
1

Real-Time Databases

CSC 436 – Fall 2002

Outline

• Introduction and definitions

• Overview of real-time systems

• Requirements of a real-time database

• Real-time database models

• Current research

2

Introduction

• Definition: A real-time database manages
time-constrained data and time-constrained
transactions

• System uses environmental data as input
and must produce output to control its
environment

• Component of a real-time system

Real-Time Systems

• A real-time system is a system in which the
time at which the output is produced is
significant.

• The input corresponds to some "movement"
in the physical world, and the output has to
relate to the same movement.

• Not necessarily “fast”

3

Some Examples

• Flight control in avionics

• Process control in industrial plants

• Robotics

• Patient monitoring

• Command and control

Some Definitions

• job - unit of work scheduled and executed
– every job executes on some resource

• task - set of related jobs

• timing constraint - constraint imposed on
behavior of a job
– ex: move robot arm within 3 seconds to pick

up item on conveyer belt

4

Types of Timing Constraints

• release time - instant in time job becomes
available for execution

• deadline - instant in time by which job’s
execution is require to complete

• relative deadline - maximum allowable
response time

Modes of Real-Time

• Hard real-time constraint - failure to meet it

is considered a fatal flaw

– ex: submarine maneuver to avoid a torpedo by

some deadline

5

Modes of Real-Time

• Soft real-time constraint - late computation
is undesirable, but not catastrophic
– late result usually better than none, but has less

value

– ex: read item from a database by some
deadline

Modes of Real-Time

• Firm real-time constraint - late computation

is useless, but not catastrophic

– ex: robot arm maneuver to pick up object from

a conveyer belt by a deadline

– some literature only discusses soft and hard

6

Hard Real-Time Systems

• Require guarantee that all timing constraints
will be met.
– By proof OR by exhaustive simulations

• Generally static - all tasks known a priori

• Scheduling is static - done ahead of time

Soft Real-Time Systems

• No guarantee required

• Best-effort approach

• May be dynamic - tasks enter system at any
time

• Scheduling usually dynamic - schedule
tasks as they enter system.

7

Example Hard Real-Time System

• Automatically controlled train:

• For train to STOP - use current speed and safe

deceleration rate to compute stop time

• Impose constraints on response time of jobs that
sense and process stop signal and activate brake.

• Without guarantee, train could crash if timing
constraints missed.

Example Soft Real-Time System

• Telephone Network:

• Make call
– sequence of jobs route signal through switches

– we expect put through in short amount of time

• Probabilistic timing constraint
– jobs must complete < 10 sec for 95% of time

– < 20 for 99.95% of time

8

Predictability

• Behavior must be predictable to guarantee

all timing constraints are met

• Accurately analyze timing behavior

– Resource utilizations

– Worst case, average case, etc.

Imprecision

• May need to be allowed to meet timing
constraints

• Trade-off between timeliness and precision

• To meet timing constraints, may need to
relax serializability constraints

9

Scheduling

• Scheduler
– allocates resources to jobs

• schedule
– assignment of all jobs on available resources

(processors)

Hard Real-Time Scheduling

• Feasible schedule
– all timing constraints are met

– set of jobs is schedulable if there is at least one
feasible schedule of those jobs

• Optimality
– a scheduling algorithm is optimal if it always

produces a feasible schedule when one exists

10

Hard Real-Time Scheduling

• Different approaches to hard real-time
scheduling

• Priority-driven scheduling

• Optimality and non-optimality

• Scheduling with resource contention
– Priority inheritance

Soft Real-Time Scheduling

• Performance measures
– lateness - difference from deadline

– tardiness - how far after deadline

– miss rate - percentage of missed deadlines

– loss rate - percentage of discarded tasks

11

Example Priority Driven
Scheduling Algorithms

• Rate-monotonic (RM)
– highest priority to task with shortest period

• Earliest deadline first (EDF)
– highest priority to task with closest deadline

• Least slack time (LST)
– highest priority to task with shortest slack time

– slack time = relative deadline - exec time

• Latest release time (LRT) (reverse EDF)
– highest priority to task with latest release time

Optimality

• EDF - When preemption is allowed and
jobs do not contend for resources, EDF is
optimal.

• LRT and LST - also optimal under same
conditions

12

Scheduling with Resource
Contention

• When non-preemptible resources are used
by processes along with CPU (semaphore
for instance), blocking can occur.

• priority inversion: if a low priority task
blocks a higher priority task
– bad in real-time

– need to bound it to be able to predict amount of
time this will occur

Priority Inversion Example

• Task T3 holds resource S

• Task T1(higher priority) wants resource S
– non-preemptible, so must wait

• Task T2 enters system and takes over CPU
– an intermediate task that does not use S

– causes T3 to block T1 for longer time

– number of such intermediate tasks is
unbounded

13

Priority Inheritance - A Solution

• Allow T3 to “inherit” the priority of T1
while it holds the resource

• T3 runs at priority 1, so T2 will not preempt
it on the CPU

• Bounds priority inversion

Real-time Database Requirements

• Consistency maintenance

• Bounded imprecision

• Predictability

• Transactions

14

Consistency Maintenance

• Four forms of consistency:
– Transaction logical

– Data logical

– Transaction temporal – treat transactions as
real-time tasks

– Data temporal – constrains how old data item
can be and still be valid

Bounded Imprecision

• Conflict between temporal constraints and
logical constraints
– T1 updates data item X
– T2 reads X
– If T2 is reading X, T1 not allowed to update

• Logical constraint

– If X may become old, T2 should update
• Temporal constraint

– May not be able to maintain both
• Trade off one for the other

15

Predictability

• Required for hard real-time, desirable for soft and
firm
– Bound wcet for all database primitives

– Bound sizes of tables and data structures

– Bound waits for buffers

– Bound blocking time due to concurrency control

– Bound transaction aborts

– Bound indexing for locating data items

– Use real-time scheduling

Transaction

• Three types of transactions
– Sensor (write-only)

– Read-only

– update

16

ACID Properties Redefined

• Atomic – selectively applied to parts of
transactions that need consistent data

• Consistent – includes all 4 forms – need
trade-off

• Isolated – no longer independent – must
allow for communication and
synchronization

• Durable – still persistent – but may become
old and then thrown away

Real-Time Database Model

• (Ramamritham)

• Real-time data: d: (value, avi, timestamp)
– Absolute temporal consistency:

• | t – d.timestamp | ≤ d.avi

– Relative temporal consistency:
• ∀ d1, d2 ∈ R, |d1.timestamp – d2.timestamp| ≤ R.rvi

17

Real-time Database Model

• Real-time transactions
– Characterized along 3 dimensions:

• How data is used
– Read-only, Sensor, Update

• Origin of timing constraint
– Data temporal consistency or system

• Model of real-time
– Hard, soft, firm

Current Real-time Database Research

• University of Virginia

• University of Massachusetts – Amherst

18

UVA

• StarBase Overview
– built on top of the RT-Mach operating system
– supports real-time transactions with firm deadlines
– seeks to minimize the number of high-priority

transactions which miss their deadlines
– uses no a priori information about the transaction

workload

• Problems Faced by Real-Time Databases
– resource contention
– data contention
– specifying/enforcing timing constraints

UVA

• Dealing with Resource Contention
– RT-Mach provides:

• priority-cognizant thread scheduling and a real-time thread
model

• Basic Priority Inheritance synchronization for non-preemptible
resources

– StarBase employs these features to:
• service transactions in priority order

• ensure transactions progress according to priority

• ensure transactions access resource managers in priority order

19

UVA

• Dealing with Data Contention
– WAIT-X(S) optimistic concurrency control
– priority-based commit test
– Precise Serialization to reduce unnecessary aborts

• Enforcing Deadlines
– RT-Mach provides:

• real-time thread model
• real-time clocks and timers
• StarBase uses these features to abort transactions and reply at

or before deadline

– StarBase:
• avoids race conditions between deadline handler and

transaction
• avoids interference by low-priority transactions

UMass

• Real-Time Active Database Experimental
Research

• RADEx is the first real-time, active, object-
oriented, temporal database simulator. It is being
used to study
– Priority assignment and real-time transaction

scheduling in active real-time databases
– Real-time logging and recovery
– Consistency and scheduling in temporal databases
– Multimedia databases

20

OMG Data Distribution Service
for Real-Time Systems

• OMG – Object Management Group
– Standards organization

• CORBA

• UML

• Currently working on standard for
delivering distributed real-time data

OMG DDS

• Distributed Shared Memory
– classic model to provide data-centric exchanges

– hard to implement over internet

• Data-Centric Publish-Subscribe (DCPS)

• Higher level data model
– aggregation and coherence relationship

– updates to sub-elements

21

OMG DDS

• Publish-Subscribe (PS) system
– concept of publishers and subscribers
– information posted by publisher automatically delivered

to subscriber of related topic

• DCPS adds data model to PS to express
– types and relationship among data-items
– aggregation & consistency relationships
– QoS requirements

• DCPS in a way counterpoint to Notification
Service

DCPS vs. Notification Service

• domain of disclosure –
data

• “channel” functions as
data-stream

• events notify of data and
data-stream QoS change

• definition, configuration,
QoS relate to data

• data structured to provide
refinement in data-
channels

• many data-stream
channels no/or few filters

• domain of disclosure -
events

• “channel” functions as
event-stream

• data piggybacked to
events

• QoS relate to events
• consumers use filters to

select events of interest
• few event channels &

filters

22

DCPS vs. Notification Service

• efficient real-time
delivery mechanism of
frequent data updates

• scales to many
suppliers and even
more recipients

• accommodates variety
of QoS settings

• filtering and
distribution streams of
uncorrelated and often
asynchronous events
to consumers w/
interest on subset of
these events

Data Model

• tree structure
• node or leaf identified by topic or key and has

associated data

• branch – sequence of topics started from root

• publishers provide values for tree elements

• subscribers register their interest in individual
elements or complete branches

• Air-traffic control systems (Flight Plan: the route,
the aircraft identification, etc.)

23

Data Model

• shared data implies issue of policies &
multiple writers (Data Ownership)

• policy to obtain, retain, yield ownership

• granularity of ownership

• lifecycle of ownership

• “permanent” or “leased” ownership

Data Distribution Server

• structural model to represent aggregation
relationships

• publish – subscribe interface that allows to
subscribe to subsets of data

• quality of service model tailored to data-
centric model, where data-delivery can be
customized

• data ownership model

24

EMPRESS RDBMS

• The Embedded Real-Time Database
(http://www2.empress.com/)

• full-featured database engine designed for embedded,
real-time applications

• provides total control to the developer delivering high-
performance, deterministic data management

• compact, agile and maintenance-free and is suited for
embedded systems, real-time, communications, military
& defense, process control and scientific & engineering
applications

• runs on Unix, Linux, Windows and Real Time systems.

