
1

Object-Oriented Databases

CSC 436 – Fall 2003

* Notes kindly borrowed from DR AZIZ AIT -BRAHAM, School of
Computing, IS & Math, South Bank University

2

New Database Applications

oData models designed for data-processing-style
applications are not adequate for new technologies such
as computer-aided design, computer-aided software
engineering, multimedia and image databases, and
document/hypertext databases.

oThese new applications require the database system to
handle features such as:

– complex data types
– data encapsulation and abstract data structures
– novel methods for indexing and querying

3

Weaknesses of RDBMSs

oRepresentation of ‘real world’ entities: The process of
normalisation generally leads to the creation of relations that
do not correspond to entities in the ‘real world’.

oSemantic overloading: The relational model has only one
construct for representing data and data relationships: the
relation.

oHomogeneous data: The relational model assumes both
horizontal and vertical homogeneity. Also, intersection of a
row and column must be an atomic value => this structure is
restrictive for many ‘real world’ objects with a complex
structure.

4

Weaknesses of RDBMSs (cont.)

oLimited operations: The relational model has a fixed set of
operations (provided in SQL). => does not allow new
operations to be specified.

oRecursive queries: It is extremely difficult to produce
recursive queries (queries about relationships that a relation
has with itself).

oImpedance mismatch: Result of mixing different
programming paradigms (e.g., SQL is a declarative
language that handles rows of data whereas a high-level
language such as ‘C’ is a procedural language that can
handle only one row at a time).

5

Object-Oriented Data Model

oLoosely speaking, and object corresponds to an entity in
the E-R model.

oThe object-oriented paradigm is based on encapsulating
code and data related to an object into a single unit.

oThe object-oriented data model is a logical model (like
the E-R model).

oAdaptation of the object-oriented programming
paradigm (e.g., Smalltalk, C++) to the database systems.

6

Object Structure

oAn object has associated with it:
– A set of variables that contain the data for the object.

The value of each variable is itself and object.
– A set of messages to which the object responds; each

message may have zero, one, or more parameters.
– A set of methods, each of which is a body of code to

implement a message; a method returns a value as
the response to the message.

oThe physical representation of data is visible only to the
implementer of the object.

oMessages and responses provide the only external
interface to an object.

7

Messages and Methods

oThe term message does not necessarily imply physical
message passing. Messages can be implemented as
procedure invocations.

oMethods are programs written in a general-purpose
language with the following features:

– only variables in the object itself may be referenced directly

– data in other objects are referenced only by sending
messages

oStrictly speaking, every attribute of an entity must be
represented by a variable and two methods, e.g., the
attribute address is reprented by a variable address and two
messages get-address and set-address.

– For convenience, many object-oriented data models permit
direct access to variables of other objects.

8

Encapsulation

oIn Programming Languages
– Definition of Object: Specification + Implementation
– Only specification visible to user
– Implementation is seen only by the programmer

oIn Databases
– Definition of Object: data + operations
– Signatures of operations are the only visible part of

the object

oEncapsulation implies data independence

9

Data and Operations in a RDBMS

oData stored in the database (designed first)

oPrograms stored in a file system (designed after)

oExample:
– a database file: EMPLOYEE(name, age, SSN,

location, salary)
– application program

» Change_Location (EMPLOYEE, new_location)
» Change_Salary (EMPLOYEE, amount)

10

Encapsulation in an OODBMS

oData and operations are encapsulated in the same
object

oExample

EMPLOYEE --> (OiD)
Specification (visible)

Change_Location (EMPLOYEE, new_location)

Change_Salary (EMPLOYEE, amount)

end_specification

Implementation (invisible)
Name, age, SSN, location, salary (Data)
Change_Location (...)
{....}
Change_Salary (...)
{...}
end_implementation

11

Encapsulation: Relational vs OO Systems

oData and operations are designed at the same time in an
OO database system

oData and operations are stored in the same system

oOnly the signature of operations is visible to the users

12

Object Classes

oSimilar objects are grouped into a class; each such
object is called an instance of its class.

oAll objects in a class have the same
– variable types
– messages interface
– methods

They may differ in the values assigned to variables

oExample: Group objects for people into a person class
oClasses are analogous to entity sets in the E-R model

13

Class Definition Example

classemployee {
/* Variables */

string name;
string address;
date start-date;

/* Messages */
int annual-salary();
string get-name();
string get-address();
int set-address(string new-address);
int employment-length();

};

oFor strict encapsulation, methods to read and set other
variables are also needed.

oemployment-length is an example of a derived attribute.

14

Inheritance

oE.g., class of bank customers similar to class of bank
employees: both share some variables and messages, e.g,
name and address. But there are variables and messages
specific to each class e.g., salary for employees and
credit-rating for customers.

oEvery employee is a person; thus employee is a
specialisation of person

oSimilarly, customer is a specialisation of person.
oCreate classes person, employee and customer

– variables/messages applicable to all persons
associated with class person.

– variables/messages specific to employees associated
with class employee; similarly for customer

15

oPlace classes into a specialisation/IS-A hierarchy
– variables/messages belonging to class person are

inherited by class employee as well as customer

oResult is a class hierarchy
person

employee customer

officer teller secretary

Note analogy with ISA hierarchy in the E-R model

Inheritance (cont.)

16

Class Hierarchy Definition

classperson {
string name;
string address;

};
classcustomer isa person {

int credit-rating;
};
classemployee isa person {

date start-date;
int salary;

};
classofficer isa employee {

int office-number;
int expense-account-number;

};
...

17

Class hierarchy Example (cont.)

oFull variable list for objects in the class officer:
– office-number, expense-account-number: defined locally
– start-date, salary: inherited from employee
– name, address: inherited from person

oMethods inherited similar to variables.
oSubstitutability - any method of a class, say person, can be

invoked equally well with any object belonging to any subclass,
such as subclass officer of person.

oclass extent: set of all objects in the class. Two options:
1 Class extent of employee includes all officer, teller and

secretary objects
2 Class extent of employee includes only employee objects that

are not in a subclass such as officer, teller or secretary

18

Multiple Inheritance

oThe class/subclass relationship is represented by a directed
acyclic graph (DAG) - a class may have more than one
superclass.

oA class inherits variables and methods from all its
superclasses

oThere is potential for ambiguity. E.g., variables with the
same name inherited from two superclasses. Different
solutions such as flag error, rename variables, or choose one.

oCan use multiple inheritance to model “roles” of an object.
– A person can play the roles of student, a teacher or

footballPlayer, or any combination of the three (e.g.,
student teaching assistants who also play football).

– Create subclasses such as student-teacher and student-
teacher-footballPlayer that inherit from multiple classes

19

Class DAG for banking example

person

employee customer

full-time part-time teller secretary

officer full-time-teller part-time-teller full-time-secretary part-time-secretary

Example of Multiple Inheritance

20

Object Identity

oAn object retains its identity even if some or all the
values of variables or definitions of methods change over
time.

oObject identity is stronger notion of identity that in
programming languages or data models not based on
object orientation.

– Value - data value; used in relational systems.
– Name - supplied by user; used for variables in

procedures.
– Built-in - identity built into data model or

programming language.
» no user-supplied identifier is required.
» form of identity used in object-oriented systems.

21

Object Identifiers

oObject identifiers used to uniquely identify objects

– can be stored as a field of an object, to refer to
another object.

– E.g, the spouse field of a person object may be an
identifier of another person object.

– can be system generated (created by the database) or
external (such as social-security number).

22

bicycle

wheel brake gear frame

rim spokes tire lever pad cable

oEach component in a design may contain other components
oObjects containing other objects are called complex or

composite objects.
oMultiple levels of containment create a containment

hierarchy: links interpreted as IS-PART-OF, not IS-A.
oAllows data to be viewed at different granularities by

different users.

Object Containment

23

Polymorphism

oSame operation is defined on objects of different types

oExample: Suppose we sell a variety of Items, but the rules
for computing their total price differs. For instance, medical
items might be exempt from VAT, whereas clothing Items are
not. We still want all Items to have a function called
TotalPrice(), but instead of one TotalPrice() function we now
want different functions depending on the class.

oPolymorphism is also known by other names such as
generic functions, functions instances and operator
overloading.

24

Overriding, Overloading and Late Binding

oOverriding: the possibility of re-defining methods in the
class hierarchy

oOverloading: using the same name to indicate different
codes

oLate Binding (Dynamic Binding): delaying the
association between the name of a method and its
implementation until run-time (rather than compile
time)

