
1

Object Model

CSC 436 – Fall 2003

* Notes kindly borrowed from DR AZIZ AIT -BRAHAM, School of
Computing, IS & Math, South Bank University

2

Object Database Management Group

oSince its inception in 1991, the ODMG has grown to over 20 members and
includes every ODBMS vendor, plus several tool vendors, consulting
firms, and corporate end users.

oThe voting member companies are GemStone Systems, IBEX Computing
SA, O2 Technology, Object Design, Objectivity, POET Software, UniSQL
and Versant Object Technology.

oReviewer member companies are Andersen Consulting, CERN, Electronic
Data Systems (EDS), Fujitsu Software Corporation, Hitachi, Lockheed
Martin, Microsoft, MITRE Corporation, NEC Corporati on, ONTOS,
Persistence Software, Sybase, Unidata and VMARK Software.

oVoting membership requires that a company must have developed and
must commercially ship an object DBMS product. The company must
commit 20 percent of the time of a senior object DBMS expert and must
commit to implement the ODMG standard.

oReviewer membership requires a company to commit 10 percent of the
time of a senior object DBMS expert, but does not require that the
company ship an object DBMS product.

3

Object Model

oFrom ODMG-93
oThe basic modelling primitive is the object

oThe behaviour of objects is defined by a set of operations
that can be executed on an object of the type (e.g., you
can ‘discharge’ an object of type Patient)

oThe state of objects is defined by the values they carry
for a set of properties:

– attributes of the object itself
– relationships between the object and one or more

other objects
oObjects can be categorised into types. All objects of a

given type exhibit common behaviour and a common
range of states

4

Type Interface

oA type has one interface and one or more
implementations

oThe type interface defines the external interface
supported by instances of the type

– the properties and
– the operations that can be invoked on them

oAn implementation defines data structures to physically
represent instances of the type and the methods that
operate on those data structures to support the state and
behaviour defined in the interface

5

Types and Instances

oA type defines the state (properties) and behaviour
(operations) of its instances, collectively as its
characteristics

oTypes are themselves objects and have properties
– Supertypes: types are related in a subtype/supertype

graph (like ISA in the E-R model)
– Extents: the set of all the instances of a type
– Keys: the property or set of properties whose values can

uniquely identify the instances of a type

6

Basic Type Hierarchy

o Denotable Object

o Object

o Literal

o Characteristic

o Property

o Attribute

o Relationship

o Operation

7

Inheritance

oA subtype inherits all of the characteristics of its
supertypes

oSubtypes also may define additional characteristics that
apply only to its instances

oAn instance of a subtype may be treated as an instance
of its supertype

oAbstract types only define characteristics inherited by
their subtypes; they cannot be directly instantiated

oA type can have multiple supertypes
– may result in possible name clashes
– subtype must redefine the name of one of the inherited

characteristics

8

Example Type Hierarchy

interface Employee {
supertype: Atomic_object;
id: Integer;
name: String;
salary: Float; ...}

interface Staff {
supertype: Employee;
position: String;
hours: Struct<from:Time, to:Time>;}

interface Student {
supertype: Atomic_Object;
Stud_id:integer; ...}

interface TA {
supertype: Employee, Student;
assists: Course inverse Course:ta;
emp_name redefines Employee.name}

9

Extents

oThe extents of a type is the set of all instances of the type

oExtents are optional; not all types must have an extent

oODBMS automatically maintains the extent as instances
are created and deleted

oEach instance of type A will be a member of the extent
of A

oIf type A is a subtype of type B, then the extent of A will
be a subset of the extent of B

10

Implementations and Classes

oA type has one more implementations
oAn implementation has a name and consists of a

representation (data structures and a set of methods
(procedures bodies)

oThere is one method for each operation defined in the
type interface

oThere may be additional methods and data structures
that have no counterpart in the type interface

oThe combination of the type interface and one of its
implementations is termed a class

oIn a C++ class, the private part corresponds to the
implementation

11

Why Multiple Implementations?

oTo support databases that span networks which include
machines with different architectures

oTo support mixed-language and mixed-compiler
environments

oTo meet different performance versus space versus
recoverability trade-offs (e.g., set as a B-tree or linked
list)

oWhich implementation an object uses is specified at
object creation time

12

Objects

oObjects are things which characteristics are predicated;
that is, objects have state and behaviour

oObjects also have identity
– the identity of a literal is typically represented by its value
– the identity of an object is an object identifier (OID)

oTwo orthogonal lines along which objects can be
decomposed:

– mutable (Object) versus immutable (Literal)
– atomic versus structured

13

Type Object

oInstances of type Object are mutable

– the values of attributes may change
– the relationships in which they participate may change
– the identity of the object remains invariant

oAn object’s OID distinguishes the object from all other
objects in the database in which it exists

oObjects may have one or more names; each name can be
used to identify a single object

oSubtypes

– Atomic_Object
– Structured_Object

14

Type Object (cont.)

oBuilt-in properties:
– has_name?: Boolean

– names: Set<String>

– type: Type

oBuilt-in operations:
– delete()

– same_as? (oid: Object_id) -> b: Boolean

oObject Lifetime
– transient

» declared in a procedure and returned when the procedure returns
» allocated by the PL runtime and removed when the process ends

– persistent: allocated by the ODBMS runtime

15

Structured Objects

oThe type Structured_object are mutable
– Structure<e1: T1... en : T n >

– Collection<T>

oStructures have a fixed number of named slots each of
which contains an object or a literal

oCollections contain an arbitrary number of elements, do
not have named slots, and contain elements that are all
instances of the same type

oBuilt-in Collection subtypes:
– Set<T>: unordered collection of unique elements

– Bag<T>: unordered collection of elements

– List<T>: collection of elements ordered by insertion

– Array<T>: collection of elements ordered by property

16

Literals

oLiterals are objects whose instances are immutable

oTwo subtypes
– Atomic_Literal

– Structured_Literal

oAll instances of atomic literals implicitly pre-exist

oSubtypes of atomic literals
– Integer

– Float

– Boolean

– Character

17

Structured_Literal

oTwo subtypes
o Immutable_Collection<T>

o Immutable_Set<T>
o Immutable_Bag<T>
o Immutable_List<T>

o Bit_String
o Character_String

o Immutable_Array<T>
o Enumeration

o Immutable_Structure
o Date
o Time
o DateTime
o Interval

oCannot update the value of a structured literal

18

Modelling State - Properties

oAn object type defines a set of properties through which
users of instances of the type can interrogate and
manipulate the state of these instances

oTwo kinds of properties:
– Attributes: defined on one object type and take

literals as their values
– Relationships: defined between two object types, both

mutable objects

19

Attributes

oThe declaration of an object type includes declarations
of each of the attribute types for which an instance of the
object type carries a specific value

oExample attribute type definitions for type Person:
– age: Integer

– sex: Enumeration(male, female)

– height: Integer

oBuilt-in operations defined on attributes:
– set_value(new_value: Literal)

– get_value() -> existing_value:Literal

20

Relationships

oRelationship types are defined between mutable object
types

oRelationships have no names themselves; instead
traversal paths are defined for each direction of traversal

oInverse clause used to indicate the common relationship
between traversal paths

oExample:

interface Student
{ ...

takes: Set<Course> inverse Course::is_taken_by
}

interface Course
{ ...
is_taken_by: Set<Student> inverse Student::takes

}

21

Modeling Behavior - Operations

oThe potential behavior of instances of an object type is
specified as a set of operations

oThe operation signature of an operation in the object
type definition includes

– argument names and types
– exceptions potentially raised
– types of the values returned, if any

oOperation names must be unique only within a single
type definition

oOverloading operations are operations defined on
different types using the same name

oSpecific operation is selected based on the most specific
type of the object supplied

22

Overloaded Operations: Example

interface Employee {
supertype: Atomic_Object;
extent: employees;
id: Integer;
name: String;
hourly_wage: Float;
salary();
... }

interface Salesperson {
supertype: Employee;
extent: salespeople;
commissions: Set<Float>;
salary():
... }

oConsider the function to calculate the sum of all employees salaries
(early versus late binding)

23

Type Compatibility

oEvery object has a type

oEvery operation requires typed operands

oTwo objects have the same type only if they are
instances of the same named type

oIf B is a subtype of A, then an instance of Type B can be
assigned to an object of type A, but not the reverse

24

Metadata

oAll types are instances of type Type
oType Type is both a subtype and an instance of

Atomic_Object
oCan use standard DML to interrogate the metadata
oType Type has instance properties, such as

– has_operations: Set<Operations>
– has_properties: Set<Property>
– has_supertypes: Set<Type>
– name: String
– extent: Set<Atomic_Object>

oEach type definition specifies values for these properties

25

Type Database

oA database provides storage for persistent objects of a
given set of types

oThe database schema is the set of type definitions

oEach database is an instance of the type Database, which
supports the following operations

– open()

– close()

– contains_object?(oid:Object) -> b:Boolean

– lookup_object(oid:Object) -> b:Boolean

26

Transactions

oThe object model supports a nested transaction model
– simple way of undoing changes made to stored persistent

data
– method to protect against network failure for remote

operations

Transaction::begin() --> t:Transaction;
...

Transaction::begin() --> x:Transaction;
...

Transaction::begin() --> y:Transaction;
...
if minor_error then y.abort()
if major_error then y.abort_to_top_level()
...
y.commit()

...
x.commit()

...
t.commit()

27

Reference

oCatell R.G.G. ed.:
The Object Database Standard: ODMG - 93,
San Mateo, CA: Morgan Kaufmann, 1994.

