential integrity constraints can be violated

The Relational Algebra:
- a set of operations used to manipulate entire relations

SELECT - used to select a set of tuples in the relation using a selection condition

\[\sigma_{<\text{selection-condition}>}(<\text{relation-name}>) \]

- selection condition is a Boolean expression made up of clauses of the form:
 <attrib-name> <comparison-operator> <attrib-name>, or
 <attrib-name> <comparison-operator> <constant-value>
- result is a relation with the same attributes as the one specified in relation-name

ex: $\sigma_{\text{MAN} _\text{ID} = \text{FP}} (<\text{TOY}>) = \{(011, \text{FARM HOUSE, FP, 29.95,...}),
(221, \text{EXERSAUCER, FP, 45.00,...})\}$

$\sigma_{\text{NUM} _\text{CHILDREN} > 5} (<\text{CUSTOMER}>) = \{ \}$

$\sigma_{(\text{DATE} _\text{ORDERED} < 07/30/96) \text{ AND } (\text{DATE} _\text{DELIVERED} = 00/00/00)} (<\text{ORDER}>)$

- select conditions cannot apply to more than one relation at a time
- the fraction of tuples selected is the selectivity of the condition

PROJECT - used to select certain attributes of a relation

$\pi_{\text{attrib-list}} (<\text{relation-name}>)$

- resulting relation has only those attributes listed - and all tuples
- degree equal to the number of attribs in list
- implicitly removes any duplicate tuples

ex: $\pi_{\text{TOY} _\text{NUM}, \text{NUM} _\text{IN} _\text{STOCK}} (<\text{TOY}>) = \{(011,18),
(302,50),(325,12),(221,254)\}$

- if the resulting relation has a key in the list, it has the same number of tuples as the original
- commutativity does not hold

Combinations of operations - two choices:
1) Write the desired request in one complex composite operation
2) Write each operation separately and name each intermediate resulting tuple

ex: Find the name of every toy between $10.00 and $30.00.

1) $\pi_{\text{NAME}} (\sigma_{(\text{MSRP} \geq 10.00) \text{ AND } (\text{MSRP} \leq 30.00)} <\text{TOY}>)$

2) MID_PRICE <- $\sigma_{(\text{MSRP} \geq 10.00) \text{ AND } (\text{MSRP} \leq 30.00)} <\text{TOY}>
\pi_{\text{NAME}}$<MID_PRICE>

- renaming attributes may be necessary for complex operations:

 NEW(\text{TOY} _\text{NAME}) <- π_{NAME}<MID_PRICE>

 - new relation called NEW has one attribute called TOY_NAME

Set Operations:
UNION: \(R_1(A_{11}, A_{12}, \ldots, A_{1n}) \) UNION \(R_2(A_{21}, A_{22}, \ldots, A_{2n}) = \{ t \mid t \in R_1 \) or \(t \in R_2 \) \)

R1 and R2 must be union compatible - degree \(A_1 = degree A_2 = n \)
- \(dom(A_{1i}) = dom(A_{2i}) \), for all \(i = 1..n \)
- duplicates are eliminated

- ex: \(\text{HIGH_PRICE} < \sigma(\text{MSRP}<10.00) <\text{TOY}> \)
\(\text{MID_PRICE} \) UNION \(\text{HIGH_PRICE} \)

- commutative and associative

INTERSECTION: \(R_1 \) INTERSECT \(R_2 = \{ t \mid t \in R_1 \) AND \(t \in R_2 \) \)

- ex: \(\text{FP_HIGH} < \sigma(\text{MAN_ID}=\text{FP}) <\text{TOY}> \)
- high priced toys made by Fischer Price

- commutative and associative

DIFFERENCE: \(R_1 - R_2 = \{ t \mid t \in R_1 \) AND \(t \not\in R_2 \) \)

- ex: \(\text{TOY} - \text{FP_HIGH} \)
- all toys not high priced made by FP

- not commutative or associative

CARTESIAN PRODUCT: \(R_1(A_{11}, A_{12}, \ldots, A_{1n}) \) X \(R_2(A_{21}, A_{22}, \ldots, A_{2m}) = R_1(A_{11}, A_{12}, \ldots, A_{1n}, A_{21}, A_{22}, \ldots, A_{2m}) \)

- result has one tuple for every combination of tuples from \(R_1 \) and \(R_2 \) - \# tuples = \(n\times m \)

- ex: \(\text{TOY} \times \text{CUSTOMER} : \)

\(\text{(TOY_NUM, NAME, MAN_ID, MSRP, AGE_GROUP, NUM_IN_STOCK, SOLD_YTD, CUST_NUM, NAME, ADDRESS, NUM_CHILDREN, AGES, LAST_ORDER_DATE)} \)

= 011 FARM HOUSE FP 29.95 18MOS-3YRS 18 2 011KAREN SMITH ...
011 FARM HOUSE FP 29.95 18MOS-3YRS 18 2 002 GEORGE GRANT ...

- problem: \(\text{NAME} \) appears twice - resolve this by changing attr names or by using alias - \(\text{TOY_NAME, CUSTOMER_NAME} \)
cartesian product not used very often, but combined with select, becomes join operation

JOIN: used to combine related tuples from different relations - denoted $\mathbf{\times}$

- Result $\leftarrow R_1 \mathbf{\times} \text{join-cond} R_2$
 - $\text{join-cond} = \text{cond} \text{ AND cond} ... \text{ AND cond}$
 where each cond is $A \theta B$
 - A attrib of R_1
 - B attrib of R_2
 - θ comparison operator
 - if θ is $=$, called equijoin

- ex: $\text{TOY} \mathbf{\times} \text{MAN_ID}=\text{MAN_ID} \text{ MANUFACTURER}$
 yields the relation:

 011 FARM HOUSE FP 29.95 18mos-3yrs 18 2 FP
 FISCHER PRICE 111 MAIN St. LANSING, MI
 (999)888-2345
 302 TODDLER TABLE PS 45.00 18mos-3yrs 50 18 PS
 PLAYSCHOOL 902 E. WILEY RD, DENVER, CO (699)929-3949
 etc.

- notice that there are two fields representing the manufacturers id in the resulting relation
- use natural join to alleviate this problem - eliminates duplicate attributes - denoted by *
 - two join attributes that represent the same entity should have the same name - use rename if not

- or use the following more general definition of natural join
- $Q \leftarrow R_1 *(\text{list1, list2}) R_2$
 - list1 and list2 are attribute lists where each consecutive attrib in the lists are compared with equality in the natural join

Operational Completeness: the set of operators: $\{\pi, \sigma, \text{UNION}, \mathbf{\times}, X\}$ is a complete set of relational operators
- that is, intersect and $\mathbf{\times}$ can be expressed in terms of these operators

Non-relational operators - not in relational algebra, but useful

Aggregate functions - SUM, AVERAGE, MAX, etc.
- group tuples based on values of given attributes and perform computations on group

$\langle\text{grouping-attrib}\rangle F\langle\text{function-list}\rangle(<\text{relation-name}>)$
- grouping-attrib - list of attributes
- function-list - list of <function> <attrib> pairs - perform function on attrib

- ex: RESULT(MAN_ID, AVERAGE_PRICE) <-
 MAN_ID F AVERAGE MSRP (TOY)

RESULT:

<table>
<thead>
<tr>
<th>MAN_ID</th>
<th>AVERAGE_PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>37.48</td>
</tr>
<tr>
<td>PS</td>
<td>45.00</td>
</tr>
<tr>
<td>FY</td>
<td>12.95</td>
</tr>
</tbody>
</table>

Recursive Closure - no recursive operation built in - must be done manually

OUTER JOIN: keep all tuples of one (or both) of the relations in the result

- left outer join |X| - keep all tuples of first relation and those that match from the second relation

- ex: list all customers and any pending orders

PENDING_ORDERS <- σ<(DELIV=00/00/00) ORDER CUST_ORDERS <-
 CUSTOMER |X| CUST_NUM=CUST_NUM
 PENDING_ORDERS

CUST_ORDERS:
 001 KAREN SMITH 42 KENMORE RD ...
 (NULL ORDER ATTRIBS)
 002 GEORGE GRANT 5 WOODFIELD ...
 5035 325 2 08/21/95 12 EASTGATE ...

- right outer join |X| - keep all tuples of second relation

OUTER UNION: take union of tuples from relations that are not union compatible
- attributes that are not union compatible from either relation are kept in the result
- tuples with no values for these attribs are padded with null values

Examples of Queries:

- look at examples in book using the Company database