
1

Object Database Management Systems
(ODBMSs)

CSC 436 – Fall 2003

* Notes kindly borrowed from DR AZIZ AIT -BRAHAM, School of
Computing, IS & Math, South Bank University

2

Evolution and Definition of the ODBMS

oObject data model (ODM): A data model that captures the
semantics of objects supported in object-oriented programming.

oObject database (ODB): A persistent and sharable collection
of objects defined by an ODM.

oODBMS: The manager of an ODB.

Hierarchical Data
Model

Network Data
Model

Relational Data
Model

ER Data ModelSemantic Data
Model

Extended Relational
Data Model

Object Data
Model

3

Object Data Model

oDefinition One: An ODBMS must, at a minimum:
– Provide database functionality
– Support object identity
– Provide encapsulation
– Support objects with complex state

oDefinition Two:
– Object-orientation = ADTs + Inheritance + Object identity
– Object-oriented database = Object-orientation + Database capabilities

oDefinition Three: An ODBMS must provide:
1. High-level query language with query optimization capabilities in the

underlying system
2. Support for persistence and atomic transactions: concurrency and recovery

control
3. Support for complex object storage, indexes and access methods for fast

and efficient retrieval
Object-oriented databse = object-oriented system + (1)-(3)

4

Issues in ODBMSs

Traditional database
Systems

Persistence
Sharing
Transactions
Concurrency control
Recovery control
Security
Integrity
Querying

Object-Oriented
programming

Object identity
Encapsulation
Inheritance
Types and classes
Methods
Complex objects
Polymorphism
Extensibility

Semantic
data models

Generalisation
Aggregation

Special
requirements

Versioning
Schema evolution

Object Data Model

5

Transactions

oTransactions involving complex objects can continue for
several hours (or even days)

=> Support long duration transactions => re-examine
concurrency and recovery protocols

oIn an ODBMS, the unit of concurrency and recovery
control is logically an object.

oLock conflict in long duration transactions is
unacceptable

=> Use versioning

6

Versioning

oThe process of maintaining the evolution of objects is
known as version management

oAn object version represents an identifiable state of an
object

V1

V1B

V1A

V1

V2A

V2V1

V2B

V1A

V2 V3

V2A

OA OB OC

Configuration

Object schema

7

Schema Evolution

oEngineering design is an incremental process and evolves with
time. To support this process, applications require considerable
flexibility in dynamically defining and modifying the database
schema.

oTypical changes to the schema include:
– Changes to the class definition:

» Modifying attributes
» Modifying methods

– Changes to the inheritance hierarchy:
» Making a class S the superclass of class C
» Removing a class S from the list of superclasses of C
» Modifying the order of the superclasses of C

– Changes to the set of classes, such as creating and deleting
classes and modifying class names

8

Alternative Strategies for an ODBMS

oExtend an existing object-oriented programming language
with database capabilities (e.g. GemStone)

oProvide extensible object-oriented DBMS libraries (e.g.
Ontos and ObjectStore)

oEmbed ODB language constructs in a conventional host
language (e.g. O2)

oExtend and existing database language with object-
oriented capabilities (Ontos, Versant O2 and provide a
version of Object SQL)

oDevelop a novel database data model/data language (e.g.
Semantic Information Manager - SIM)

9

The ODBMS Manifesto - 1989

The first 8 rules apply to the object-oriented characteristics:

1 Thou shalt support complex objects
2 Thou shalt support object identity
3 Thou shalt encapsule thine objects
4 Thou shalt support types or classes
5 Thine classes or types shalt inherit from their ancestors
6 Thou shalt not bind prematurely
7 Thou shalt be computationally complete
8 Thou shalt be extensible

10

The ODBMS Manifesto (cont.)

The final 5 rules apply to the DBMS characteristics:

9 Thou shalt remember thy data
10 Thou shalt manage very large databases
11 Thou shalt accept concurrent users
12 Thou shalt recover from hardware and software

failures
13 Thou shalt have a simple way of querying data

11

The ODBMS Manifesto (cont.)

oOptional features: the goodies
– Multiple inheritance
– Type checking and type inferencing
– Distribution
– Design transactions
– Versions

oOpen choices
– Programming paradigm
– Representation system
– Type system
– Uniformity

12

ODBMS - Advantages

oEnriched modeling capabilities

oExtensibility

oRemoval of impedance mismatch

oMore expressive query language

oSchema evolution

oSupport for long duration transactions

oApplicability to advanced database applications

oImproved performance

13

ODBMS - Disadvantages

oLack of universal data model

oLack of experience

oLack of standards

oQuery optimisation

oLocking

oComplexity

oViews

oSecurity

14

Extended Relational Systems

oMany vendors of RDBMS products agree that their
systems are not currently suited to the advanced
applications and that added added functionality is
required.

oExtended relational data models are based on
enhancements of the relational data model to incorporate
procedures, objects, versions and other new capabilities.

oThere is no single extended relational model; rather, there
are a variety of these models, whose characteristics
depend upon the way and the degree to which extensions
were made.

15

The Third-Generation Database Manifesto
1990

Three Tenets:

oTENET 1: Besides traditional data management
services, third generation DBMSs will provide support
for richer object structures and rules.

oTENET 2: Third generation DBMSs must subsume
second generation DBMSs.

oTENET 3: Third generation DBMSs must be open to
other subsystems.

16

The Third-Generation Database Manifesto (II)

Propositions Concerning Object and Rule Management:

1 A third-generation DBMS must have a rich type system

2 Inheritance is a good idea

3 Functions, including database procedures and methods and
encapsulation, are a good idea

4 Unique identifiers for records should be assigned by the
DBMS only if a user-defined primary key is not available

5 Rules (triggers, constraints) will become a major feature in
future systems, They should not be associated with a specific
function or collection

17

The Third-Generation Database Manifesto (III)

Propositions Concerning Increasing DBMS Function:

6 Essentially all programmatic access to a database should be
through a non-procedural, high-level access language

7 There should be at least two ways to specify collections, one
using enumeration of members and one using the query
language to specify membership

8 Updateable views are essential

9 Performance indicators have almost nothing to do with data
models and must not appear in them

18

The Third-Generation Database Manifesto (IV)

Propositions that Result from the Necessity of an Open System:

10 Third generation DBMSs must be accessible from multiple
high-level languages

11 Persistent forms of a high-level language, for a variety of
high-level languages are a good idea. They will all be
supported on top of a single DBMS by compiler extensions
and a complex runtime system

12 For better or worse, SQL is ‘intergalactic dataspeak’

13 Queries and their resulting answers should be the lowest level
of communication between a client and a server

19

Object-Oriented Database Design

Comparison between object data modeling (ODM) and logical data
modeling (LDM)

ODM LDM Difference

Object Entity Object includes behavior

Attribute Attribute None

Relationship Relationship Associations are the same but inheritance in
ODM includes both state and behavior

Messages No corresponding concept in LDM

Class Entity type None

Instance Entity None

Encapsulation No corresponding concept in LDM

20

Relationships

oRelationships are represented in an ODM using reference
attributes (a reference attribute contains a value, or collection of
values, that are themselves objects)

oA 1:1 relationship between objects A and object B is
represented by adding a reference attribute to object A and, to
maintain referential integrity, a reference attribute to object B.

oA 1:M relationship between objects A and object B is
represented by adding an attribute containing a set of
references to each object

oAn M:N relationship between objects A and B is represented by
adding an attribute containing a set of references to each object

21

Referential Integrity

There are different techniques to handle referential integrity:

oDo not allow the user to explicitly delete objects
=> The system is responsible for ‘garbage collection’ (GemStone)

oAllow the user to delete objects when they are no longer
required

=> The system may detect invalid references automatically and set the
reference to NULL or disallow the deletion (Versant)

oAllow the user to modify and delete objects and
relationships when they are no longer required

=> The system automatically maintains the integrity of objects
(Ontos, Objectivity/DB and ObjectStore)

22

Identifying Methods

oConstructors and destructors: Constructor methods
generate new instances of a class. Each new instance is
given a unique OID. Destructor methods delete class
instances that are no longer required.

oAccess: Access methods return the value of an attribute
or set of attributes of a class instance. It may return a
single attribute value, multiple attribute values or a
collection of values.

oTransform: Transform methods change (transform) the
state of a class instance.

23

Further Reading

oTo know more about object-oriented analysis and design:

– Coad, P. and Yourdon E.: Object-Oriented Analysis 2nd edn,
Yourdon Press/Prentice-Hall, 1991

– Coad E.: Object-Oriented Systems Design: An Integrated
Approach, Prentice Hall, 1994

oThe Object-Oriented Database System Manifesto:

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/clamen/OODBMS/Man
ifesto/Manifesto.PS.gz

oThe Third Generation Database System Manifesto:

ftp://s2k-ftp.cs.berkeley.edu/pub/postgres/papers/ERL-M90-
28.ps.Z

