ODL, OQL and SQL3

CSC 436 — Fall 2003

* Notes kindly borrowed from DR Aziz AIT-BrRaHAM, School of
Computing, IS & Math, South Bank University

_ 1

f Object Definition Language \

~ZQbjectives
— Portability of database schemas across ODBMS
— Interoperability of ODBMSs from multiple vendors
ZDevelopment principles
— All semantic constructs of ODMG object model

— Specification language (not full programming
language)

— Program language independence

—OMG IDL (Interface Definition Language)
compatibility

— Practical and short time implementable

2

f Type Specification \

ZA type is defined by specifying its interface in ODL
~ZTop-level BNF

type definition ::= interface <type_name> [:<suppd _list>}

{
[<type_property_list>]
[<property_list>]
[<operation_list>]

h

~ZAny list may be omitted if not applicable

_ 3

f Type Characteristics Specification \

~#Type characteristics
— Supertypes
— Extent naming
— Key(s)
~ZExample
interface Professor :Person {
extent professors;
keys faculty id, soc_sec_no;
<property_list>
<operation_list
h
#Notes

— No more than one extent or key definition. Each attbute or
relationship traversal name in key definition shoudl be specified in the
property list

— Extent naming and key definition may appear in anyorder

— Supertype, extent naming and key definition may bemitted if not
applicable

4

f Property List

/BNF

<property_list ::== <property_spec>; | <propertyesp<property_list>
<property_spec>::= <attribute_spec> | <relationstpec>

ZStructured types have bracketed list of field-type pairs
associated with them.

~ZEnumerated types have bracketed lists of values.
ZRelationship have inverses.

ZAn element from another class is indicated byclass>::
~ZForm a set type withSet<type>

_ 5

<

f Attribute Specification: Example

interface Professor {
extent professors;
keys faculty id, soc_sec_no;

attribute string name;
attribute integer faculty id;
attribute integer soc_sec_no;
attribute Struct<integer number, string street,
Ref<City> city> address;
attribute Enum {male, female} gender;

<operation_list>
}
interface City {
extent cities;
key city code;

attribute integer city_code;
attribute string name;
1

f Property List (2) \

~Relationship specification

— Definition: to define a traversal path for a relationship
» Designation of target type
» Information about inverse traversal path
— Example
interface Professor {
extent professors;
keys faculty id, soc_sec_no;

<attribute_list>;
relationship Set<Student> advisees inverse Studdntsor;

relationship Set <TA> teaching_assitants inversewaécks_for;
relationship Department department inverse Depanttnfi@culty

K <operation_list>
} 7

f Operation List \

~ZBNF

operation_list> ::= <operation_spec>; | <operatgpec><operatin_list>

<operation_spec> ::= <return_type> <operation_name>
([<argument_list>]) [<exception_raised>]

<exception_raised> ::= raises(<exception_list>)

~ZExample
interface Professor {
<type_property_list>
<attribute_list>
<relationship_list>

grant_tenure() raises(ineligible_for_tenure);
hire (in Professor);

K fire (in Professor) raises(no_such_employee);
} 8

f Object Query Language \

/Relies on ODMG object model

#0QL is very close to SQL-92. Extensions concern object-oriente
notions.

~#High level primitives to deal with sets of objects, structuresral
lists.

#0QL is a functional language where operators can freely be
composed, as long as the operands respect the type system.

ZNot computationally complete.

ZNo explicit update operators (instead use operations defined on
objects).

~Declarative access. Thus OQL queries can be easily optimised b
virtue of this declarative nature.

=

=

(Formal semantics can easily be defined

9

f Language Description \

ZA query: a (possibly empty) set of query definition
expressions followed by an expression.The result of a quer]
is an object with or without identity.

ZNotation:
g: query name a: atom
e: expression t: type name
p: property name f: operation name
X: variable

_ .

f Language Description (2)
~ZQuery definition expressions are of the form:
defineqase

ZExample

define Joe as element (select x from x
in Students where x.name = “Joe”)

object or a query nameq.
27, nil, Students, Joe

_ !

<

~Elementary expressions: a variable x, an atom, a named

f Language Description (3)

ZConstruction expressions
— Object: t(p ;€ ; , ., P e)
type of e; must be compatible withp;
Employee (name:"Peter”, boss:"Paul”)

— Structure: struct(p ;€ ; , ..., P e)
struct (name:"Peter”, age:25)
— Set:set(p ;e ;, ., P e) set(1,2,3)
— Bag: bag(e , , ..., e) bag(1,1,2,3,3)
— List: list(e 1y e €) list(1,1,2,3,3)
— Array: array(e; , .., e n) array(1,1,2,3,3)

 Arithmetic expressions
— unary expressions:<op>e
not(true)
— Binary expressions:e, <op> e,
count(Students) - count(TA)
12

<

f Language Description (4) \

Collection expressions

— Universal quantification: for all x in e 1€,
for all x in Students:x.student_id > 0
— Existential quantification: exists x in e 1€,
exists x in Doe.takes:x.taught_by.name="Turing”
— Membership testing:e, ine , Joe in TA
— Select From Where:
select e from x ,ine 4, .., X , ine , wheree’
select distinct e from x pine 4,.., x , ine , wheree’

select couple(student:x.name, professor:z.name)
from xin Students, y in x.takes, z in y.taught_by
where z.rank="full professor”
— Sort-by: sort xine by e 1, €
sort x in Persons by x.age, x.name
— Unary set operator:
<op> (e)

<op> [{min, max, count, sum, avg}
K max(select x.salary from x in Professors)

13

f Language Description (5) \

/Collection expressions (cont.)

— Group_by:
gr'oupxineby(p 1€ 4, ., P e)
with(p e ;, .., p e

group x in Employees

by (low:x.salary<1000,
medium:x.salary>=1000 and x.salary<10000,
high:x.salary>=10000)

returns

set<struct(low:boolean, medium:boolean, high:boolea n,
partition:set<Employee>)>

group e in Employees
by (department:e.deptno)
with (avg_salary:avg(select x.salary from x in par tition))

returns
set<struct(department:integer, avg_salary:float)>

_ .

f Language Description (6) \

/Indexed Collection Expressions
— Get the i-th Element:e [e ,] list(a,b,c,d) [1]
element(select x
from X in course
where x.name="math” and x.number="101").requires[2)
— Extracting a subcollection:e, [e ,:e ;] list(a,b,c,d)[1:3]

element(select x
from xin course
where x.name="math” and x.number="101").requires[1 :2])

— Last and first: first(e), last(e)

first(element(select x
from xin course
where x.name="math” and x.number="101").requires)

— Concatenating:e; +e, list(1,2)+list(2,3)

_ .

f Language Description (7) \

/Binary set expressions:

e, <op>e ,
<op> O {union, except, intersect} Student except TA

bag(2,2,3,3,3) union bag(2,3,3,3) =
bag(2,2,3,3,3,2,3,3,3)

bag(2,2,3,3,3) intersect bag(2,3,3,3) = bag (2,3,3,3)
bag(2,2,3,3,3) except bag(2,3,3,3) = bag(2)

/Structure expressionse-> p, e.p

Joe.name
Joe->name

_ .

f Language Description (8) \

ZConversion expressions

— Extracting the element of a singletonzlement(e)
element(select x from x in Professors where x. name ="“Turing”)

— List to set: listtoset(e)
listtoset(list(1,2,3,2)

— Flattening: Flatten(e)

flatten(list(set(1,2,3),set(3,4,5,6),set(7))) ==
Lot ey oet34.5.0)5etM)

flatten(list(list(1,2),list(1,2,3))) == list(1,2,1, 2,3)
flatten(set(list(1,2),list(1,2,3))) == set(1,2,3)

— Typing and expression;(t)e
select ((Employee) s).salary
from s in Students
where s in (select sec.assistant from sec in Sectio ns)

— Operation expressions:
e->f, e.f

e>f(e ., .., e) ef(e 1 o € ")
jones->number_of_students
17

f Examples \

~select distinct x.age
from xin Persons
where x.name = “Pat”
U returns a literal of type Set<integer>

~select distinct struct(a:x.age, s:x.sex)
from x in Persons
where x.name = “Pat”

U returns a literal of type Set<struct>

select distinct
struct(name:x.name, hps:(select vy
from vy in x.subordinates
where y.salary > 100000))
from x in Employees
U returns a literal of type set<struct(name:string, hps:bag<Employees

18

f Examples (2) \

~select struct (a:x.age, s:x.sex)
from xin (select y
from yin Employees
where y.seniority = “10)
where x.name = “Pat”
U returns a literal of type bag<struct>

~Chairman
U returns the Chairmanobject (just the one, presumably!)

+Chairman.subordinates
0 returns the set of subordinates of th&€hairman

Persons

& returns the set of all persons
19

f Examples (3) \

Consider the DreamHome application (an applicatianlyave become
experts in, hopefully!):
~To get a set of all staff:
staff

/ZTo get a set of all branch managers:
branch.offices.ManagedBy

ZTo get a set of all staff who live in London:
define Londoners as
select x
from x in staff
where x.address.city = “London”
select x.name from x in Londoners

K This returns aliteral of type set<string>

20

f Examples (4)

staff who live in London:
select struct (n:x.name, s:x.sex, a:x.age)
from x in staff

where x.address.city = “london”

This returns a literal of type set<struct>

_ !

<

/ZTo get a structured set containing name, sex and age for all

f Object Identity

ZMutable Object has an OID
ZLiteral : identity = their value
~Creating an object:

—To create an object with identity: a type name
constructor is used.
Person (name:"Pat”, birthdate:"3/28/56", salary: DOD)

— Build objects from a query:
retirer (select struct(n:x.name, a:x.age, S:X.sex)
from x in persons
where x.age > 60)
— Objects without identity are created usingstruct
struct(a:10, b:"pat”)

_ :

f Objects in SQL3 \

~#0QL extends C++ with database concepts, while SQL3
extends SQL with OO concepts.

ZSystems using the SQL3 philosophy are called object-
relational

ZAll major relational vendors have something of this
kind, allowing any class to become the type of a column:

— Informix Data Blades
—Oracle Cartridges
— Sybase Plug-Ins

—IBM/DB2 Extenders

_ .

f Two Levels of SQL3 Objects \

1. For tuples of relations = “row types”
2. For columns of relations = “types”
» But row types can also be used as column types.

ZReferences: Row types can have references

—If T is a row type, thenREF(T) is the type of a
reference to aT object.

—Unlike OO systems, refs are values that can be seen
by queries.

_ .

f Example of Row Types

CREATE RO TYPE BarType (
name CHAR(20) UNIQUE,
addr CHAR(20)

);

CREATE ROW TYPE BeerType (
name CHAR(20) UNIQUE,
manf CHAR(20)

);

CREATE ROW TYPE MenuType (
bar REF(BarType),
bee REF(BeerType),

price FLOAT
& 25

f Creating Tables

~ZRow-type declarations do not create tables.

» They are used in place of element lists in
CREATE TABLE statements.

ZExample:

CREATE TABLE Bars of TYPE BarType
CREATE TABLE Beers OF TYPE BeerType
CREATE TABLE Sells OF TYPE MenuType

_ :

<

f Dereferencing

ZA -> B = the B attribute of the object referred to by
reference A.

~ZExample: Find the beers served by Joe.
SELECT beer -> name

FROM Sells
WHERE bar -> name = ‘Joe’s Bar’;

" 27

f ADTs in SQL3

Allow types with methods in columns of a relation.

ZIntended application: data that doesn't fit relational
model well, e.g., locations, signals, images, etc.

ZThe type itself is usually a multi-attribute tuple.
ZType declaration:
CREATE TYPE <name> (
attributes
method declarations or definitions
);
<Methods defined in a PL/SQL-like language

28

f Example \

CREATE TYPE BeerADT (
name CHAR(20),
manf CHAR(20),
FUNCTION newBeer(

: n CHAR(20),
:m CHAR(20)

)
RETURNS BeerADT;
:b BeerADT; /* local decl. */

BEGIN
:b := BeerADT(); /* built-in constructor */
:b.name :=:n;
:b.manf :=:m;
RETURN :b;
END;

FUNCTION getMinPrice(:b BeerADT)
RETURNS FLOAT;

);

_ !

f Example (cont.) \

~getMinPrice is declaration only; newBeer is
definition.

ZgetMinPrice must be defined somewhere where
relation Sells is available.

FUNCTION getMinPrice(:b BeerADT)
RETURNS FLOAT;

:p FLOAT;

BEGIN
SELECT MIN(price) INTO :p
FROM Sells
WHERE beer = :b.name;
RETURN :p;

K END;
30

