
1

ODL, OQL and SQL3

CSC 436 – Fall 2003

* Notes kindly borrowed from DR AZIZ AIT -BRAHAM, School of
Computing, IS & Math, South Bank University

2

Object Definition Language

oObjectives
– Portability of database schemas across ODBMS
– Interoperability of ODBMSs from multiple vendors

oDevelopment principles
– All semantic constructs of ODMG object model
– Specification language (not full programming

language)
– Program language independence
– OMG IDL (Interface Definition Language)

compatibility
– Practical and short time implementable

3

Type Specification

oA type is defined by specifying its interface in ODL
oTop-level BNF

type definition ::= interface <type_name> [:<supertype_list>}

{

[<type_property_list>]

[<property_list>]

[<operation_list>]

};

oAny list may be omitted if not applicable

4

Type Characteristics Specification

oType characteristics
– Supertypes
– Extent naming
– Key(s)

oExample
interface Professor :Person {

extent professors;
keys faculty_id, soc_sec_no;
<property_list>
<operation_list
};

oNotes
– No more than one extent or key definition. Each attribute or

relationship traversal name in key definition should be specified in the
property list

– Extent naming and key definition may appear in any order
– Supertype, extent naming and key definition may be omitted if not

applicable

5

Property List

oBNF

<property_list ::== <property_spec>; | <property_spec><property_list>
<property_spec>::= <attribute_spec> | <relationship_spec>

oStructured types have bracketed list of field-type pairs
associated with them.

oEnumerated types have bracketed lists of values.
oRelationship have inverses.
oAn element from another class is indicated by <class>::
oForm a set type with Set<type> .

6

Attribute Specification: Example

interface Professor {
extent professors;
keys faculty_id, soc_sec_no;

attribute string name;
attribute integer faculty_id;
attribute integer soc_sec_no;
attribute Struct<integer number, string street,

Ref<City> city> address;
attribute Enum {male, female} gender;

<operation_list>
}
interface City {

extent cities;
key city_code;
attribute integer city_code;
attribute string name;

}

7

Property List (2)

oRelationship specification
– Definition: to define a traversal path for a relationship

» Designation of target type
» Information about inverse traversal path

– Example
interface Professor {
extent professors;
keys faculty_id, soc_sec_no;

<attribute_list>;

relationship Set<Student> advisees inverse Student::advisor;
relationship Set <TA> teaching_assitants inverse TA::works_for;
relationship Department department inverse Department::faculty

<operation_list>
}

8

Operation List

oBNF
operation_list> ::= <operation_spec>; | <operation_spec><operatin_list>
<operation_spec> ::= <return_type> <operation_name>

([<argument_list>]) [<exception_raised>]
...
<exception_raised> ::= raises(<exception_list>)
...

oExample
interface Professor {

<type_property_list>
<attribute_list>
<relationship_list>

grant_tenure() raises(ineligible_for_tenure);
hire (in Professor);
fire (in Professor) raises(no_such_employee);

}

9

Object Query Language

oRelies on ODMG object model
oOQL is very close to SQL-92. Extensions concern object-oriented

notions.
oHigh level primitives to deal with sets of objects, structures and

lists.
oOQL is a functional language where operators can freely be

composed, as long as the operands respect the type system.
oNot computationally complete.
oNo explicit update operators (instead use operations defined on

objects).
oDeclarative access. Thus OQL queries can be easily optimised by

virtue of this declarative nature.
oFormal semantics can easily be defined

10

Language Description

oA query: a (possibly empty) set of query definition
expressions followed by an expression.The result of a query
is an object with or without identity.

oNotation:
q: query name a: atom

e: expression t: type name

p: property name f: operation name

x: variable

11

Language Description (2)

oQuery definition expressions are of the form:

define q as e

oExample
define Joe as element (select x from x
in Students where x.name = “Joe”)

oElementary expressions: a variable x, an atom, a named
object or a query name q.

27, nil, Students, Joe

12

Language Description (3)

oConstruction expressions
– Object: t(p 1: e 1 , ..., p n: e n)

type of e i must be compatible with p i

Employee (name:”Peter”, boss:”Paul”)
– Structure: struct(p 1: e 1 , ..., p n: e n)

struct (name:”Peter”, age:25)
– Set: set(p 1: e 1 , ..., p n: e n) set(1,2,3)
– Bag: bag(e 1 , ..., e n) bag(1,1,2,3,3)
– List: list(e 1 , ..., e n) list(1,1,2,3,3)
– Array: array(e1 , ..., e n) array(1,1,2,3,3)

oArithmetic expressions
– unary expressions: <op>e

not(true)
– Binary expressions: e1 <op> e2

count(Students) - count(TA)

13

Language Description (4)

oCollection expressions
– Universal quantification: for all x in e 1 : e2

for all x in Students:x.student_id > 0

– Existential quantification: exists x in e 1 : e2

exists x in Doe.takes:x.taught_by.name=“Turing”

– Membership testing: e1 in e 2 Joe in TA

– Select From Where:
select e from x 1 in e 1, ... , x n in e n where e’
select distinct e from x 1 in e 1, ... , x n in e n where e’

select couple(student:x.name, professor:z.name)
from x in Students, y in x.takes, z in y.taught_by
where z.rank=“full professor”

– Sort-by: sort x in e by e 1, ... , e n

sort x in Persons by x.age, x.name

– Unary set operator:
<op> (e)

<op> ∈ {min, max, count, sum, avg}
max(select x.salary from x in Professors)

14

Language Description (5)

oCollection expressions (cont.)
– Group_by:

group x in e by (p 1: e 1 , ..., p n: e n)
with (p 1: e 1 , ..., p n: e n)

group x in Employees
by (low:x.salary<1000,

medium:x.salary>=1000 and x.salary<10000,
high:x.salary>=10000)

returns
set<struct(low:boolean, medium:boolean, high:boolea n,
partition:set<Employee>)>

group e in Employees
by (department:e.deptno)
with (avg_salary:avg(select x.salary from x in par tition))

returns
set<struct(department:integer, avg_salary:float)>

15

Language Description (6)

o Indexed Collection Expressions
– Get the i-th Element: e1[e 2] list(a,b,c,d) [1]

element(select x

from x in course
where x.name=“math” and x.number=“101”).requires[2])

– Extracting a subcollection: e1 [e 2: e 3] list(a,b,c,d)[1:3]

element(select x

from x in course
where x.name=“math” and x.number=“101”).requires[1 :2])

– Last and first: first(e), last(e)

first(element(select x

from x in course
where x.name=“math” and x.number=“101”).requires)

– Concatenating: e1 + e 2 list(1,2)+list(2,3)

16

Language Description (7)

oBinary set expressions:

e1 <op> e 2

<op> ∈ {union, except, intersect} Student except TA

bag(2,2,3,3,3) union bag(2,3,3,3) =
bag(2,2,3,3,3,2,3,3,3)

bag(2,2,3,3,3) intersect bag(2,3,3,3) = bag (2,3,3,3)

bag(2,2,3,3,3) except bag(2,3,3,3) = bag(2)

oStructure expressions: e-> p, e.p

Joe.name

Joe->name

17

Language Description (8)

oConversion expressions
– Extracting the element of a singleton: element(e)

element(select x from x in Professors where x. name =“Turing”)

– List to set: listtoset(e)
listtoset(list(1,2,3,2)

– Flattening: Flatten(e)
flatten(list(set(1,2,3),set(3,4,5,6),set(7))) ==
set(1,2,3,4,5,6,7)
flatten(list(list(1,2),list(1,2,3))) == list(1,2,1, 2,3)
flatten(set(list(1,2),list(1,2,3))) == set(1,2,3)

– Typing and expression: (t)e
select ((Employee) s).salary
from s in Students
where s in (select sec.assistant from sec in Sectio ns)

– Operation expressions:
e->f, e.f
e->f (e 1 , ..., e n), e.f(e 1 , ..., e n)
jones->number_of_students

18

Examples

oselect distinct x.age
from x in Persons
where x.name = “Pat”

� returns a literal of type Set<integer>

oselect distinct struct(a:x.age, s:x.sex)
from x in Persons
where x.name = “Pat”

� returns a literal of type Set<struct>

oselect distinct
struct(name:x.name, hps:(select y

from y in x.subordinates
where y.salary > 100000))

from x in Employees
� returns a literal of type set<struct(name:string, hps:bag<Employees>)>

19

Examples (2)

oselect struct (a:x.age, s:x.sex)

from x in (select y
from y in Employees
where y.seniority = “10”)

where x.name = “Pat”
� returns a literal of type bag<struct>

oChairman
� returns the Chairmanobject (just the one, presumably!)

oChairman.subordinates
� returns the set of subordinates of the Chairman

oPersons
� returns the set of all persons

20

Examples (3)

Consider the DreamHome application (an application you have become
experts in, hopefully!):

oTo get a set of all staff:
staff

oTo get a set of all branch managers:
branch.offices.ManagedBy

oTo get a set of all staff who live in London:
define Londoners as

select x
from x in staff
where x.address.city = “London”

select x.name from x in Londoners

This returns aliteral of type set<string>

21

Examples (4)

oTo get a structured set containing name, sex and age for all
staff who live in London:

select struct (n:x.name, s:x.sex, a:x.age)

from x in staff

where x.address.city = “london”

This returns a literal of type set<struct>

22

Object Identity

oMutable Object has an OID
oLiteral : identity = their value
oCreating an object:

– To create an object with identity: a type name
constructor is used.

Person (name:”Pat”, birthdate:”3/28/56”, salary:100,000)

– Build objects from a query:
retirer (select struct(n:x.name, a:x.age, s:x.sex)

from x in persons
where x.age > 60)

– Objects without identity are created usingstruct :
struct(a:10, b:”pat”)

23

Objects in SQL3

oOQL extends C++ with database concepts, while SQL3
extends SQL with OO concepts.

oSystems using the SQL3 philosophy are called object-
relational

oAll major relational vendors have something of this
kind, allowing any class to become the type of a column:

– Informix Data Blades
– Oracle Cartridges
– Sybase Plug-Ins
– IBM/DB2 Extenders

24

Two Levels of SQL3 Objects

1. For tuples of relations = “row types”
2. For columns of relations = “types”

» But row types can also be used as column types.

oReferences: Row types can have references

– If T is a row type, then REF(T) is the type of a
reference to a T object.

– Unlike OO systems, refs are values that can be seen
by queries.

25

Example of Row Types

CREATE RO TYPE BarType (

name CHAR(20) UNIQUE,

addr CHAR(20)
);

CREATE ROW TYPE BeerType (

name CHAR(20) UNIQUE,

manf CHAR(20)

);
CREATE ROW TYPE MenuType (

bar REF(BarType),

bee REF(BeerType),

price FLOAT
);

26

Creating Tables

oRow-type declarations do not create tables.
» They are used in place of element lists in

CREATE TABLE statements.

oExample:

CREATE TABLE Bars of TYPE BarType

CREATE TABLE Beers OF TYPE BeerType

CREATE TABLE Sells OF TYPE MenuType

27

Dereferencing

oA -> B = the B attribute of the object referred to by
reference A.

oExample: Find the beers served by Joe.

SELECT beer -> name

FROM Sells

WHERE bar -> name = ‘Joe’s Bar’;

28

ADTs in SQL3

Allow types with methods in columns of a relation.

oIntended application: data that doesn’t fit relational
model well, e.g., locations, signals, images, etc.

oThe type itself is usually a multi-attribute tuple.
oType declaration:

CREATE TYPE <name> (

attributes

method declarations or definitions

);

oMethods defined in a PL/SQL-like language

29

Example
CREATE TYPE BeerADT (

name CHAR(20),
manf CHAR(20),
FUNCTION newBeer(

: n CHAR(20),
:m CHAR(20)
)
RETURNS BeerADT;

:b BeerADT; /* local decl. */
BEGIN

:b := BeerADT(); /* built-in constructor */
:b.name := :n;
:b.manf := :m;
RETURN :b;

END;
FUNCTION getMinPrice(:b BeerADT)

RETURNS FLOAT;
);

30

Example (cont.)

ogetMinPrice is declaration only;newBeer is
definition.

ogetMinPrice must be defined somewhere where
relation Sells is available.

FUNCTION getMinPrice(:b BeerADT)
RETURNS FLOAT;

:p FLOAT;
BEGIN

SELECT MIN(price) INTO :p
FROM Sells
WHERE beer = :b.name;
RETURN :p;

END;

