
Real�Time Databases
�

Krithi Ramamritham

Dept� of Computer and Information Science

University of Massachusetts

Amherst� Mass� �����

February ��� ���	

Invited Paper � To appear in
International Journal of Distributed and Parallel Databases

Abstract

Data in real�time databases has to be logically consistent as well as temporally
consistent� The latter arises from the need to preserve the temporal validity of data

items that re�ect the state of the environment that is being controlled by the system�
Some of the timing constraints on the transactions that process real�time data come

from this need� These constraints� in turn� necessitate time�cognizant transaction
processing so that transactions can be processed to meet their deadlines�

This paper explores the issues in real�time database systems and presents an overview

of the state of the art� After introducing the characteristics of data and transactions in
real�time databases� we discuss issues that relate to the processing of time�constrained

transactions� Speci�cally� we examine di�erent approaches to resolving contention over
data and processing resources� We also explore the problems of recovery� managing

I�O� and handling overloads� Real�time databases have the potential to trade o� the
quality of the result of a query or a transaction for its timely processing� Quality can

be measured in terms of the completeness� accuracy� currency� and consistency of the
results� Several aspects of this tradeo� are also considered�

�This work was supported in part by NSF under grants CDA��������� IRI���	���	� and IRI����
����

�



Contents

� Introduction �

��� Databases and Real�Time Systems � � � � � � � � � � � � � � � � � � � � � � � �

��� Why Real�Time Databases� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Characteristics of Data in Real�Time Database Systems �

� Characteristics of Transactions in Real�Time Database Systems �

� Relationship to Active Databases ��

� Transaction Processing in Real�Time Database Systems ��

��� The Need for Predictability � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Dealing with Hard Deadlines � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Dealing with Soft Deadlines � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Priority Assignment and Con
ict Resolution � � � � � � � � � � � � � � ��

����� Commitment� Distribution� and Nested Transactions � � � � � � � � � �

	 Other Issues in Real�Time Database Systems ��

��� Managing I�O and Bu�ers � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Performance Enhancement� Trading o� Quality for Timeliness � � � � � � � � ��

��� Recovery Issues � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��	 Managing Overloads � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Conclusions �	

i



� Introduction

Many real�world applications involve time�constrained access to data as well as access to data

that has temporal validity� For example� consider telephone switching systems� network

management� program stock trading� managing automated factories� and command and

control systems� More speci�cally� consider the following activities within these applications�

looking up the ���� directory�� radar tracking and recognition of objects and determining

appropriate response� as well as the automatic tracking and directing of objects on a factory


oor� All of these involve gathering data from the environment� processing of gathered

information in the context of information acquired in the past� and providing timely response�

Another aspect of these examples is that they involve processing both temporal data� which

loses its validity after a certain interval� as well as archival data�

For instance� consider recognizing and directing objects moving along a set of conveyor

belts on a factory 
oor� An object�s features are captured by a camera to determine its type

and to recognize whether it has any abnormalities� Depending on the observed features� the

object is directed to the appropriate workcell� In addition� the system updates its database

with information about the object� The following aspects of this example are noteworthy�

First of all� features of an object must be collected while the object is still in front of the

camera� The collected features apply just to the object in front of the camera� i�e�� they lose

their validity once a di�erent object enters the system� Then the object must be recognized

by matching the features against models for di�erent objects stored in a database� This

matching has to be completed in time so that the command to direct the object to the

appropriate destination can be given before the object reaches the point where it must be

directed onto a di�erent conveyor belt that will carry it to its next workcell� The database

update must also be completed in time so that the system�s attention can move to the next

object to be recognized� If� for any reason� a time�constrained actions is not completed

within the time limits� alternatives may be possible� In this example� if feature extraction

is not completed in time� the object could be discarded for now to be brought back in front

of the camera at a later point in time� Applications such as these introduce the need for

real�time database systems�

During the last few years� the area of real�time databases has attracted the attention of

researchers in both real�time systems and database systems� The motivation of the database

researchers has been to bring to bear many of the bene�ts of database technology to solve

problems in managing the data in real�time systems� Real�time system researchers have

been attracted by the opportunity real�time database systems provide to apply time�driven

scheduling and resource allocation algorithms� However� as we shall see� a simple integration

�



of concepts� mechanisms� and tools from database systems with those from real�time systems

is not feasible� Even a cursory examination of the characteristics of database systems and the

requirements of real�time systems will point out the various forms of �impedance mismatch�

that exist between them� Our goal in this paper is to point out the special characteristics� in

particular the temporal consistency requirements� of data in real�time databases� and show

how these lead to the imposition of time constraints on transaction execution� Meeting these

timing constraints demands new approaches to data and transaction management some of

which can be derived by tailoring� adapting� and extending solutions proposed for real�time

systems and database systems� Hence� as we present the issues in real�time database systems�

we review recent attempts at developing possible approaches to addressing these issues�

This paper is divided into roughly three parts� The �rst part� corresponding to Sections

�� �� and 	� introduces real�time database systems� Section � discusses the characteristics of

data in real�time database systems while Section � presents the characteristics of transactions

in real�time database systems� Many of these remind us of active databases� Hence Section

	 is devoted to an examination of the relationship between active databases and real�time

databases to point out the additional features we need in active databases in order to make

them suitable for use in a real�time database context�

The second part of the paper� contained in Section �� discusses transaction processing

in real�time database systems� We review recent research in this area and show the need

to capitalize on� but adapt� current techniques from both real�time systems and database

systems�

The third part of the paper� contained in Section �� discusses a number of issues in real�

time databases some of which have seen little or no research� These include techniques to

trade o� timeliness for quality� recovery of real�time transactions� and managing resources

other than CPU and data� Section � summarizes the paper�

In the rest of this introduction� we examine those characteristics of databases and real�

time systems that are relevant to real�time database systems� We also point out the advan�

tages of using databases to deal with data in real�time systems�

��� Databases and Real�Time Systems

Traditional databases� hereafter referred to simply as databases� deal with persistent data�

Transactions access this data while maintaining its consistency� Serializability is the usual

correctness criterion associated with transactions� The goal of transaction and query pro�

cessing approaches adopted in databases is to achieve a good throughput or response time�

�



In contrast� real�time systems� for the most part� deal with temporal data� i�e�� data that

becomes outdated after a certain time� Due to the temporal nature of the data and the

response time requirements imposed by the environment� tasks in real�time systems possess

time constraints� e�g�� periods or deadlines� The resulting important di�erence is that the

goal of real�time systems is to meet the time constraints of the activities�

One of the key points to remember here is that real�time does not just imply fast� Recall

the story of the tortoise and the hare� The hare was fast but was �busy� doing the wrong

activity at the wrong time� Even though we would like real�time systems to be faster than

the tortoise� we do require them to possess its predictability� Also� real�time does not imply

timing constraints that are in nanoseconds or �seconds� For our purposes� real�time implies

the need to handle explicit time constraints� that is� to use time�cognizant protocols to deal

with deadlines or periodicity constraints associated with activities�

��� Why Real�Time Databases�

Databases combine several features that facilitate ��� the description of data� ��� the main�

tenance of correctness and integrity of the data� ��� e�cient access to the data� and �	� the

correct executions of query and transaction executions in spite of concurrency and failures�

Speci�cally�

� database schemas help avoid redundancy of data as well as of its description�

� data management support� such as indexing� assists in e�cient access to the data� and

� transaction support� where transactions have ACID �Atomicity� Consistency� Isolation�

and Durability� properties� ensures correctness of concurrent transaction executions

and ensure data integrity maintenance even in the presence of failures�

However� support for real�time database systems must take into account the following�

Firstly� not all data in a real�time database are permanent� some are temporal� Secondly�

temporally�correct serializable schedules are a subset of the serializable schedules� Thirdly�

since timeliness is more important than correctness� in many situations� �approximate� cor�

rectness can be traded for timeliness� Similarly� atomicity may be relaxed� For instance� this

happens with monotonic queries and transactions� which are the counterparts of monotonic

tasks ���� in real�time systems� Furthermore� many of the extensions to serializability that

have been proposed in databases are also applicable to real�time databases �See �	�� for a

review of these proposals�� Some of these assume that isolation of transactions may not

always be needed�

�



In spite of these di�erences� given the many advantages of database technology� it will

be bene�cial if we can make use of them for managing data found in real�time systems� In

a similar vein� the advances made in real�time systems to process activities in time could be

exploited to deal with time�constrained transactions in real�time database systems�

As illustrated by the examples cited at the beginning of this section� many real�time

applications function in environments that are inherently distributed� Furthermore� many

real�time systems employ parallel processing elements for enhanced performance� Hence

parallel and distributed architectures are ubiquitous in real�time applications and hence

real�time database systems must be able to function in the context of such architectures�

The above discussion indicates that while many of the techniques used in real�time sys�

tems on the one hand� and databases systems on the other hand� may be applicable to

real�time database systems� many crucial di�erences exist which either necessitate fresh ap�

proaches to some of the problems or require adaptations of approaches used in the two areas�

In the rest of the paper we will be substantiating this claim�

� Characteristics of Data in Real�Time Database Sys�

tems

Typically� a real�time system consists of a a controlling system and a controlled system� For

example� in an automated factory� the controlled system is the factory 
oor with its robots�

assembling stations� and the assembled parts� while the controlling system is the computer

and human interfaces that manage and coordinate the activities on the factory 
oor� Thus�

the controlled system can be viewed as the environment with which the computer interacts�

The controlling system interacts with its environment based on the data available about

the environment� say from various sensors� e�g� temperature and pressure sensors� It is

imperative that the state of the environment� as perceived by the controlling system� be

consistent with the actual state of the environment� Otherwise� the e�ects of the controlling

systems� activities may be disastrous� Hence� timely monitoring of the environment as well as

timely processing of the sensed information is necessary� The sensed data is processed further

to derive new data� For example� the temperature and pressure information pertaining to

a reaction may be used to derive the rate at which the reaction appears to be progressing�

This derivation typically would depend on past temperature and pressure trends and so

some of the needed information may have to be fetched from archival storage �a temporal

database �	���� Based on the derived data� where the derivation may involve multiple steps�

actuator commands are set� For instance� in our example� the derived reaction rate is used

	



to determine the amount of chemicals or coolant to be added to the reaction� In general�

the history of �interactions with� the environment are also logged in archival storage�

In addition to the timing constraints that arise from the need to continuously track the

environment� timing correctness requirements in a real�time �database� system also arise

because of the need to make data available to the controlling system for its decision�making

activities� For example� if the computer controlling a robot does not command it to stop or

turn on time� the robot might collide with another object on the factory 
oor� Needless to

say� such a mishap can result in a major catastrophe�

The need to maintain consistency between the actual state of the environment and the

state as re
ected by the contents of the database leads to the notion of temporal consistency�

Temporal consistency has two components �	�� 	��

� Absolute consistency � between the state of the environment and its re
ection in the

database�

As mentioned earlier� this arises from the need to keep the controlling system�s view

of the state of the environment consistent with the actual state of the environment�

� Relative consistency � among the data used to derive other data�

This arises from the need to produce the sources of derived data close to each other�

Let us de�ne these formally� Let us denote a data item in the real�time database by

d � �value� avi� timestamp�

where dvalue denotes the current state of d� and dtimestamp denotes the time when the obser�

vation relating to d was made� davi denotes d�s absolute validity interval� i�e�� the length of

the time interval following dtimestamp during which d is considered to have absolute validity�

A set of data items used to derive a new data item form a relative consistency set� Each

such set R is associated with a relative validity interval denoted by Rrvi�

Assume that d � R�

d has a correct state i�

�� dvalue is logically consistent � satis�es all integrity constraints�

�� d is temporally consistent�

� Absolute consistency� �current time � dtimestamp� � davi�

� Relative consistency� �d� � R� j dtimestamp � d�timestamp j � Rrvi�

�



Consider the following example� Suppose temperatureavi � �� pressureavi � ��� R �

ftemperature� pressureg� and Rrvi � �� If current time � ���� then �a� temperature �

��	�� �� �� and pressure � ���� ��� �� are temporally consistent� but �b� temperature �

��	�� �� �� and pressure � ���� ��� �� are not� In �b�� even though the absolute consistency

requirements are met� R�s relative consistency is violated�

Whereas a given avi can be realized by sampling the corresponding real�world parameter

often enough� realizing an rvi may not be that straightforward� This is because� achieving

a given rvi implies that the data items that belong to a relative consistency set have to be

observed at times close to each other�

Also� achieving an rvi along with the avi�s will mean that smallest of the avi�s of the data

items belonging to the relative consistency set will prevail� Consider the temperature and

pressure example� where both of them belong to R� The transactions writing temperature

and pressure� respectively� must always write them within � time units of each other� This

will implicitly lower the avi of pressure to ��

One way out of this predicament is to realize that relative consistency requirements result

from the need to derive data from data produced within close proximity of each other� Thus

meeting relative consistency requirements is necessary only when data is used to derive other

data� So rather than reducing the avi�s� we need to ensure that an rvi is satis�ed just when

a transaction is executed to derive new data�

If two data items belong to multiple relative consistency sets� the smallest of the rvi�s

will prevail� Suppose temperature and pressure also belong to relative consistency sets R�

where R�

rvi � �� Clearly� the timestamps of temperature and pressure must be within �

time unit of each other to satisfy the relative consistency requirements of R and R��

Another issue in this context relates to the manner in which timestamps of derived data

are set� Clearly� there will be some correlation between these timestamps and those of the

data from which new data is derived� One possibility is to assign the timestamp of d� derived

from data items in R to be equal to mind � R �dtimestamp� �	��� That is� derived data is only

as recent as the oldest data from which the derivation occurs� In general� however� temporal

validity criteria are likely to be application dependent and so the timestamp of derived data

can be stated as some function of those of the data in the corresponding R �	��

Let us pursue the relationships between avi�s and rvi�s further� Suppose data items u

and v are used to derive data items x and y which in turn are used to derive z� As we

saw earlier� zavi is derived from xavi and yavi� which in turn are derived from uavi and vavi�

Thus �z derived from� x� where derived from� is the transitive closure of the relation

derived from� Given the avi and the rvi of the derived data� the derived from� relation�

�



ship� and the function used to assign the timestamps of the derived data we can determine

the rvi and avi of the data items they are derived from�

This discussion shows the interrelationships between the derived from relationship� the

manner in which timestamps are set for derived data� and the composition of the relative

consistency sets� Furthermore� the observation that relative consistency is signi�cant only

when data is being derived is an additional consideration� Methodical approaches must be

developed to address this problem such that the system is not overconstrained� i�e�� temporal

consistency requirements are not stricter than necessary� This is important since� as we will

see in the next section� temporal consistency requirements translate into timing constraints

on transactions� and the more restrictive the temporal consistency requirements� the tighter

the time constraints� and the harder it is to satisfy them�

Before we conclude this section� it should be noted that avi and rvi may change with

system dynamics� e�g�� mode changes� For instance� while it is necessary to monitor tem�

perature and pressure closely� i�e�� have a small avi� during the early stages of a reaction� it

might be appropriate to increase the avi once the reaction reaches a steady state�

Given that integrity constraints are typically expressed via predicates and temporal con�

straints can also be expressed via predicates� we have a set of predicates to be satis�ed by

data� Why not use standard integrity maintenance techniques� The answer lies in observing

that while not executing a transaction will maintain logical consistency� temporal consistency

can still be violated� For instance� take case �b� in the the example discussed earlier� Here�

time has progressed to a point where temperature and pressure become temporally invalid

even if they are logically consistent�

Thus� to satisfy logical consistency we use concurrency control techniques such as two

phase locking ��� and to satisfy temporal consistency requirements we use time�cognizant

transaction processing � by tailoring the traditional concurrency control and transaction

management techniques to explicitly deal with time� To prepare the stage for discussing

how this is done �in Section ��� we present the characteristics of transactions next�

� Characteristics of Transactions in Real�Time Database

Systems

In the �rst part of this section� transactions are characterized along three dimensions based

on the nature of transactions in real�time database systems� the manner in which data

is used by transactions� the nature of time constraints� and the signi�cance of executing

a transaction by its deadline� or more precisely� the consequence of missing speci�ed time

�



constraints� Subsequently� we show how the temporal consistency requirements of the data

lead to some of the time constraints of transactions�

Real�time database systems employ all three types of transactions discussed in the database

literature� For instance�

� Write�only transactions obtain state of the environment and write into the database�

� Update transactions derive new data and store in the database�

� Read�only transactions read data from the database and send them to actuators�

The above classi�cation can be used to tailor the appropriate concurrency control schemes�

Some transaction time constraints come from temporal consistency requirements and

some come from requirements imposed on system reaction time� The former typically take

the form of periodicity requirements� For example�

Every �� seconds Sample wind velocity�

Every �� seconds Update robot position�

We show later in this section how the periodicity requirements can be derived from the avi

of the data�

System reaction requirements typically take the form of deadline constraints imposed on

aperiodic transactions� For example�

If temperature � ����

within �� seconds add coolant to reactor�

In this case� the system�s action in response to the high temperature must be completed by

�� seconds�

Transactions can also be distinguished based on the e�ect of missing a transaction�s

deadline� In this paper� we use the terms hard� soft and �rm to categorize the transactions�

Viewed di�erently� this categorization tells us the value imparted to the system when a

transaction meets its deadline� Whereas arbitrary types of value functions can be associated

with activities ����� we con�ne ourselves to simple functions as described below�

� Hard deadline transactions are those which may result in a catastrophe if the deadline

is missed� One can say that a large negative value is imparted to the system if a hard

deadline is missed�

These are typically safety�critical activities� such as those that respond to life or

environment�threatening emergency situations�

�



� Soft deadline transactions have some value even after their deadlines� Typically� the

value drops to zero at a certain point past the deadline� If this point is the same as

the deadline� we get �rm deadline transactions � which impart no value to the system

once their deadlines expire �����

For example� if components of a transaction are assigned deadlines derived from the

deadline of the transaction� then even if a component misses its deadline� the overall

transaction might still be able to make its deadline� Hence these deadlines are soft�

Another example is that of a transaction that is attempting to recognize a moving

object� It must complete acquiring the necessary information before the object goes

outside its view and hence has a �rm deadline�

Figure � plots the value vs� time behavior of di�erent types of transactions�

The processing of transactions must take their di�erent characteristics into account� Since

meeting time constraints is the goal� it is important to understand how transactions are

scheduled and how their scheduling relates to time constraints� So in the rest of this section�

we discuss how absolute validity requirements on the data induce periodicity requirements�

As we shall see� it is not as straight�forward as it seems�

Suppose the avi of temperature is ��� i�e� temperature must be no more than �� sec�

onds old� Consider one of the many possible semantics of transactions with period P � One

instance of the transaction must execute every period� as long as the start time and com�

pletion time lie within a period� the execution is considered to be correct with respect to

the periodicity semantics� Suppose a simple transaction takes at most e units of time to

complete� �� � e � P �� Thus� if an instance starts at time t and ends at �t � e� and the

next instance starts at �t � ��P � e� and ends at �t � ��P �� then we have two instances�

which are separated by ���P � units of time in the worst case� This� for example� will be the

case if the rate monotonic static priority approach� extended to deal with resources� �	�� 	��

is used to schedule periodic transactions executing on a main memory database� �Schedul�

ing is discussed in greater detail in Section ��� Thus� it follows from the above periodicity

semantics that to maintain the avi of temperature� the period of the transaction that reads

the temperature must be no more than half the avi� that is ��

Let us assume instead that periodic transactions are scheduled so that each instance of

a transaction is guaranteed to start at the same time� relative to the beginning of a period�

Then� the worst case separation between the start time of one instance and the �nish time

of the subsequent instance will be �P � ���e��� Since a transaction could write the relevant

data item any time during its execution� the interval �P � �� � e�� must be less than the

given avi� Thus� P � �avi � �� � e���





The above discussion illustrates the dependence of transaction timing constraints not only

on the temporal consistency requirements of the data but also on the execution times of the

transactions and the scheduling approach adopted� The overall issue is one of predictability

and we return to this in Section ��

Now we consider deriving transactions� timing constraints from relative consistency speci�

�cations� recall that they must hold when a transaction uses the data in a relative consistency

set to derive other data� So we must ensure that in an interval where such a transaction

executes� from the point where relative consistency holds until the end of the interval� there

is su�cient time for the transaction to complete execution� Handling rvi�s is clearly more

involved �	�� Also� when we have a series of data derivations� each derivation being handled

by a transaction� an alternative to using the rvi�s is to impose precedence constraints on the

transactions to conform with the derived�from relationship� Much work remains to be done

for methodically deriving transaction characteristics from the properties of the data�

� Relationship to Active Databases

Many of the characteristics of data and transactions discussed in the last two sections may

remind a reader of active databases� Hence this section is devoted to a discussion of the

speci�c distinctions between active databases and real�time databases�

The basic building block in active databases is the following�

ON event

IF condition

DO action�

Upon the occurrence of the speci�ed event� if the condition holds� then the speci�ed action

can be taken� This construct provides a good mechanism by which integrity constraints

can be maintained among related or overlapping data or by which views can be constructed

����� The event can be arbitrary� including external events �as in the case of real�time events

generated by the environment�� timer events� or transaction related events �such as the begin

and commit of transactions�� The condition can correspond to conditions on the state of

the data or the environment� The action is said to be triggered ���� ��� and it can be an

arbitrary transaction�

Given this� it is not di�cult to see that active databases provide a good model for

the arrival �i�e�� triggering� of periodic�aperiodic activities based on events and conditions�

Even though the above construct implies that an active database can be made to react

to timeouts� time constraints are not explicitly considered by the underlying transaction

��



processing mechanism�

However� as we have discussed before� the primary goal of real�time database systems

is to complete the transactions on time� One can thus state the main de�ciency in active

databases in relation to what is required for them to deal with time constraints on the

completion of transactions� time constraints must be actively taken into consideration�

Consider a system that controls the landing of an aircraft� Ideally� we would like to

ensure that once the decision is made to prepare for landing� necessary steps� for example� to

lower the wheels� to begin deceleration� and to reduce altitude� are completed within a given

duration� say �� seconds� Here the steps may depend on the landing path� the constraints

speci�c to the airport� and the type of aircraft� and hence may involve access to a database

containing the relevant information� In those situations where the necessary steps have not

been completed in time� we would like to abort the landing within a given deadline� say

within � seconds� the abort must be completed within the deadline� presumably because that

is the �cushion� available to the system to take alternative actions� This requirement can

be expressed as follows�

ON ��� seconds after �initiating landing preparations��

IF �steps not completed�

DO �within � seconds �Abort landing���

In summary� while active databases possess the necessary features to deal with many

aspects of real�time database systems� the crucial missing ingredient is the active pursuit of

the timely processing of actions�

� Transaction Processing in Real�Time Database Sys�

tems

In this section� we discuss various aspects of transaction and query processing where the

transactions and queries have characteristics discussed in Section �� i�e� they have time

constraints attached to them and there are di�erent consequences of not satisfying those

constraints�

A key issue in transaction processing is predictability� In the context of an individual

transaction� this relates to the question� �will the transaction meet its time�constraint�� We

discuss the sources of unpredictability in Section ��� and present ways by which the resulting

problems can be addressed� Section ��� deals with the processing of transactions that have

hard deadlines� while Section ��� deals with transactions that have soft deadlines�

��



��� The Need for Predictability

If a hard real�time transaction misses its deadline� it has catastrophic consequences� We can

also say that missing the deadline has a large negative value to the system� Thus� we would

like to predict beforehand that such transactions will complete before their deadlines� This

prediction will be possible only if we know the worst�case execution time of a transaction

and the data and resource needs of the transaction� In addition� it is desirable to have small

variance between the worst�case predictions and the actual needs� Predictability is also

important for soft deadline transactions� albeit to a lesser extent� In these cases� knowing

before a transaction begins that the transaction may not complete within its deadline allows

the system to discard the transaction� so that no time is spent on the transaction and no

recovery overheads are incurred�

In a database system� a number of sources of unpredictability exist�

� Dependence of the transaction�s execution sequence on data values�

� Data and resource con
icts�

� Dynamic paging and I�O� and

� Transaction aborts and the resulting rollbacks and restarts�

Distributed databases have additional problems due to communication delays and site fail�

ures� Below we elaborate upon these and point out ways by which individual problems

can be alleviated� Finally� we outline a technique that is being developed to address these

problems in the context of soft real�time transactions�

Since a transaction�s execution path can depend on the values of the data items it ac�

cessed� it may not be possible to predict the worst�case execution time of the transaction�

A similar problem arises for tasks in real�time systems� A similar solution applies� it is

advisable to avoid use of unbounded loops and recursive or dynamically constructed data

structures in real�time transactions� Since a real�time database is used in closed loop situa�

tions where the environment being controlled closes the loop� the data items accessed by a

transaction are likely to be known once its functionality is known�

Since a typical transaction accesses data as it is needed in the execution sequence� it

may be forced to wait until the data becomes available� Similarly� a transaction may be

forced to wait for resources� such as CPU and I�O devices� to become available� While both

these problems have their counterparts in real�time systems� the problems are exacerbated

in real�time database systems due to data consistency requirements� Speci�cally� consider

��



a database that employs strict two phase locking for concurrency control� In this case� a

transaction may wait� in the worst case for an unbounded amount of time� when it attempts

to acquire a data item� The cumulative delays can be very long� with deadlocks and restarts

it could even be unbounded� Con
ict avoiding data access protocols and the pre�allocation

of resources have been developed to reduce this problem in real�time systems� but they do

not apply directly to real�time database systems� We review some of these in Section ���

and show how it may be possible to adapt them in our context�

If disk�resident databases use demand�paged memory management� delays can occur

while accessing disks both for fetching both data and program pages� These can lead to

pessimistic worst�case scenarios since worst�case assumptions must be made about the need

to fetch data or program page from disk whenever the need arises� This will depend on

the disk scheduling and bu�er management algorithms used� Main memory databases ���

eliminate these problems�

Transaction rollbacks also reduce predictability� Assume that a transaction is aborted

and restarted a number of times before it commits� This has two negative consequences�

The total execution time for the transaction increases and� if the number of aborts cannot

be controlled� it may be unbounded� Second� the resources and time needed to handle

the rollbacks will be denied to other transactions� Recovery time can be reduced by using

semantics�based recovery discussed in Section �� Real�time database systems may introduce

transaction aborts due to deadline misses� One way to avoid these aborts is to begin a

transaction only if we know that it will complete by its deadline� We give an overview of

this approach below� Details can be found in �����

Preanalysis of a transaction is desirable because it provides an estimate of its compu�

tation time and data and resource requirements� But� for complex transactions this may

not be feasible� In this case� to get the necessary information about a transaction the fol�

lowing approach can prove useful� It has the potential to deal with the four sources of

unpredictability mentioned above� Transactions go through two phases� In the �rst phase�

called the pre�fetch phase� a transaction is run once� bringing in the necessary data into

main memory if they are not in memory already� No writes are performed in this phase

and con
icts with other transactions are not considered� The computational demands of

the transactions are also determined during this phase� Assume that the data dependent

portions of the transactions are such that a transaction�s execution path does not change due

to possible concurrent changes done to the data by other transactions while a transaction

is going through its pre�fetch phase ����� That is to say� at the end of the pre�fetch phase�

all the necessary data is in memory� We now attempt to guarantee that the transaction

��



will complete by its deadline� This is done by planning the execution of the transaction

� respecting con
icts with the transactions already guaranteed � such that the transaction

meets its deadline� This plan takes into account both the computational and resource re�

quirements of the transaction and ensures that the necessary data and processing resources

are available at the appropriate times for the transactions to complete within their time

constraints� If such a plan cannot be constructed� the transaction is aborted without even

starting it� The notion of guarantee and the planning algorithm are based on the resource

constrained scheduling approach proposed for real�time systems and described in ����

Let us see how this approach tackles the four major sources of unpredictability mentioned

above� By using the pre�fetch phase to bring in the pages� the actual execution sequence is

determined during this phase� Data and resource con
icts during execution are avoided by

the use of explicit planning of the execution phase of transactions� Since necessary pages

are brought into memory during the pre�fetch phase� dynamic I�O is avoided during the

execution phase� Finally� transaction aborts and rollbacks are avoided because all changes

are done during the execution phase and this phase is not begun unless it is known that it

will complete in time�

If the state of the data changes during the pre�fetch phase� which can be detected by

detecting the writes to the data brought into memory by the transaction� then the pre�

fetch phase can be reexecuted� In any case� this approach provides a way by which if

access invariance holds� once guaranteed� a transaction will complete by its deadline and no

recovery actions are necessary if a transaction is unable to execute� The price paid in the

latter situation is the overheads of the pre�fetch phase� Several optimizations are possible�

For example� in some situations� there may not even be a need to go to the execution phase�

As in optimistic concurrency control this will happen if the data items used by the transaction

were not used by any other concurrent transaction� Details can be found in �����

��� Dealing with Hard Deadlines

All transactions with hard deadlines must meet their time constraints� Since dynamically

managed transactions cannot provide such a guarantee� the data and processing resources as

well as time needed by such transactions have to be guaranteed to be made available when

necessary� There are several implications of this�

Firstly� we have to know when the transactions are likely to be invoked� This information

is readily available for periodic transactions� but for aperiodic transactions� by de�nition� it

is not� The smallest separation time between two incarnations of an aperiodic transaction

can be viewed as its period� Thus� we can cast all hard real�time transactions as periodic

�	



transactions�

Secondly� in order to ensure a priori that their deadlines will be met� we have to determine

their resource requirements and worst�case transaction execution times� As outlined in Sec�

tion ���� this requires that many restrictions be placed on the structure and characteristics

of real�time transactions�

Once we have achieved the above� we can treat the transactions in a manner similar to the

way real�time systems treat periodic tasks that require guarantees� i�e�� by using static table�

driven schedulers or preemptive priority�driven approaches� Static table�driven schedulers

reserve speci�c time slots for each transaction� If a transaction does not use all of the time

reserved for it� the time may be reclaimed �		� to start other hard real�time transactions

earlier than planned� Otherwise� it can be used for soft real�time transactions or left idle�

The table�driven approach is obviously very in
exible� A priority�driven approach is the

rate�monotonic priority assignment policy� One can apply the schedulability analysis tools

associated with it to check if a set of transactions are schedulable given their periods and data

requirements� This is the approach discussed in �	�� where periodic transactions that access

main memory resident data via read and write locks are scheduled using rate�monotonic

priority assignment�

We mentioned earlier that the variance between the worst�case computational needs and

actual needs must not be very large� We can see why� Since the schedulability analysis is

done with respect to worst�case needs� if the variance is large� many transactions that may

be doable in the average case will be considered infeasible in the worst�case� Also� if the

table�driven approach is used� a large variance will lead to large idle times�

In summary� while it is possible to deal with hard real�time transactions using approaches

similar to those used in real�time systems� many restrictions have to be placed on these

transactions so that their characteristics are known a priori� Even if one is willing to deal

with these restrictions� poor resource utilization may result given the worst�case assumptions

made about the activities�

��� Dealing with Soft Deadlines

With soft real�time transactions� we have more leeway to process transactions since we are not

required to meet the deadlines all the time� Of course� the larger the number of transactions

that meet their deadlines the better� When transactions have di�erent values� the value of

transactions that �nish by their deadlines should be maximized� The complexity involved

in processing real�time transactions comes from these goals� That is to say� we cannot

��



simply let a transaction run� as we would in a traditional database system� and abort it

should its deadline expire before it commits� As we discussed in Section 	� we must actively

pursue the goal of meeting transaction deadlines by adopting priority�assignment policies

and con
ict resolution mechanisms that explicitly take time into account� Note that priority

assignment governs CPU scheduling and con
ict resolution determines which of the many

transactions contending for a data item will obtain access� As we will see� con
ict resolution

protocols make use of transaction priorities and because of this� the priority assignment policy

plays a crucial role ����� We discuss these two issues in Section ������ We also discuss the

performance implications of di�erent deadline semantics� Additional aspects of transaction

management� such as� distribution� transaction commitment� and deadlock detection are

discussed in Section ������

�
�
� Priority Assignment and Con�ict Resolution

Rather than assigning priorities based on whether the transactions are CPU or I�O �or

data� bound� real�time database systems must assign priorities based on transaction time

constraints and the value they impart to the system� Possible policies are�

� Earliest�deadline��rst�

� Highest�value��rst�

� Highest�value�per�unit�computation�time��rst�

� Longest�executed�transaction��rst

It has been shown that the priority assignment policy has signi�cant impact on perfor�

mance and that when di�erent transactions have di�erent values� both deadline and value

must be considered �����

For the purpose of con
ict resolution in real�time database systems� various time�cognizant

extensions of two phase locking� optimistic� and timestamp based protocols have been pro�

posed in the literature ��� �� � ��� ��� ��� ��� �	� 	�� 	�� These are discussed below�

In the context of two�phase locking� when a transaction requests a lock that is currently

held by another transaction we must take into account the characteristics of the transactions

involved in the con
ict� Considerations involved in con
ict resolution are the deadline and

value �in general� the priority� of transactions� how long the transactions have executed� and

how close they are to completion� Consider the following set of protocols investigated in �����

��



� If a transaction with a higher priority is forced to wait for a lower priority transaction

to release the lock� a situation known as priority inversion arises� This is because a

lower priority transaction makes a higher priority transaction to wait� In one approach

to resolving this problem� the lock holder inherits the lock requester�s priority whereby

it completes execution sooner than with its own priority�

� If the lock holding transaction has lower priority� abort it� Otherwise let the lock

requester wait�

� If the lock holding transaction is closer to its deadline� lock requester waits� independent

of its priority�

Priority Inheritance is shown to reduce transaction blocking times ����� This is because

the lock holder executes at a higher priority �than that of the waiting transaction� and

hence �nishes early� thereby blocking the waiting higher priority transaction for a shorter

duration� However� even with this policy� the higher priority transaction is blocked� in the

worst case� for the duration of a transaction under strict two phase locking� As a result�

the priority inheritance protocol typically performs even worse than a protocol that makes

a lock requester wait independent of its priority�

If a higher priority transaction always aborts a low priority transaction� the resulting

performance is sensitive to data contention� On the other hand� if a lower priority transaction

that is closer to completion inherits priority rather than aborting� then a better performance

results even when data contention is high� Such a protocol is a combination of the abort�

based protocol proposed for traditional databases ���� and the priority�inheritance protocol

proposed for real�time systems �	��� Said di�erently� the superior performance of this protocol

���� shows that even though techniques that work in real�time systems on the one hand and

database systems on the other hand may not be applicable directly� they can often be tailored

and adapted to suit the needs of real�time database systems� It should be noted that abort�

based protocols �as opposed to wait�based� are especially appropriate for real�time database

systems because of the time constraints associated with transactions�

Let us now consider optimistic protocols� In protocols that perform backward validation�

the validating transaction either commits or aborts depending on whether it has con
icts

with transactions that have already committed� The disadvantage of backward validation is

that it does not allow us to take transaction characteristics into account� This disadvantage

does not apply to forward validation� In forward validation� a committing transaction usually

aborts ongoing transactions in case they con
ict with the validating transaction� However�

depending on the characteristics of the validating transaction and those with which it con�

��




icts� we may prefer not to commit the validating transaction� Several policies have been

studied in the literature ���� ��� ���� In one� termed wait���� a validating transaction is made

to wait as long as more than half the transactions that con
ict with it have earlier deadlines�

This is shown to have superior performance�

Time�cognizant extensions to timestamp�based protocols have also been proposed� In

these� when data accesses are out of timestamp order� the con
icts are resolved based on their

priorities� In addition� several combinations of locking�based� optimistic and timestamp�

based protocols have been proposed but require quantitative evaluation ��	��

Exploiting multiple versions of data for enhanced performance has been addressed in

���� Multiple versions can reduce con
icts over data� However� if data must have temporal

validity� old versions which are outdated must be discarded� Also� when choosing versions

of related data� their relative consistency requirements must be taken into account� consider

a transaction that uses multi�versioned data to display aircraft positions on an air�tra�c

controller�s screen� The data displayed must have both absolute validity as well as relative

validity�

Di�erent transaction semantics are possible with respect to discarding a transaction once

its deadline is past� For example� with �rm deadlines� a late transaction is aborted once

its deadline expires ����� In general� with soft deadlines� once a transaction�s value drops

to zero� it is aborted ����� On the other hand� in the transaction model assumed in ���� all

transactions have to complete execution even if their deadlines have expired� In this model�

delayed transactions may cause other transactions also to miss their deadlines and this can

have a cascading e�ect� Needless to say� it is important to exploit transaction semantics so

as to abort them as soon as it is clear that there is little bene�t to continuing the execution

of a transaction� Of course� aborting a transaction also has performance implications given

the costs of recovery� We discuss this in Section ����

Before we end this section� it should be pointed out that special time�cognizant deadlock

detection� transaction wakeup� and restart policies appear to have little impact ����� For

example� breaking a deadlock cycle by aborting a transaction based on transaction timing

characteristics does not seem to produce signi�cantly better results� Similarly� which of many

rolled back transactions to restart next or which of many waiting transactions to wakeup

next can be determined by taking transaction�s timing characteristics into account� However�

in many situations tested to date� the di�erences between the possible choices do not seem

to warrant special handling of restarts or wakeups�

��



�
�
� Commitment� Distribution� and Nested Transactions

Let us now consider the transaction commitment process� Once a transaction reaches its

commit point� it is better to let it commit quickly so that its locks can be released soon� If

commit delays are not high� which will be the case in a centralized database� the committing

transaction can be given a high enough priority so that it can complete quickly� The solution

is not so easy in a distributed system because of the distribution of the commitment process�

Furthermore� since a deadline typically refers to the deadline until the end of the two�phase

commit� but since the decision on whether or not to commit is taken in the �rst phase� we

can enter the second phase only if we know that it will complete before the deadline� This

requires special handling of the commit process� An alternative is to associate the deadline

with the beginning of the second phase� but this may delay subsequent transactions since

locks are not released until the second phase�

A distributed real�time database system introduces other complications as well� especially

when we go beyond 
at transactions� Let us consider nested transactions ����� Even though

transaction models that are more complex than 
at transactions introduce additional un�

predictability� some activities with soft time constraints may �nd them more suitable since�

for instance� nested transactions allow the independent recovery of subtransactions�

So far we assumed that each transaction has a value and a deadline� These can be used

in several ways in the nested transaction model�

� Suppose we assign a deadline and value only to the top�level transaction� Some scheme

will have to be designed to propagate these to the nested child transactions� to their

children� and so on� so that con
icts between the components of a nested transaction

and other transactions can be dealt with as though they were separate transactions�

Knowledge of computation times of �child� transactions will prove useful in appropri�

ately assigning the intermediate deadlines of the child transactions� The deadline for

a child transaction should depend on the deadline of the top�level transaction� the

computation time of the transaction and its children� as well as the system load�

� Suppose individual deadlines and values are assigned to each component of a nested

transaction� Then the system will have to �reassign� the value and the deadline so

that they are consistent with each other� for example� to make sure that the deadline

of a parent is no earlier than that of its children�

The former is more applicable to multi�level transactions where nesting is implicit and is

hidden from the user and the latter more applicable to nested transactions where the nesting

�



structure is visible to the user� In either case� deadlines associated with children have

implications when a deadline is missed� Since it is the top�level transaction that must meet

its deadline� it may be possible for children to miss deadlines and yet the top�level transaction

may meet its deadline� That is� the deadlines for the children are soft deadlines� In certain

situations� it may be possible to abort a delayed child and run an alternative child transaction

instead�

In a 
at transaction model� transactions are competing against each other for data as well

as computational and I�O resources� but components of a nested transaction� even if they

have individual deadlines� are executing on behalf of that transaction� Hence scheduling and

con
ict resolution strategies have to be tailored to handle the case of components of the same

nested transaction competing with each other� Further problems arise when components of

a nested transaction execute on di�erent sites� Speci�cally� transaction priorities must be

set in a consistent fashion at all the sites visited by a transaction �or its components��

A related topic is the replication of data� Its potential for fault�tolerance is an especially

important one for distributed real�time database systems� However� very little work has

been done to�date on this and other issues raised above for distributed real�time databases

or for transaction models beyond 
at transactions�

� Other Issues in Real�Time Database Systems

In this section� we would like to bring together a number of issues that have not been

adequately addressed in the real�time database literature� These include managing resources

other than CPU and data� trading o� timeliness for quality� managing recovery� and handling

overloads� The subsections in this section deal with these topics individually� Since little

work has been done in these areas� the discussion is� by necessity� speculative�

��� Managing I	O and Bu
ers

Whereas the scheduling of CPU and data resources has been studied fairly extensively in

the real�time database literature� studies of scheduling approaches for dealing with other

resources� such as disk I�O� and bu�ers has begun only recently� In this section we review

some recent work in this area and discuss some of the problems that remain�

I�O scheduling is an important area for real�time systems given the large di�erence in

speeds between CPU and disks and the resultant impact of I�O devices� responsiveness

on performance� However� real�time systems research has essentially ignored this problem

��



because of the perception that disk access introduces high degree of unpredictability and

so disks are seldom accessed when time constraints exist� However� in real�time database

systems the reading and writing of �archival� data is essential and so disk scheduling when

transactions have time constraints becomes a signi�cant problem� Since the traditional

disk scheduling algorithms attempt to minimize average I�O delays� just like traditional

CPU scheduling algorithms aim to minimize average processing delays� time�cognizant I�O

scheduling approaches are needed�

It must be recognized that what is important is the meeting of transaction deadlines and

not the individual deadlines that may be attached to I�O requests� Assume that we model

a transaction execution as a sequence of �disk I�O� computation� pairs culminating in a set

of disk I�O�s� the latter arising from writes to log and to the changed pages� Suppose we

assign �intermediate� deadlines to the I�O requests of a transaction given the transaction�s

deadline� One of the interesting questions with regard to disk I�O scheduling is� How does

one derive the deadline for an I�O request from that of the requesting transaction� First

of all� it must be recognized that depending on how these I�O deadlines are set� deadlines

associated with I�O requests may be soft since even if a particular I�O deadline is missed�

the transaction may still complete by its deadline� This is the case if I�O deadlines are

set such that the overall laxity �i�e�� the di�erence between the time available before the

deadline and the total computation time� of a transaction is uniformly divided among the

computations and the I�O� On the other hand� assume that an intermediate deadline is equal

to the latest completion time �i�e�� the time an I�O must complete assuming that subsequent

computations and I�O are executed without delay�� This is the less preferred method since

we now have a �rm deadline associated with I�O requests � if an I�O deadline is missed� there

is no way for the transaction to complete by its deadline and so the requesting transaction

must be aborted�

Recent work on I�O scheduling includes ���� �� ���� The priority driven algorithm de�

scribed in ���� is a variant of the traditional SCAN algorithm which works on the elevator

principle to minimize disk arm movement� Without specifying how priorities are assigned to

individual I�O requests� ���� proposes a variant in which the SCAN algorithm is applied to

each priority level� Requests at lower priority are serviced only after those at higher priority

are served� Thus� if after servicing a request� one or more higher priority requests are found

waiting� the disk arm moves towards the highest priority request that is closest to the current

disk arm position� In the case of requests arising from transactions with deadlines� priority

assignment could be based on the deadline assigned to the I�O request�

Another variant of SCAN� one which directly takes I�O deadlines into account is FD�

��



SCAN ���� In this algorithm� given the current position of the disk arm� the disk arm moves

towards the request with the earliest deadline that can be serviced in time� Requests that

lie in that direction are serviced and after each service it is checked whether ��� a request

with an even earlier deadline has arrived and ��� the deadline of the original result cannot

be met� In either case� the direction of disk arm movement may change�

Clearly� both these protocols involve checks after each request is served and so incur

substantial run�time overheads� The protocols described in ���� are aimed at avoiding the

impact of these checks on I�O performance� Speci�cally� the protocols perform the neces�

sary computations while I�O is being performed� In the SSEDO algorithm �Shortest�seek

and Earliest Deadline by Ordering�� the need to give higher priority to requests with ear�

lier deadlines is met while reducing the overall seek times� The latter is accomplished by

giving a high priority to requests which may have large deadlines but are very close to the

current position of the disk arm� A variant of SSEDO is SSEDV which works with speci�c

Deadline Values� rather than Deadline Orderings� ���� shows how both the algorithms can

be implemented so as to perform disk scheduling while service is in progress and shows that

the algorithms have better performance than the other variants of the SCAN algorithms�

Another resource for which contention can arise is the database bu�er� What we have

here is a con
ict over bu�er slots � akin to con
icts that occur over a time slot� in the case

of a CPU� Thus� similar issues arise here also� Speci�cally� how to allocate bu�er slots to

transactions and which slots to replace when a need arises are some of the issues� Consider

bu�er replacement� in case there is a need to replace an existing bu�er slot to make room

for a new entry� the replacement policy may have an impact on performance� especially if

the slot being replaced is used by an uncommitted transaction� Work done in this area

includes ��	� ���� Whereas ��	� reports of no signi�cant performance improvements when

time�cognizant bu�er management policies are used� studies discussed in ���� show that

transaction priorities must be considered in bu�er management� Clearly� the jury is still out

on the issue and further work is needed�

��� Performance Enhancement� Trading o
 Quality for Timeli�
ness

Before we examine the speci�c performance enhancement possibilities unique to real�time

database systems� it is important to point out that several proposals made for performance

enhancement in traditional databases are also applicable to real�time databases� For in�

stance� given that the data objects in real�time database systems will be abstract data type

objects� as opposed to read�write objects� the semantics of the operations on these objects

��



can be exploited to improve concurrent access to these objects �see� for example� ����� Gen�

eralizing this� the parallelism and distribution inherent in real�time systems� which by their

very nature function in physically distributed environments with multiple active processing

elements� can be put to use to improve performance� Of course� as we discussed earlier�

distribution brings with it some special problems in the real�time context� With regard to

predictability many advantages can be gained by the use of main memory databases� Also�

the bene�ts a�orded by database machines ���� for real�time database systems are worth

exploring�

Now let us consider approaches that are in some sense unique to real�time database

systems� In the context of activities having timing constraints� the statement� �it is better to

produce a partial result before the deadline instead of the complete result after the deadline�

has become a cliche� However� it is not always clear what an acceptable partial result is or

how a computation can be structured to provide acceptable partial results� Recent work

in the real�time area can lead us to some partial answers ����� In general� timeliness� a

key performance measure� could be achieved by trading it o� with completeness� accuracy�

consistency� and currency ��� 	��� Below we consider each of these in turn�

Let us �rst consider completeness� Suppose a transaction updates the screen of an oper�

ator in a chemical plant periodically� If during a certain time interval� during overloads� it

is unable to update all the valve positions� but has the time to update those that are crucial

to the safety of the plant� then such a transaction should be allowed to execute even if not

all its actions may be performed�

When query processing involves computing aggregates� especially in a time�constrained

environment� then one can achieve di�erent degrees of accuracy by resorting to approximate

query processing by sampling data ����� Here� depending on time availability� results with

di�erent accuracies can be provided� Another example is that of a transaction that does

not have all the necessary data for its processing but can recover from this situation by

extrapolating based on previous data values� Here again� if previous data values of di�erent

data items are used� their relatively consistency must be considered�

Turning to consistency� in the context of traditional databases� it has often been men�

tioned that correctness notions that relax serializability are appropriate �see �	�� for a review

of such relaxed notions��� For instance� epsilon serializability ���� allows a query to execute

in spite of concurrent updates wherein the deviation of the query�s results� from that of a

serializable result� can be bounded� Such relaxations allow more transactions to execute

concurrently thereby improving performance�

In the context of currency of a transaction�s results it may not always be necessary for

��



a transaction to use the latest version of a data item� This is true� for example� when a

transaction is attempting to derive trends in the changes to some data� Clearly� old versions

of the data are required here and the transaction can complete even if the latest version is

unavailable�

The examples mentioned above make it clear that there are situations where imprecision

can be tolerated� and in fact must be exploited� to improve performance� However� how

to achieve this systematically is yet to be studied� What we need are notions similar to

the degrees of consistency adopted in traditional database systems ����� In this context�

scheduling approaches that have been developed for the imprecise computation model in

real�time systems could be tailored to apply to real�time database systems� Preliminary

work in this area is reported in �	���

��� Recovery Issues

Recovery is a complex issue even in traditional databases and is more so in real�time database

systems for two reasons� �The approach discussed at the end of Section ��� was motivated

in part by these complexities�� Firstly� the process of recovery can interfere with the pro�

cessing of ongoing transactions� Speci�cally� suppose we are recovering from a transaction

aborted due to a deadline miss� If locks are used for concurrency control� it is important

to release them as soon as possible so that waiting transactions can proceed without de�

lay so as to meet their deadlines� However� it is also necessary to undo the changes done

by the transaction to the data if in�place updates are done� But this consumes processing

time that can a�ect the processing of transactions that are not waiting for locks to be re�

leased� Whereas optimistic concurrency control techniques or a shadow�pages based recovery

strategy can be used to minimize this time� they have several disadvantages ����� Secondly�

unlike traditional databases where permanent data should always re
ect a consistent state�

in real�time databases� the presence of temporal data� while providing some opportunities for

quicker recovery ����� adds to the complexities of the recovery of transactions� Speci�cally�

if a transaction�s deadline expires before it completes the derivation of a data item� then

rather than restoring the state of the data to its previous value� it could declare the data to

be invalid thereby disallowing other transactions from using the value� The next instance of

the transaction� in case the data is updated by a periodic transaction� may produce a valid

state�

In general� real�time database recovery must consider time and resource availability to

determine the most opportune time to do recovery without jeopardizing ongoing transactions�

whether they are waiting for locks or not� Available transaction as well as data semantics

�	



�or state� must be exploited to minimize recovery overheads� Contingency or compensating

transactions ���� are applicable here� Contingency transactions can take the form of multiple

versions of a transaction each with di�erent values and di�erent computational and data

requirements� If we know that one with the highest quality will be unable to complete in

time� the system can recover by trying an alternative with acceptable quality� This is a

situation where quality is traded o� to minimize recovery costs and to achieve timeliness�

Revisiting the factory 
oor example from the introduction� we saw that if there is insu�cient

time to complete object recognition� the system discards the object for now and directs the

object to appear once again in front of the camera �at perhaps a later point in time�� In case a

real�time transaction has interacted with the environment� a compensating transaction may

have to be invoked to recover from its failure ����� The nature and state of the environment

can be used to determine recovery strategies� In some situations� in the absence of new data

that was to have been produced by an aborted transaction� extrapolation of new values from

old values may be possible� In other cases� more up�to�date data may be available soon�

The following highly simpli�ed example may help in illustrating some of the considera�

tions in recovery� Suppose two robots on a factory 
oor have to rendezvous at point x by

time t� t is a �rm deadline by which either both should be at x or both should know that

they cannot make it� The controller of the robot� i�e�� the real�time system� �rst obtains

their current position and those of the pertinent objects on the factory 
oor� It determines

the type of moves the robots are capable of by retrieving their characteristics from archival

storage� It then creates a path for each robot to follow to reach x by time t and sends

this path to each robot� The controller also reserves this path for the duration for these

two robots� As the robots follow this path� the controller monitors their movement� looks

out for obstacles in their slated path and continually checks if there is a delay in reaching

speci�c points along the path due to incorrect estimations made during path construction

or unanticipated other delays� If it detects such a situation� the controller recovers from it

by determining an alternative path given the robots� current position� Should there be no

time to follow the new path� recovery involves instructing the robots to halt� informing each

of them that their rendezvous is not possible� In either case� path reservation information

is modi�ed appropriately� Note that all of this involves reading information from the envi�

ronment� retrieving information from the database� and updating other information� It also

shows some aspects of recovery� Recovery here comprises two contingency actions� one of

which involves termination of the transaction after informing the robots�

��



��� Managing Overloads

Perhaps the most critical of the outstanding issues is one of managing overloads� How

should real�time transaction processing be done when more transactions arrive than can

meet their deadlines� In traditional systems� if an overload does not remain for too long�

in most cases� the result is a slow response for the duration of the overload� However� in

real�time databases that interact with the environment� catastrophic consequences can arise�

These can be minimized by ensuring that transactions that are critical to the performance

of the system are declared to possess hard deadlines and are guaranteed to meet deadlines

even under overloads� In addition� if we make sure that transaction values are considered

for priority assignment and during con
ict resolution� then the transaction that misses its

deadline will typically have a low value� However� missing too many low�valued transactions

with soft deadlines may eventually lead to situations where many transactions with high

values arrive thus stressing the system� For example� if periodic maintenance is postponed

due to the arrival of more important activities� it may eventually be necessary to shut down

the system� Hence dealing with overleads is complex and solutions are still in their infancy

��� �� ���� An approach to this problem� based on discarding transactions immediately upon

their arrival� given current system load and arriving transaction characteristics� is described

in ����� In managing overloads� some of the tradeo�s that we discussed earlier� involving

timeliness vs� quality are also very pertinent�

� Conclusions

In this paper� we presented the characteristics of data and transactions in real�time database

systems and discussed the di�erences between real�time database systems and traditional

databases� Many of the di�erences arise because temporal consistency requirements are

imposed on the data in addition to the usual integrity constraints� Maintaining temporal

consistency imposes time constraints on the database transactions� In addition� the re�

action requirements demanded by the environment can also place time constraints� The

performance of real�time database systems is measured by how well the time constraints as�

sociated with transactions are met� The system must meet all hard deadlines and minimize

the number of transactions whose soft deadlines are missed� This is a crucial di�erence from

traditional databases and necessitates time�cognizant transaction processing�

We examined various aspects of transaction processing in real�time database systems

including concurrency control and recovery and showed that recovery becomes an even more

complex problem when transactions have time constraints� In many situations� one can

��



trade o� timeliness for quality of the transaction�s results where the quality depends on

the completeness� accuracy� currency� and consistency of the results� Furthermore� many

recent advances in databases� for exploiting parallelism� distribution� object semantics� and

transaction semantics should be very useful in real�time database systems also�

Whereas recently there has been a spurt of research activity in the area� many open

questions remain� These include the derivation of transaction timing properties from the

temporal consistency requirements of the data� developing suitable hardware and software

architectures for real�time database systems� seamless management of transactions with hard

and soft deadlines� real�time transaction processing in distributed databases� transaction

recovery� and the tradeo�s between timeliness and quality�

Acknowledgements

I am indebted to real�time database researchers for many of the ideas discussed in this
paper� Particular thanks to A� Buchmann� K� Dittrich� C� Mohan� and S� Son who partic�
ipated in the panel on real�time database systems at VLDB in Barcelona� Thanks also to
Azer Bestavros� Panos Chrysanthis� Jayant Haritsa� Lory Molesky� Patrick O�Neil� Bhaskar
Purimetla� Dennis Shasha� Chia Shen� Chia�Shiang Shih� Jack Stankovic� Zhao Wei� and the
anonymous reviewers� for their comments on previous versions of this paper�

References

��� R� Abbott and H� Garcia�Molina� �Scheduling Real�Time Transactions� A Performance
Evaluation�� Proceedings of the ��th VLDB Conference� Aug� ����

��� R� Abbott and H� Garcia�Molina� �Scheduling Real�Time Transactions with Disk Resi�
dent Data�� Proceedings of the ��th VLDB Conference� ���

��� R� Abbott and H� Garcia�Molina� �Scheduling I�O Requests with Deadlines� A Perfor�
mance Evaluation�� Proceedings of the Real�Time Systems Symposium� Dec� ���

�	� N� Audsley� A� Burns� M� Richardson� and A� Wellings� �A Database Model for Hard
Real�Time Systems�� Technical Report� Real�Time Systems Group� Univ� of York� U�K��
July ���

��� B� R� Badrinath and K� Ramamritham� �Semantics�Based Concurrency Control� Be�
yond Commutativity�� ACM Transactions on Database Systems� March ���

��� S� Baruah� G� Koren� D� Mao� B� Mishra� A� Raghunathan� L� Rosier� D� Shasha� F�
Wang� �On the Competitiveness of On�Line Real�Time Scheduling�� Proceedings of the
Real�Time Systems Symposium� December ���

��� P�A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery

in Database Systems� Addison�Wesley� Reading� MA� ����

��



��� S� Biyabani� J�A� Stankovic� and K� Ramamritham� �The Integration of Deadline and
Criticalness in Hard Real�Time Scheduling�� Proceedings of the Real�Time Systems

Symposium� December ����

�� A�P� Buchmann� D�R� McCarthy� M� Chu� and U� Dayal� �Time�Critical Database
Scheduling� A Framework for Integrating Real�Time Scheduling and Concurrency Con�
trol�� Proceedings of the Conference on Data Engineering� ���

���� M�J� Carey� R� Jauhari� and M� Livny� �Priority in DBMS Resource Scheduling�� Pro�
ceedings of the ��th VLDB Conference� Aug ��� pp� ���	���

���� S� Chen� J� Stankovic� J� Kurose� and D� Towsley� �Performance Evaluation of Two New
Disk Scheduling Algorithms for Real�Time Systems�� Real�Time Systems� Sept� ���

���� U� Dayal� et� al� �The HiPAC Project� Combining Active Databases and Timing Con�
straints�� SIGMOD Record� ��� �� March ���� ������

���� K� R� Dittrich and U� Dayal� Active Database Systems �Tutorial Notes�� In The Sev�

enteenth International Conference on Very Large Databases� September ���

��	� K� P� Eswaran� J� N� Gray� R� A� Lorie� and I� L� Traiger� The Notion of Consistency and
Predicate Locks in a Database System� Communications of the ACM� ��������	�����
November ����

���� Peter A� Franaszek� John T� Robinson� and Alexander Thomasian� �Access Invariance
and its Use in High Contention Environments�� Proceedings of the Sixth International

Conference on Database Engineering� ��� pp 	�����

���� M�C� Graham� �Issues in Real�Time Data Management�� CMU�SEI���TR���� July
���

���� J� N� Gray� R� A� Lorie� G� R� Putzulo� and I� L� Traiger� Granularity of locks and
degrees of consistency in a shared database� In Proceedings of the First International

Conference on Very Large Databases� pages ������ Framingham� MA� September ����

���� J�N� Gray and A� Reuter� �Transaction Processing� Techniques and Concepts�� Morgan�
Kaufman �book in preparation��

��� N� Gri�eth and A� Weinrib� �Scalability of a Real�Time Distributed Resource Counter��
Proceedings of the Real�Time Systems Symposium� Orlando� Florida �December ����

���� J�R� Haritsa� M�J� Carey and M� Livny� �On Being Optimistic about Real�Time Con�
straints�� Proceedings of ACM PODS� ���

���� J�R� Haritsa� M�J� Carey and M� Livny� �Dynamic Real�Time Optimistic Concurrency
Control�� Proceedings of the Real�Time Systems Symposium� Dec� ���

���� J�R� Haritsa� M�J� Carey and M� Livny� �Earliest Deadline Scheduling for Real�Time
Database Systems�� Proceedings of the Real�Time Systems Symposium� Dec� ���

��



���� W� Hou� G� Ozsoyoglu� B� K� Taneja� �Processing Aggregate Relational Queries with
Hard Time Constraints�� Proceedings of the ACM SIGMOD International Conference

on the Management of Data� June ���

��	� J� Huang and J� Stankovic� �Real�Time Bu�er Management�� COINS TR ����� August
���

���� J� Huang� J�A� Stankovic� D� Towsley and K� Ramamritham� �Experimental Evaluation
of Real�Time Transaction Processing�� Proceedings of the Real�Time Systems Sympo�

sium� Dec� ��

���� J� Huang� J�A� Stankovic� K� Ramamritham and D� Towsley� �Experimental Evaluation
of Real�Time Optimistic Concurrency Control Schemes�� Proceedings of the Conference
on Very Large Data Bases� Sep ���

���� J� Huang� J�A� Stankovic� K� Ramamritham and D� Towsley� �On Using Priority In�
heritance in Real�Time Databases�� Proceedings of the Real�Time Systems Symposium

December ���

���� Jensen� E� D�� Locke� C� D� and Tokuda� H�� �A Time�Driven Scheduling Model For
Real�Time Operating Systems�� Proceedings of �	
� IEEE Real�Time Systems Sympo�

sium� pp� ��������

��� W� Kim and J� Srivastava� �Enhancing Real�Time DBMS Performance with Multi�
version Data and Priority�Based Disk Scheduling�� Proceedings of the Real�Time Sys�

tems Symposium� Dec ��� pp� ��������

���� Kitsurgawa� �The next generation of database machines�� this issue�

���� G� Koren and D� Shasha� �D�Over� an optimal on�line scheduling algorithm for over�
loaded real�time systems� Real�Time Systems Symposium� Dec ���

���� H� F� Korth� E� Levy� and A� Silberschatz� Compensating Transactions� A New Recovery
Paradigm� In Proceedings of the Sixteenth International Conference on Very Large

Databases� pages ������ Brisbane� Australia� August ���

���� H� F� Korth� Soparkar� Silberschatz� A� �Triggered Real�Time databases with consis�
tency constraints�� Proceedings of the Conference on Very Large Data Bases� ���

��	� Y� Lin and S�H� Son� �Concurrency Control in Real�Time Databases by Dynamic Ad�
justment of Serialization Order�� Proceedings of the Real�Time Systems Symposium�
Dec� ���

���� J� Liu� K� Lin� W� Shih� A� Yu� J� Chung� and W� Zhao� �Algorithms for Scheduling
Imprecise Computation�� IEEE Computer� Vol� �	� No� �� May ���

���� J� E� B� Moss� Nested Transactions� An approach to reliable distributed computing� PhD
thesis� Massachusetts Institute of Technology� Cambridge� MA� April ����

�



���� P� O�Neil� K� Ramamritham� and C� Pu� �Towards Predictable Transaction Executions
in Real�Time Database Systems�� Technical Report ����� University of Massachusetts�
August� ���

���� C� Pu and A� Le�� Replica Control in Distributed Systems� An Asynchronous Approach�
In Proceedings of the ACM SIGMOD International Conference on Management of Data�
pages �������� May ���

��� K� Ramamritham� J� Stankovic� and P� Shiah� �E�cient Scheduling Algorithms for
Real�Time Multiprocessor Systems�� IEEE Transactions on Parallel and Distributed

Systems� Vol� �� No� �� April ��� pp� ��	��	�

�	�� K� Ramamritham� S� Son� A� Buchmann� K� Dittrich� and C� Mohan� �Real�Time
Databases� panel statement� Proceedings of the Conference on Very�Large Databases�
September� ���

�	�� K� Ramamritham and P� Chrysanthis� �In Search of Acceptability Criteria� Database
Consistency Requirements and Transaction Correctness Properties� in Distributed Ob�

ject Management� Ozsu� Dayal� and Valduriez Ed�� Morgan Kaufmann Publishers� ���

�	�� L� Sha� R� Rajkumar� and J� Lehoczky� �Priority Inheritance Protocols� An Approach to
Real�Time Synchronization�� IEEE Transactions on Computers� ���� pp� ����������
���

�	�� L� Sha� R� Rajkumar and J�P� Lehoczky� �Concurrency Control for Distributed Real�
Time Databases�� ACM SIGMOD Record� March ����

�		� C� Shen� K� Ramamritham� and J� Stankovic� Resource Reclaiming in Real�Time� Proc
Real�Time System Symposium� December ��� �to appear in IEEE Transactions on

Parallel and Distributed Systems��

�	�� K� P� Smith and J�W�S� Liu� �Monotonically improving approximate answers to rela�
tional algebra queries�� Proceedings of Compsac� September ���

�	�� R� Snodgrass and I� Ahn� �Temporal Databases�� IEEE Computer� Vol �� No� �
September ���� pp� ���	��

�	�� S� �H� Son� Y� Lin� and R� P� Cook� �Concurrency Control in Real�Time Database Sys�
tems�� in Foundations of Real�Time Computing� Scheduling and Resource Management�
edited by Andre van Tilborg and Gary Koob� Kluwer Academic Publishers� pp� ��������
���

�	�� X� Song and J�W�S� Liu� �How Well Can Data Temporal Consistency be Maintained��
Proceedings of the IEEE Symposium on Computer�Aided Control Systems Design� �to
appear� ���

�	� J�A� Stankovic� K� Ramamritham� and D� Towsley� �Scheduling in Real�Time Trans�
action Systems�� in Foundations of Real�Time Computing� Scheduling and Resource

Management� edited by Andre van Tilborg and Gary Koob� Kluwer Academic Publish�
ers� pp� ������	� ���

��



���� Y� C� Tay and Nathan Goodman and Rajan Suri� �Locking performance in centralized
databases�� ACM Transactions on Database Systems� volume ��� number 	� December�
���� pp� 	���	���

���� S� V� Vrbsky and K�J� Lin� �Recovering Imprecise Computations with Real�Time Con�
straints�� Proceedings of the Seventh Symp� on Reliable Distributed Systems� October
���� pp� �������

��


